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Courses

Ø Courses:
• CS55N	(freshmen	seminar):		ten	ideas	in	computer	security

• CS155: Computer	Security

• CS251: Crypto	currencies	and	blockchain technologies

• CS255: Intro	to	Crypto

• CS259: Security	analysis	of	network	protocols

• CS355: Graduate	course	in	cryptography

Ø Stanford	Advanced	Computer	Security	Certificate
http://scpd.stanford.edu/computerSecurity/



Online	Courses

//www.coursera.org/learn/crypto

Course open to the public
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Dan	Boneh and	Victor	Shoup

Free	at:				//cryptobook.us
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Multiparty	computation	(MPC)	and	SGX



MPC	for	genomic	data	analysis

People	with	Kabuki	syndrome

[Jagadeesh,	Wu,	Birgmeier, Boneh,	Bejerano,		Science 2017]

Each	has	211	to	374	rare	genes	out	of	≈20,000	genes

Patient	i:				vector	vi of	dim	20,000	that	is	0	for	normal	genes

What genes causes a specific disorder?
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MPC	for	genomic	data	analysis

People	with	Kabuki	syndrome

[Jagadeesh,	Wu,	Birgmeier, Boneh,	Bejerano,	2017]

Each	has	211	to	374	rare	genes	out	of	≈20,000	genes

Patient	i:				vector	vi of	dim	20,000	that	is	0	for	normal	genes

r1 v1-r1r2 v2-r2r3 v3-r3
r1	,	r2	,	r3	,	… v1-r1	,		v2-r2	,		v3-r3,	…

MPC protocol



MPC	for	genomic	data	analysis

People	with	Kabuki	syndrome

[Jagadeesh,	Wu,	Birgmeier, Boneh,	Bejerano,	2017]

Nothing	else	is	revealed	about	the	individual	genomes	!!

MPC protocol

most	common
rare	genes

KMT2D,	COL6A1

r1	,	r2	,	r3	,	… v1-r1	,		v2-r2	,		v3-r3,	…



Can	we	do	this	with	Intel’s	SGX	?

Source: ISCA 2015 tutorial slides for Intel SGX 

Enclave Application Remote Attestation

Enclave



Ben	Fisch,						Dhinakaran Vinayagamurthy,	

Dan	Boneh,	 Sergey	Gorbunov

Iron:	Functional	encryption	and	
obfuscation	using	Intel	SGX

In proc. ACM CCS 2017



Functional	Encryption
[Boneh-Sahai-Waters,	2011]

msk

Master-key	Authority
mpk

program		P

functional	key			KP
approve?

Decrypt

KP

c1 ←  E(mpk, v1)

c2 ←  E(mpk, v2)

c3 ←  E(mpk, v3)
P(v1, v2, v3)

researcher

KMT2D, COL6A1



Functional	Encryption
[Boneh-Sahai-Waters,	2011]

Decrypt

KP

c1 ←  E(mpk, v1)

c2 ←  E(mpk, v2)

c3 ←  E(mpk, v3)
P(v1, v2, v3)

researcherWhy	is	functional	encryption	hard?

no	interaction	during	decryption

can’t	use	MPC	techniques

Satisfy regulators?
(GDPR)



SGX	Functional	Encryption:	approach

Decryption
Enclave

Key 
Manager 
Enclave

Master-key Authority FE Decryption Node

mpk
msk

sig.pk
sig.sk

msk
sig.pk

msk

skf =	sig(sk,	<P>) <P>

- Check sig on <P> 
- Decrypt ciphertext
- evaluate f on 

plaintext

(c,  <P>, sig) 

P(m)

mpk:		multi-input	func.	enc.	public	key

c ⟵ E(mpk, m)



But	not	so	simple	…

• Enclave memory access pattern leaks and 
can break FE security

• How to represent the program P:
- Cannot move code into enclave after EINIT
- Difficult to safely implement interpreter in enclave:

performance   and   memory access pattern leak

• Side channel attacks (timing, power)



Iron	architecture
Key	manager	enclave:

manage	master	key

Decryption	enclave:
initialized	at	startup

Function	enclave:		for	specific	program	P.
if	approved,	signed	by	key	manager

c1⟵ E(mpk,	m1)
c2⟵ E(mpk,	m2)

P(m1,	m2)

mpk



Security
• Formally model	the SGX	HW	interface:	

Setup,	 Load,	 Run,	 Run&Report,	
Run&Quote,	 ReportVerify, QuoteVerify

Builds	on	HW	security	models	of:	

Pass	et.	al.	[PST’17]	,					Bahmani et.	al.	[BBB+’16]	

• MIFE	simulation-based	security, assuming:	
adversary	cannot	distinguish	
black-box	HW	interface	and	real	SGX



Side-channel	atacks

Security	proof	does	not	capture	side	channel	attacks	on	SGX	

• Cache-timing	attacks	[CD16]	leak	memory access	patterns	at	
cache-line	granularity

• Page-fault	attacks	[XCP15]	leak	memory access	patterns	at	4KB	
page	granularity

• Branch	shadowing	attacks	[LSG+16]	can	directly	view	branch	
history	(saved	for	pipeline	branch	prediction)

DEFENSE: only	sign	function	enclaves	whose	memory	access	
pattern	is	independent	of	sensitive	data	
(e.g.	ORAM	based)



Implementation	and	
Evaluation	

• C++	using	the	Intel(R)	SGX	SDK	1.6	for	Windows

Intel	Skylake		i7-6700,	3.40	GHz,	8	GiB	RAM,	
Windows	Server	2012	R2	Standard	

• Function	enclave	implementation	is	
data-oblivious to	resist	side-channels



Comparing	Iron	to	
cryptographic	constructions

BF-IBE



Joint	work	with	Henry	Corrigan-Gibbs

NSDI	2017

Prio:	Private,	Robust,	and	Efficient
Computation	of	Aggregate	Statistics

Private data aggregation



Twitter usage
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Today: Non-private aggregation

StressTracker

Every user has a 
private data point



StressTracker
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Today: Non-private aggregation

Twitter usage



StressTracker
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Today: Non-private aggregation

The app provider learns
more than it needs

Twitter usage



StressTrackerApp store
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Prio: Private aggregation

Clients send one share of their 
data to each aggregator

Twitter usage
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Prio:   Private aggregation

StressTrackerApp store

Twitter usage

Aggregator	learns	
nothing	else	
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100,000,000

StressTrackerApp store

Twitter usage

THE	PROBLEM



Private	aggregation
f(x1, …, xN)x1 x3 xNx2

…

Exact	correctness: if	all	servers	are	honest	they	learn		f(x1,…,xn)

Privacy: if	one	server	is	honest	they	learn	only f(x1,…,xn)

Robustness: malicious	clients	have	bounded	influence	

Scalable: no	public-key	crypto		(other	than	TLS)	



Prio contributions
Achieves	all	four goals

1. Robustness	using
secret-shared	non-interactive	proofs	(SNIPs)

• Every	client	efficiently	proves	to	servers	that	its	
submission	is	well	formed

• Takes	advantage	of	non-colluding	servers		(verifiers)

2. Aggregatable	encodings
Compute	sums	privately		 ⟹

compute	f(·)	privately for	many	f’s	of	interest



Existing	approaches

• Additively	homomorphic	encryption
P4P	(2010),	Private	stream	aggregation	(2011),	Grid	aggregation	(2011),
PDDP	(2012),	SplitX	(2013),	PrivEx	(2014),	PrivCount	(2016),
Succinct	sketches	(2016),	…

• Multi-party	computation	[GMW87],	[BGW88]

FairPlay	(2004),	Brickell-Shmatikov	(2006),	FairplayMP	(2008),	SEPIA	(2010),
Private	matrix	factorization	(2013),	JustGarble	(2013),	…

• Anonymous	credentials/tokens
VPriv	(2009),	PrivStats	(2011),	ANONIZE	(2014),	…

• Randomized	response	
[W65],	[DMNS06],	[D06],	RAPPOR	(2014,	2016)



Private	aggregation	needed	in	many	settings

Private client value (xi) Aggregate f(x1, …, xN)

Location data (phones/cars) • Number of devices in location L
• Ten most popular locations
• Locations with weakest signal strength

Web browsing history • Most common bug-triggering websites
• Websites with TLS certificate errors

Health information • Min, max, avg, stddev heart rate
• ML model relating BP to Twitter usage

Text messages • Min, max, average number per day
• ML model relating time of day to emotion



Warm-up:	Computing	private	sums

Every device i holds a value xi 

Cloud wants to compute
f(x1, …, xN) = x1 + … + xN

without learning any users’ private value xi

Example: Privately measuring traffic congestion

1  if user i is on Golden Gate Bridge
0 otherwise

x1 + … + xN gives number of users on bridge

xi = 

Think: integers
modulo a prime p



Private sums:
A “straw-man” 
scheme

Server A Server B Server C

Assume that at least one 
server is honest.

[Chaum88], [BGW88], …
[KDK11] [DFKZ13] [PrivEx14] …



Server A Server B Server C

x1
Split into shares s.t.
x1 = [x1]a + [x1]b + [x1]c

0 0 0

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c

[x] means
“additive share of x”



Server A Server B Server C

x1

0 0 0

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c



Server A Server B Server C

x1

[x1]a [x1]b [x1]c

Private sums:
A “straw-man” 
scheme



Server A Server B Server C

x2

[x2]a

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c

[x2]b [x2]c



Server A Server B Server C

x2

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c
[x2]b [x2]c[x2]a



Server A Server B Server C

x2

Private sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c



Server A Server B Server C

…

Private sums:
A “straw-man” 
scheme

[x1]a+[x2]a+… [x1]b+[x2]b+… [x1]c+[x2]c+…



Servers learn the
sum of xis and 
nothing else.Learn that three phones are on the 

Bridge—but not which three

Server A Server B Server C

SB SCSA

SA + SB + SC = x1 + x2 + … + xN

Private sums:
A “straw-man” 
scheme

SA + SB + SC = [x1]a + [x1]b + [x1]c + …



Strawman	computing	private	sums

Correctness: if everyone follows the protocol, 
servers compute the sum of all xis.

Privacy: any proper subset of the servers can 
simulate everything given
(a) the public parameters, and 
(b) the sum of the xis.

Scalability: by inspection.

Robustness: ???



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c

x3

x3 is supposed to 
be a 0/1 value



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c

An evil client needn’t 
follow the rules! [r]a [r]b [r]c ⟵ 𝔽



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c
[r]a [r]b [r]c



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

r’ r’ r’

Users have 
incentives to cheat

Typical defenses
(NIZKs) are costly

A single bad client 
can undetectably 
corrupt the sum



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

Solution:
SNIP Proofs

x is supposed to 
be a 0/1 value



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

Without learning x,
the servers want to ensure that:
[x]a + [x]b + [x]c∈ {0,1}

Remember: these are 
big integers mod p

Solution:
SNIP Proofs



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

• Servers hold shares of x and a public
predicate Valid(·) 

• Servers want to test if “Valid(x) = 0” without 
leaking anything else about x

• The Valid predicate can be an arbitrary circuit:

Valid(x1,x2) = “3 < x1 < 19 and x2∈{0,1,2}”

Solution:
SNIP Proofs



Server A Server B Server C

x

0 0 0

πb
πa

πc

[x]a [x]b [x]c

Solution:
SNIP Proofs



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

Solution:
SNIP Proofs

X X X

Prio servers	detect	and	reject	malformed	
client	submissions

⇒ a	client	can	influence	aggregates	by	
at	most		± 1



A “valid” x

[x]a

[x]b

[x]c

Client Servers

πa, πb, πc

Security goals for SNIPs
Completeness: Honest	client	convinces	honest	servers

Soundness: Dishonest	client	almost	never	convinces
honest	servers

Zero-knowledge: Any	proper	subset	of	malicious	servers	learns
nothing	about	x,	except	that	x	is	valid



A “valid” x

[x]a

[x]b

[x]c

Client Servers

πa, πb, πc

Existing	techniques

Full	blown	MPC

Commitments	+	NIZKs

Commitments	+	SNARKs

Func.	secret	sharing		[BGI’16]

SNIP

Limitations

Heavy	setup	and	comm.

High	server	work

High	client	work

Special	purpose

Info.	theoretic	techniques
⇒ little	comp.	overhead

O(1)	server-to-server	comm.
|πa| is	linear	in	circuit	size	



SNIPs:			How?

Step	1: reduce	verifying	circuit	to	verifying	a	
single multiplication

Step	2: Use	“Beaver	triple”	supplied	by	client to
verify	the	multiplication

Step	3: Inject	additional	entropy	to	defend	against
malicious	servers			(similar	to	AMD	codes)



Five-server cluster in five Amazon data centers







Complex	statistics
Computing private sums ⇒

can compute many other interesting aggregates 

• Average
• Variance
• Standard deviation
• Most popular value (approx) – small universe
• “Heavy hitters” (approx)

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …



… and	even	more	statistics

Prio can aggregate a richer class of statistics:
• Approximate min and max
• Most popular value in a large universe
• Quality of arbitrary machine learning model (R2)
• Least-squares regression

Prio supports a rich set of aggregation functions

Some limitations: cannot compute exact max
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Putting it all together:   Today

Twitter usage



StressTrackerApp store
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With Prio…

Twitter usage
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With Prio…

StressTrackerApp store

Twitter usage

exact,
private
robust, 
scalable



THE		END


