
Cryptography	for	IoT

Dan	Boneh
Stanford	University

SiTP Dec. 2017



…	but	first:	Computer	Security	at	Stanford

Alex	Aiken
software	analysis

Dan	Boneh
applied	Crypto,	
crypto	currencies

Matei Zaharia
security	and	big	data

Dawson	Engler
automated
bug	finding

David	Mazières
Op.		Systems

Phil	Levis
IoT Security

John	Mitchell
protocol	design,

online	ed.

Mendel	Rosenblum
VM’s	in	security



Courses

Ø Courses:
• CS55N	(freshmen	seminar):		ten	ideas	in	computer	security

• CS155: Computer	Security

• CS251: Crypto	currencies	and	blockchain technologies

• CS255: Intro	to	Crypto

• CS259: Security	analysis	of	network	protocols

• CS355: Graduate	course	in	cryptography

Ø Stanford	Advanced	Computer	Security	Certificate
http://scpd.stanford.edu/computerSecurity/



Online	Courses

//www.coursera.org/learn/crypto

Course open to the public



A	Graduate	Course	in	Applied	Cryptography

Dan	Boneh and	Victor	Shoup

Free	at:				//cryptobook.us

Please	send	us	comments

Free	Book	Draft



Multiparty	computation	(MPC)	and	SGX



MPC	for	genomic	data	analysis

People	with	Kabuki	syndrome

[Jagadeesh,	Wu,	Birgmeier, Boneh,	Bejerano,		Science 2017]

Each	has	211	to	374	rare	genes	out	of	≈20,000	genes

Patient	i:				vector	vi of	dim	20,000	that	is	0	for	normal	genes

What genes causes a specific disorder?
2

664

0 1 0 2 0 1
1 0 1 2 0 1
2 0 0 2 1 1
0 0 1 2 0 1

3

775

v1 :

v3 :



MPC	for	genomic	data	analysis

People	with	Kabuki	syndrome

[Jagadeesh,	Wu,	Birgmeier, Boneh,	Bejerano,	2017]

Each	has	211	to	374	rare	genes	out	of	≈20,000	genes

Patient	i:				vector	vi of	dim	20,000	that	is	0	for	normal	genes

r1 v1-r1r2 v2-r2r3 v3-r3
r1	,	r2	,	r3	,	… v1-r1	,		v2-r2	,		v3-r3,	…

MPC protocol



MPC	for	genomic	data	analysis

People	with	Kabuki	syndrome

[Jagadeesh,	Wu,	Birgmeier, Boneh,	Bejerano,	2017]

Nothing	else	is	revealed	about	the	individual	genomes	!!

MPC protocol

most	common
rare	genes

KMT2D,	COL6A1

r1	,	r2	,	r3	,	… v1-r1	,		v2-r2	,		v3-r3,	…



Can	we	do	this	with	Intel’s	SGX	?

Source: ISCA 2015 tutorial slides for Intel SGX 

Enclave Application Remote Attestation

Enclave



Ben	Fisch,						Dhinakaran Vinayagamurthy,	

Dan	Boneh,	 Sergey	Gorbunov

Iron:	Functional	encryption	and	
obfuscation	using	Intel	SGX

In proc. ACM CCS 2017



Functional	Encryption
[Boneh-Sahai-Waters,	2011]

msk

Master-key	Authority
mpk

program		P

functional	key			KP
approve?

Decrypt

KP

c1 ←  E(mpk, v1)

c2 ←  E(mpk, v2)

c3 ←  E(mpk, v3)
P(v1, v2, v3)

researcher

KMT2D, COL6A1



Functional	Encryption
[Boneh-Sahai-Waters,	2011]

Decrypt

KP

c1 ←  E(mpk, v1)

c2 ←  E(mpk, v2)

c3 ←  E(mpk, v3)
P(v1, v2, v3)

researcherWhy	is	functional	encryption	hard?

no	interaction	during	decryption

can’t	use	MPC	techniques

Satisfy regulators?
(GDPR)



SGX	Functional	Encryption:	approach

Decryption
Enclave

Key 
Manager 
Enclave

Master-key Authority FE Decryption Node

mpk
msk

sig.pk
sig.sk

msk
sig.pk

msk

skf =	sig(sk,	<P>) <P>

- Check sig on <P> 
- Decrypt ciphertext
- evaluate f on 

plaintext

(c,  <P>, sig) 

P(m)

mpk:		multi-input	func.	enc.	public	key

c ⟵ E(mpk, m)



But	not	so	simple	…

• Enclave memory access pattern leaks and 
can break FE security

• How to represent the program P:
- Cannot move code into enclave after EINIT
- Difficult to safely implement interpreter in enclave:

performance   and   memory access pattern leak

• Side channel attacks (timing, power)



Iron	architecture
Key	manager	enclave:

manage	master	key

Decryption	enclave:
initialized	at	startup

Function	enclave:		for	specific	program	P.
if	approved,	signed	by	key	manager

c1⟵ E(mpk,	m1)
c2⟵ E(mpk,	m2)

P(m1,	m2)

mpk



Security
• Formally model	the SGX	HW	interface:	

Setup,	 Load,	 Run,	 Run&Report,	
Run&Quote,	 ReportVerify, QuoteVerify

Builds	on	HW	security	models	of:	

Pass	et.	al.	[PST’17]	,					Bahmani et.	al.	[BBB+’16]	

• MIFE	simulation-based	security, assuming:	
adversary	cannot	distinguish	
black-box	HW	interface	and	real	SGX



Side-channel	atacks

Security	proof	does	not	capture	side	channel	attacks	on	SGX	

• Cache-timing	attacks	[CD16]	leak	memory access	patterns	at	
cache-line	granularity

• Page-fault	attacks	[XCP15]	leak	memory access	patterns	at	4KB	
page	granularity

• Branch	shadowing	attacks	[LSG+16]	can	directly	view	branch	
history	(saved	for	pipeline	branch	prediction)

DEFENSE: only	sign	function	enclaves	whose	memory	access	
pattern	is	independent	of	sensitive	data	
(e.g.	ORAM	based)



Implementation	and	
Evaluation	

• C++	using	the	Intel(R)	SGX	SDK	1.6	for	Windows

Intel	Skylake		i7-6700,	3.40	GHz,	8	GiB	RAM,	
Windows	Server	2012	R2	Standard	

• Function	enclave	implementation	is	
data-oblivious to	resist	side-channels



Comparing	Iron	to	
cryptographic	constructions

BF-IBE



Joint	work	with	Henry	Corrigan-Gibbs

NSDI	2017

Prio:	Private,	Robust,	and	Efficient
Computation	of	Aggregate	Statistics

Private data aggregation



Twitter usage

Bl
oo

d 
pr

es
su

re

Today: Non-private aggregation

StressTracker

Every user has a 
private data point



StressTracker
Bl

oo
d 

pr
es

su
re

Today: Non-private aggregation

Twitter usage



StressTracker
Bl

oo
d 

pr
es

su
re

Today: Non-private aggregation

The app provider learns
more than it needs

Twitter usage



StressTrackerApp store
Bl

oo
d 

pr
es

su
re

Prio: Private aggregation

Clients send one share of their 
data to each aggregator

Twitter usage



Bl
oo

d 
pr

es
su

re

Prio:   Private aggregation

StressTrackerApp store

Twitter usage

Aggregator	learns	
nothing	else	



Bl
oo

d 
pr

es
su

re
200

100,000,000

StressTrackerApp store

Twitter usage

THE	PROBLEM



Private	aggregation
f(x1, …, xN)x1 x3 xNx2

…

Exact	correctness: if	all	servers	are	honest	they	learn		f(x1,…,xn)

Privacy: if	one	server	is	honest	they	learn	only f(x1,…,xn)

Robustness: malicious	clients	have	bounded	influence	

Scalable: no	public-key	crypto		(other	than	TLS)	



Prio contributions
Achieves	all	four goals

1. Robustness	using
secret-shared	non-interactive	proofs	(SNIPs)

• Every	client	efficiently	proves	to	servers	that	its	
submission	is	well	formed

• Takes	advantage	of	non-colluding	servers		(verifiers)

2. Aggregatable	encodings
Compute	sums	privately		 ⟹

compute	f(·)	privately for	many	f’s	of	interest



Existing	approaches

• Additively	homomorphic	encryption
P4P	(2010),	Private	stream	aggregation	(2011),	Grid	aggregation	(2011),
PDDP	(2012),	SplitX	(2013),	PrivEx	(2014),	PrivCount	(2016),
Succinct	sketches	(2016),	…

• Multi-party	computation	[GMW87],	[BGW88]

FairPlay	(2004),	Brickell-Shmatikov	(2006),	FairplayMP	(2008),	SEPIA	(2010),
Private	matrix	factorization	(2013),	JustGarble	(2013),	…

• Anonymous	credentials/tokens
VPriv	(2009),	PrivStats	(2011),	ANONIZE	(2014),	…

• Randomized	response	
[W65],	[DMNS06],	[D06],	RAPPOR	(2014,	2016)



Private	aggregation	needed	in	many	settings

Private client value (xi) Aggregate f(x1, …, xN)

Location data (phones/cars) • Number of devices in location L
• Ten most popular locations
• Locations with weakest signal strength

Web browsing history • Most common bug-triggering websites
• Websites with TLS certificate errors

Health information • Min, max, avg, stddev heart rate
• ML model relating BP to Twitter usage

Text messages • Min, max, average number per day
• ML model relating time of day to emotion



Warm-up:	Computing	private	sums

Every device i holds a value xi 

Cloud wants to compute
f(x1, …, xN) = x1 + … + xN

without learning any users’ private value xi

Example: Privately measuring traffic congestion

1  if user i is on Golden Gate Bridge
0 otherwise

x1 + … + xN gives number of users on bridge

xi = 

Think: integers
modulo a prime p



Private sums:
A “straw-man” 
scheme

Server A Server B Server C

Assume that at least one 
server is honest.

[Chaum88], [BGW88], …
[KDK11] [DFKZ13] [PrivEx14] …



Server A Server B Server C

x1
Split into shares s.t.
x1 = [x1]a + [x1]b + [x1]c

0 0 0

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c

[x] means
“additive share of x”



Server A Server B Server C

x1

0 0 0

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c



Server A Server B Server C

x1

[x1]a [x1]b [x1]c

Private sums:
A “straw-man” 
scheme



Server A Server B Server C

x2

[x2]a

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c

[x2]b [x2]c



Server A Server B Server C

x2

Private sums:
A “straw-man” 
scheme

[x1]a [x1]b [x1]c
[x2]b [x2]c[x2]a



Server A Server B Server C

x2

Private sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c



Server A Server B Server C

…

Private sums:
A “straw-man” 
scheme

[x1]a+[x2]a+… [x1]b+[x2]b+… [x1]c+[x2]c+…



Servers learn the
sum of xis and 
nothing else.Learn that three phones are on the 

Bridge—but not which three

Server A Server B Server C

SB SCSA

SA + SB + SC = x1 + x2 + … + xN

Private sums:
A “straw-man” 
scheme

SA + SB + SC = [x1]a + [x1]b + [x1]c + …



Strawman	computing	private	sums

Correctness: if everyone follows the protocol, 
servers compute the sum of all xis.

Privacy: any proper subset of the servers can 
simulate everything given
(a) the public parameters, and 
(b) the sum of the xis.

Scalability: by inspection.

Robustness: ???



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c

x3

x3 is supposed to 
be a 0/1 value



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c

An evil client needn’t 
follow the rules! [r]a [r]b [r]c ⟵ 𝔽



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

[x1]a+[x2]a [x1]b+[x2]b [x1]c+[x2]c
[r]a [r]b [r]c



Server A Server B Server CPrivate sums:
A “straw-man” 
scheme

r’ r’ r’

Users have 
incentives to cheat

Typical defenses
(NIZKs) are costly

A single bad client 
can undetectably 
corrupt the sum



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

Solution:
SNIP Proofs

x is supposed to 
be a 0/1 value



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

Without learning x,
the servers want to ensure that:
[x]a + [x]b + [x]c∈ {0,1}

Remember: these are 
big integers mod p

Solution:
SNIP Proofs



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

• Servers hold shares of x and a public
predicate Valid(·) 

• Servers want to test if “Valid(x) = 0” without 
leaking anything else about x

• The Valid predicate can be an arbitrary circuit:

Valid(x1,x2) = “3 < x1 < 19 and x2∈{0,1,2}”

Solution:
SNIP Proofs



Server A Server B Server C

x

0 0 0

πb
πa

πc

[x]a [x]b [x]c

Solution:
SNIP Proofs



Server A Server B Server C

x

0 0 0

[x]a [x]b [x]c

Solution:
SNIP Proofs

X X X

Prio servers	detect	and	reject	malformed	
client	submissions

⇒ a	client	can	influence	aggregates	by	
at	most		± 1



A “valid” x

[x]a

[x]b

[x]c

Client Servers

πa, πb, πc

Security goals for SNIPs
Completeness: Honest	client	convinces	honest	servers

Soundness: Dishonest	client	almost	never	convinces
honest	servers

Zero-knowledge: Any	proper	subset	of	malicious	servers	learns
nothing	about	x,	except	that	x	is	valid



A “valid” x

[x]a

[x]b

[x]c

Client Servers

πa, πb, πc

Existing	techniques

Full	blown	MPC

Commitments	+	NIZKs

Commitments	+	SNARKs

Func.	secret	sharing		[BGI’16]

SNIP

Limitations

Heavy	setup	and	comm.

High	server	work

High	client	work

Special	purpose

Info.	theoretic	techniques
⇒ little	comp.	overhead

O(1)	server-to-server	comm.
|πa| is	linear	in	circuit	size	



SNIPs:			How?

Step	1: reduce	verifying	circuit	to	verifying	a	
single multiplication

Step	2: Use	“Beaver	triple”	supplied	by	client to
verify	the	multiplication

Step	3: Inject	additional	entropy	to	defend	against
malicious	servers			(similar	to	AMD	codes)



Five-server cluster in five Amazon data centers







Complex	statistics
Computing private sums ⇒

can compute many other interesting aggregates 

• Average
• Variance
• Standard deviation
• Most popular value (approx) – small universe
• “Heavy hitters” (approx)

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …



… and	even	more	statistics

Prio can aggregate a richer class of statistics:
• Approximate min and max
• Most popular value in a large universe
• Quality of arbitrary machine learning model (R2)
• Least-squares regression

Prio supports a rich set of aggregation functions

Some limitations: cannot compute exact max



StressTracker
Bl

oo
d 

pr
es

su
re

Putting it all together:   Today

Twitter usage



StressTrackerApp store
Bl

oo
d 

pr
es

su
re

With Prio…

Twitter usage



Bl
oo

d 
pr

es
su

re

With Prio…

StressTrackerApp store

Twitter usage

exact,
private
robust, 
scalable



THE		END


