Cryptography and Network Security Chapter 19

Fifth Edition by William Stallings

Lecture slides by Lawrie Brown

Chapter 19 – IP Security

If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death, together with the man to whom the secret was told.

-The Art of War, Sun Tzu

IP Security

- have a range of application specific security mechanisms
 - eg. S/MIME, PGP, Kerberos, SSL/HTTPS
- however there are security concerns that cut across protocol layers
- would like security implemented by the network for all applications

IP Security

- general IP Security mechanisms
- provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public & private WANs, & for the Internet
- need identified in 1994 report
 - need authentication, encryption in IPv4 & IPv6

Benefits of IPSec

- in a firewall/router provides strong security to all traffic crossing the perimeter
- ➤ in a firewall/router is resistant to bypass
- is below transport layer, hence transparent to applications
- > can be transparent to end users
- ightharpoonup can provide security for individual users
- > secures routing architecture

IP Security Architecture

- specification is quite complex, with groups:
 - Architecture
 - RFC4301 Security Architecture for Internet Protocol
 - Authentication Header (AH)
 - RFC4302 IP Authentication Header
 - Encapsulating Security Payload (ESP)
 - RFC4303 IP Encapsulating Security Payload (ESP)
 - Internet Key Exchange (IKE)
 - RFC4306 Internet Key Exchange (IKEv2) Protocol
 - Cryptographic algorithms
 - Other

IPSec Services

- Access control
- · Connectionless integrity
- Data origin authentication
- Rejection of replayed packets
 - a form of partial sequence integrity
- Confidentiality (encryption)
- Limited traffic flow confidentiality

Transport and Tunnel Modes

- Transport Mode
 - to encrypt & optionally authenticate IP data
 - can do traffic analysis but is efficient
 - good for ESP host to host traffic
- Tunnel Mode
 - encrypts entire IP packet
 - add new header for next hop
 - no routers on way can examine inner IP header
 - good for VPNs, gateway to gateway security

Security Associations

- a one-way relationship between sender & receiver that affords security for traffic flow
- defined by 3 parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier
- has a number of other parameters
 - seq no, AH & EH info, lifetime etc
- have a database of Security Associations

Security Policy Database

- > relates IP traffic to specific SAs
 - match subset of IP traffic to relevant SA
 - use selectors to filter outgoing traffic to map
 - based on: local & remote IP addresses, next layer protocol, name, local & remote ports

Protocol	Local IP	Port	Remote IP	Port	Action	Comment
UDP	1.2.3.101	500		500	BYPASS	IKE
ICMP	1.2.3.101				BYPASS	Error messages
	1.2.3.101		1.2.3.0/24		PROTECT: ESP intransport-mode	Encrypt intranet truffic
TCP	1.2.3.101		1.2.4.10	80	PROTECT: ESP intransport-mode	Encrypt to server
TCP	1.2.3.101	•	1.2.4.10	443	BYPASS	TLS: avoid double encryption
	1.2.3.101		1.2.4.0/24		DISCARD	Others in DMZ
	1.2.3.101				BYPASS	Internet

Encapsulating Security Payload (ESP)

- provides message content confidentiality, data origin authentication, connectionless integrity, an antireplay service, limited traffic flow confidentiality
- services depend on options selected when establish Security Association (SA), net location
- can use a variety of encryption & authentication algorithms

Encapsulating Security Payload

Encryption & Authentication Algorithms & Padding

- ESP can encrypt payload data, padding, pad length, and next header fields
 - if needed have IV at start of payload data
- ESP can have optional ICV for integrity
 - is computed after encryption is performed
- ESP uses padding
 - to expand plaintext to required length
 - to align pad length and next header fields
 - to provide partial traffic flow confidentiality

Anti-Replay Service

- replay is when attacker resends a copy of an authenticated packet
- use sequence number to thwart this attack
- sender initializes sequence number to 0 when a new SA is established
 - increment for each packet
 - must not exceed limit of $2^{32} 1$
- receiver then accepts packets with seq no within window of (N –W+1)

Combining Security Associations

- SA's can implement either AH or ESP
- to implement both need to combine SA's
 - form a security association bundle
 - may terminate at different or same endpoints
 - combined by
 - transport adjacency
 - iterated tunneling
- combining authentication & encryption
 - ESP with authentication, bundled inner ESP & outer AH, bundled inner transport & outer ESP

IPSec Key Management

- handles key generation & distribution
- typically need 2 pairs of keys
 - 2 per direction for AH & ESP
- manual key management
 - sysadmin manually configures every system
- automated key management
 - automated system for on demand creation of keys for SA's in large systems
 - has Oakley & ISAKMP elements

Oakley

- a key exchange protocol
- based on Diffie-Hellman key exchange
- adds features to address weaknesses
 - no info on parties, man-in-middle attack, cost
 - so adds cookies, groups (global params), nonces,
 DH key exchange with authentication
- can use arithmetic in prime fields or elliptic curve fields

ISAKMP

- Internet Security Association and Key Management Protocol
- provides framework for key management
- defines procedures and packet formats to establish, negotiate, modify, & delete SAs
- independent of key exchange protocol, encryption alg, & authentication method
- IKEv2 no longer uses Oakley & ISAKMP terms, but basic functionality is same

IKE Payloads & Exchanges

- have a number of ISAKMP payload types:
 - Security Association, Key Exchange, Identification, Certificate, Certificate Request, Authentication, Nonce, Notify, Delete, Vendor ID, Traffic Selector, Encrypted, Configuration, Extensible Authentication Protocol
- > payload has complex hierarchical structure
- may contain multiple proposals, with multiple protocols & multiple transforms

Cryptographic Suites

- variety of cryptographic algorithm types
- to promote interoperability have
 - RFC4308 defines VPN cryptographic suites
 - VPN-A matches common corporate VPN security using 3DES & HMAC
 - VPN-B has stronger security for new VPNs implementing IPsecv3 and IKEv2 using AES
 - RFC4869 defines four cryptographic suites compatible with US NSA specs
 - provide choices for ESP & IKE
 - AES-GCM, AES-CBC, HMAC-SHA, ECP, ECDSA

Summary

- have considered:
 - IPSec security framework
 - IPSec security policy
 - ESF
 - combining security associations
 - internet key exchange
 - cryptographic suites used