Cryptography via Burnside Groups

Nelly Fazio

City College of CUNY

Antonio R. Nicolosi

Stevens Institute of Technology

Goal

Seek sources of viable intractability assumptions from combinatorial group theory

- Cryptographically useful
- Evidence of (average-case) hardness (random self-reducibility)

Approach

- Generalize well-established crypto assumptions (LPN/LWE) to a group-theoretic setting
- Study instantiation in suitable non-commutative groups

Gilbert Baumslag (1933-2014)
(1) Background

- Burnside Groups (B_{n})
- Learning Burnside Homomorphisms with Noise (B_{n}-LHN)
(2) Random Self-Reducibility of B_{n}-LHN

3 Cryptography via Burnside Groups

- Minicrypt via Burnside Groups
- Cryptomania via Burnside Groups? (future work)
(1) Background
- Burnside Groups (B_{n})
- Learning Burnside Homomorphisms with Noise (B_{n}-LHN)
(2) Random Self-Reducibility of B_{n}-LHN

3 Cryptography via Burnside Groups

- Minicrypt via Burnside Groups
- Cryptomania via Burnside Groups? (future work)

Burnside Problem (Informal)

- Are groups whose elements all have finite order necessarily finite?
- What is their combinatorial structure?

Burnside group of exponent m

- $B(n, m)$: "Most generic" group with n generators where the order of all elements divides m

Burnside group of exponent m

- B(n,m): "Most generic" group with n generators where the order of all elements divides m
- Generators x_{1}, \ldots, x_{n} (like indeterminates in a multivariate poly)

Burnside group of exponent m

- $B(n, m)$: "Most generic" group with n generators where the order of all elements divides m
- Generators x_{1}, \ldots, x_{n} (like indeterminates in a multivariate poly)
- Elements are sequences of x_{i} and x_{i}^{-1}

Burnside group of exponent m

- $B(n, m)$: "Most generic" group with n generators where the order of all elements divides m
- Generators x_{1}, \ldots, x_{n} (like indeterminates in a multivariate poly)
- Elements are sequences of x_{i} and x_{i}^{-1}
- Empty sequence is the identity element of the group

Burnside group of exponent m

- $B(n, m)$: "Most generic" group with n generators where the order of all elements divides m
- Generators x_{1}, \ldots, x_{n} (like indeterminates in a multivariate poly)
- Elements are sequences of x_{i} and x_{i}^{-1}
- Empty sequence is the identity element of the group
- Exponent condition: For every $w \in B(n, m)$ it holds that $w^{m}=1$

Burnside Groups (cont’d)

- Characterizing $B(n, m)$ not so easy ...

$B(n, 2)$	Finite and
$B(n, 3)$	Finite, non-
$B(n, 4)$	Finite
$B(n, 5)$	Unknown
$B(n, 6)$	Finite
$B(n, 7)$	Unknown
\vdots	\vdots
$B(n, m), m$ "large"	Infinite

Will focus on $B(n, 3)$ (simplest case beyond vector spaces)

Burnside Groups (cont’d)

- Characterizing $B(n, m)$ not so easy ...

$B(n, 2)$	Finite and
$B(n, 3)$	Finite, non-
$B(n, 4)$	Finite
$B(n, 5)$	Unknown
$B(n, 6)$	Finite
$B(n, 7)$	Unknown
\vdots	\vdots
$B(n, m), m$ "large"	Infinite

- Will focus on $B(n, 3)$ (simplest case beyond vector spaces)
- Notation: $B_{n} \doteq B(n, 3)$

$B_{n}:$ Burnside Groups of Exponent 3

- B_{n} : "Most generic" group with n generators where the order of all non-identity elements is 3
- Generators x_{1}, \ldots, x_{n}
- Elements are sequences of x_{i} and x_{i}^{-1}
- Exponent condition: $\forall w \in B_{n}, w w w=1 \quad(\star)$

$B_{n}:$ Burnside Groups of Exponent 3

- B_{n} : "Most generic" group with n generators where the order of all non-identity elements is 3
- Generators x_{1}, \ldots, x_{n}
- Elements are sequences of x_{i} and x_{i}^{-1}
- Exponent condition: $\forall w \in B_{n}, w w w=1 \quad(\star)$
- Q: "Most generic"!?

A: The only non-trivial identities in B_{n} are those implied by (\star)

Group operation in B_{n} defined "formally"
To "multiply" $w_{1}, w_{2} \in B_{n}$, just concatenate them
Simplifications may arise at the interface of w_{1} and w_{2}

- B_{n} : "Most generic" group with n generators where the order of all non-identity elements is 3
- Generators x_{1}, \ldots, x_{n}
- Elements are sequences of x_{i} and x_{i}^{-1}
- Exponent condition: $\forall w \in B_{n}, w w w=1 \quad(\star)$
- Q: "Most generic"!?

A: The only non-trivial identities in B_{n} are those implied by (\star)
$\Rightarrow B_{n}$ non-commutative

- $x_{i} x_{j} \neq x_{j} x_{i}$ for any two distinct generators $(i \neq j)$

To "multiply" $w_{1}, w_{2} \in B_{n}$, just concatenate them
Simplifications may arise at the interface of w_{1} and v_{2}

- B_{n} : "Most generic" group with n generators where the order of all non-identity elements is 3
- Generators x_{1}, \ldots, x_{n}
- Elements are sequences of x_{i} and x_{i}^{-1}
- Exponent condition: $\forall w \in B_{n}, w w w=1 \quad(\star)$
- Q: "Most generic"!?

A: The only non-trivial identities in B_{n} are those implied by (\star)
$\Rightarrow B_{n}$ non-commutative

- $x_{i} x_{j} \neq x_{j} x_{i}$ for any two distinct generators $(i \neq j)$
\Rightarrow Group operation in B_{n} defined "formally"
- To "multiply" $w_{1}, w_{2} \in B_{n}$, just concatenate them
- Simplifications may arise at the interface of w_{1} and w_{2}
- In $B_{n}, x_{i} x_{j} \neq x_{j} x_{i}$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_{i} x_{j}=x_{j} x_{i}\left[x_{i}, x_{j}\right]$ by defining

$$
\left[x_{i}, x_{j}\right] \doteq x_{i}^{-1} x_{j}^{-1} x_{i} x_{j}
$$

Call $\left[x_{i}, x_{j}\right]$ a 2-commutator

- In $B_{n}, x_{i} x_{j} \neq x_{j} x_{i}$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_{i} x_{j}=x_{j} x_{i}\left[x_{i}, x_{j}\right]$ by defining

$$
\left[x_{i}, x_{j}\right] \doteq x_{i}^{-1} x_{j}^{-1} x_{i} x_{j}
$$

Call $\left[x_{i}, x_{j}\right]$ a 2-commutator

- Similarly, define a 3-commutator $\left[x_{i}, x_{j}, x_{k}\right]$ as

$$
\left[x_{i}, x_{j}, x_{k}\right] \doteq\left[\left[x_{i}, x_{j}\right], x_{k}\right]
$$

- In $B_{n}, x_{i} x_{j} \neq x_{j} x_{i}$ for any two distinct generators ($i \neq j$)
- However, always possible to get $x_{i} x_{j}=x_{j} x_{i}\left[x_{i}, x_{j}\right]$ by defining

$$
\left[x_{i}, x_{j}\right] \doteq x_{i}^{-1} x_{j}^{-1} x_{i} x_{j}
$$

Call $\left[x_{i}, x_{j}\right]$ a 2-commutator

- Similarly, define a 3-commutator $\left[x_{i}, x_{j}, x_{k}\right]$ as

$$
\left[x_{i}, x_{j}, x_{k}\right] \doteq\left[\left[x_{i}, x_{j}\right], x_{k}\right]
$$

- In general, may define ℓ-commutators inductively, but in B_{n} all ℓ-commutators vanish for $\ell \geq 4$,

$$
\left[x_{i}, x_{j}, x_{k}, x_{h}\right]=1
$$

- $\left[x_{i}, x_{j}, x_{k}, x_{h}\right]=1$ implies:
- 3-commutators commute with all $w \in B_{n}$:

$$
\left[x_{i}, x_{j}, x_{k}\right] w=w\left[x_{i}, x_{j}, x_{k}\right]
$$

2-commutators commute among themselves:

- Other commutator identities in B_{n} :
- $\left[x_{i}, x_{j}, x_{k}, x_{h}\right]=1$ implies:
- 3-commutators commute with all $w \in B_{n}$:

$$
\left[x_{i}, x_{j}, x_{k}\right] w=w\left[x_{i}, x_{j}, x_{k}\right]
$$

- 2-commutators commute among themselves:

$$
\left[x_{k}, x_{n}\right]\left[x_{i}, x_{j}\right]=\left[x_{i}, x_{j}\right]\left[x_{k}, x_{h}\right]
$$

- Other commutator identities in B_{n} :
- $\left[x_{i}, x_{j}, x_{k}, x_{h}\right]=1$ implies:
- 3-commutators commute with all $w \in B_{n}$:

$$
\left[x_{i}, x_{j}, x_{k}\right] w=w\left[x_{i}, x_{j}, x_{k}\right]
$$

- 2-commutators commute among themselves:

$$
\left[x_{k}, x_{n}\right]\left[x_{i}, x_{j}\right]=\left[x_{i}, x_{j}\right]\left[x_{k}, x_{h}\right]
$$

- Other commutator identities in B_{n} :

$$
\begin{array}{ll}
{\left[x_{j}, x_{i}\right]=\left[x_{i}, x_{j}\right]^{-1}=\left[x_{i}, x_{j}^{-1}\right]=\left[x_{i}^{-1}, x_{j}\right]} & {\left[x_{i}, x_{j}, x_{i}\right]} \\
{\left[x_{i}, x_{j}, x_{k}\right]=\left[x_{k}, x_{j}, x_{i}\right]^{-1}} & {\left[x_{i}, x_{j}, x_{k}\right]=\left[x_{j}, x_{k}, x_{i}\right]=\left[x_{k}, x_{i}, x_{j}\right]}
\end{array}
$$

[upshot: w.l.o.g, generators always sorted within commutator]

- In general, elements in non-commutative groups may have multiple equivalent forms
- E.g., in B_{n}

$$
x_{i} x_{j}^{-1} x_{i}=x_{j} x_{j}^{-1} x_{j} \quad \text { because } \quad x_{i} x_{j}^{-1} x_{i} x_{j}^{-1} x_{i} x_{j}^{-1}=\left(x_{i} x_{j}^{-1}\right)^{3}=1
$$

In B_{n}, commutator identities imply that any $w \in B_{n}$ can always be written uniquely as:

- In general, elements in non-commutative groups may have multiple equivalent forms
- E.g., in B_{n}

$$
x_{i} x_{j}^{-1} x_{i}=x_{j} x_{i}^{-1} x_{j} \quad \text { because } \quad x_{i} x_{j}^{-1} x_{i} x_{j}^{-1} x_{i} x_{j}^{-1}=\left(x_{i} x_{j}^{-1}\right)^{3}=1
$$

- In B_{n}, commutator identities imply that any $w \in B_{n}$ can always be written uniquely as:

$$
w=\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

where $\alpha_{i}, \beta_{i, j}, \gamma_{i, j, k} \in\{-1,0,1\}$, for all $1 \leq i<j<k \leq n$

- Cayley graph of B_{2} (left): nodes \equiv elements; edges \equiv multiplication by a generator (green: x_{1}; purple: x_{2})
- B_{2} has 27 elements, of the form

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}\left[x_{1}, x_{2}\right]^{\beta_{1,2}}, \alpha_{1}, \alpha_{2}, \beta_{1,2} \in \mathbb{F}_{3}
$$

- Isomorphic to Heisenberg Group $H_{1}\left(\mathbb{F}_{3}\right)$:

$$
\left(\begin{array}{ccc}
1 & \alpha_{1} & \beta_{1,2} \\
0 & 1 & \alpha_{2} \\
0 & 0 & 1
\end{array}\right) \in G L\left(3, \mathbb{F}_{3}\right)
$$

- Beware of hasty generalization: for $n \geq 3$, $B_{n} \neq H_{m}\left(\mathbb{F}_{3}\right)$
- No known poly(n)-order representation of B_{n}

Group operation in B_{n}

- Recall the normal form in B_{n} :

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

Group operation in B_{n}

- Recall the normal form in B_{n} :

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

$O(n)$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$

- To multiply two elements w_{1} and w_{2}, first concatenate them

Group operation in B_{n}

- Recall the normal form in B_{n} :

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

- To multiply two elements w_{1} and w_{2}, first concatenate them ...

Group operation in B_{n}

- Recall the normal form in B_{n} :

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

$O(n)$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$

- To multiply two elements w_{1} and w_{2}, first concatenate them ...

Group operation in B_{n}

- Recall the normal form in B_{n} :

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

$O\left(n^{2}\right)$
$O(n)$

$O\left(n^{3}\right)$

- To multiply two elements w_{1} and w_{2}, first concatenate them \ldots

- ...then reduce back to normal by reordering commutators via $O\left(n^{3}\right)$ three-stage collecting process

The Collecting Process (1/3)

Stage 1

Aggregate 3-commutators in w_{1} and w_{2}, adding matching exponents mod 3

Time: $O(1)$ per 3-commutator, total $O\left(n^{3}\right)$

The Collecting Process (2/3)

Stage 2

Move 2-commutators in w_{1} to the right of generators in w_{2}

Each 2-commutator traveling right incurs $O(n)$ (constant-time) swaps with generators in w_{2}.

Time: $O(n)$ per 2-commutator, total $O\left(n^{3}\right)$

The Collecting Process (3/3)

Stage 3

Restore lexicographic order among generators

\square

Fixing each out-of-order generator takes $O(n)$ swaps, and each swap creates a 2-commutator.
Before moving on to the next generator, these $O(n)$ 2-commutators must travel rightward (similarly to step 2 above), which takes $O\left(n^{2}\right)$ steps

Time: $O\left(n^{2}\right)$ per generator, total $O\left(n^{3}\right)$

Burnside Groups: Recap

- Compact normal form:

$$
\begin{aligned}
& \quad \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \\
& \Rightarrow\left|B_{n}\right|=3^{n+\binom{n}{2}+\binom{n}{3}}
\end{aligned}
$$

Burnside Groups: Recap

- Compact normal form:

$$
\begin{aligned}
& \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \\
& \Rightarrow\left|B_{n}\right|=3^{n+\binom{n}{2}+\binom{n}{3}}
\end{aligned}
$$

- Efficient $\left(O\left(n^{3}\right)\right)$ group operation
- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)

1 for any choice of generators

[^0]- Compact normal form:

$$
\begin{aligned}
& \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \\
& \Rightarrow\left|B_{n}\right|=3^{n+\binom{n}{2}+\binom{n}{3}}
\end{aligned}
$$

- Efficient $\left(O\left(n^{3}\right)\right)$ group operation
- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
- $w w w=1$ for any $w \in B_{n}$
- $\left[x_{i}, x_{j}, x_{k}, x_{h}\right]=1$ for any choice of generators

- Compact normal form:

$$
\begin{aligned}
& \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \\
& \Rightarrow\left|B_{n}\right|=3^{n+\binom{n}{2}+\binom{n}{3}}
\end{aligned}
$$

- Efficient $\left(O\left(n^{3}\right)\right)$ group operation
- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
- $w w w=1$ for any $w \in B_{n}$
- $\left[x_{i}, x_{j}, x_{k}, x_{h}\right]=1$ for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

Learning With Errors (LWE)

The LWE Setting

- $\mathbf{s} \in \mathbb{F}_{q}^{n}$
- $\Psi_{n}:$ a discrete gaussian distribution over \mathbb{F}_{q} centered at 0
- $\mathbf{A}_{\mathbf{s}}^{\psi_{n}}:$ distribution on $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a}{ }_{\leftarrow}^{\leftarrow} \mathbb{F}_{q}^{n}, b=\mathbf{s} \cdot \mathbf{a}+e, e \stackrel{s}{\leftarrow} \psi_{n}$

LWE Assumption

$$
\mathbf{A}_{\mathbf{s}}^{\psi_{n}} \underset{\text { PTT }}{\approx} \mathbf{U}\left(\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}\right)
$$

LWE over Groups: Learning Homomorphisms w/ Noise

Vector Spaces

Groups

Learning With Errors

secret linear functional \mathbf{s}. "small" \mathbb{F}_{q}-noise e

Learning Homomorphisms w/ Noise
$\operatorname{secret}\left(G_{n}, P_{n}\right)$-homomorphism φ
"small" P_{n}-noise e

Learning Homomorphisms with Noise (LHN)

The LHN Setting

- Groups G_{n}, P_{n}
- Distributions $\Gamma_{n}, \Psi_{n}, \Phi_{n}$ over G_{n}, P_{n}, hom $\left(G_{n}, P_{n}\right)$, resp.
- $\mathbf{A}_{\varphi}^{\Psi_{n}}\left(\right.$ for $\left.\varphi \in \operatorname{hom}\left(G_{n}, P_{n}\right)\right)$: Distribution over $G_{n} \times P_{n}$ whose samples are pairs (a, b) where $a \leftarrow^{\varsigma} \Gamma_{n}, e{ }_{\leftarrow}^{\varsigma} \Psi_{n}, b=\varphi(a) e$

LHN Assumption

$$
\mathbf{A}_{\varphi}^{\psi_{n}} \underset{\text { PPT }}{\approx} \mathbf{U}\left(G_{n} \times P_{n}\right), \quad \varphi \stackrel{\&}{\leftarrow} \Phi_{n}
$$

- $G_{n}:=\left(\mathbb{F}_{p}^{n},+\right)$ and $\Gamma_{n}:=\mathbf{U}\left(\mathbb{F}_{p}^{n}\right)$
- $P_{n}:=\left(\mathbb{F}_{p},+\right)$ and $\Psi_{n}:=$ discrete gaussian
- $\varphi:=\mathbf{s} \cdot{ }_{-}$and $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(\mathbb{F}_{p}^{n}, \mathbb{F}_{p}\right)\right)$

$B_{n}-L H N:$ Instantiating LHN over Burnside Groups

- $G_{n}:=B_{n}, P_{n}:=B_{r}(r$ small constant, e.g., $r=4)$
- $\Gamma_{n}:=\mathbf{U}\left(B_{n}\right)$
- $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(B_{n}, B_{r}\right)\right)$
- $\Psi_{n}:=\left[\mathbf{v} \stackrel{\varsigma}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{\varsigma}{\leftarrow} S_{r}: \prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}\right]$
($S_{r}: r$-permutations)
(unif. dist. over B_{r}-elements of Cayley-norm $\leq r=: \mathcal{B}_{r}$)

$$
a \stackrel{\S}{\leftarrow} \mathbf{U}\left(B_{n}\right) \longmapsto \varphi(a) e, \quad\left(e{ }^{\varsigma} \Psi_{n}\right)
$$

$B_{n}-L H N:$ Instantiating LHN over Burnside Groups

- $G_{n}:=B_{n}, P_{n}:=B_{r}(r$ small constant, e.g., $r=4)$
- $\Gamma_{n}:=\mathbf{U}\left(B_{n}\right)$
- $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(B_{n}, B_{r}\right)\right)$
- $\Psi_{n}:=\left[\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{\&}{\leftarrow} S_{r}: \prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}\right]$
($S_{r}: r$-permutations) (unif. dist. over B_{r}-elements of Cayley-norm $\leq r=: \mathcal{B}_{r}$)

$$
\begin{aligned}
& B_{n} \xrightarrow{\approx \varphi \leftarrow^{s} \operatorname{hom}\left(B_{n}, B_{r}\right)} B_{r} \\
& a \stackrel{\leftarrow}{\leftarrow} \mathbf{U}\left(B_{n}\right) \longmapsto \varphi(a) \prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}, \quad\left(\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{s}{\leftarrow} S_{r}\right)
\end{aligned}
$$

$B_{n}-L H N:$ Instantiating LHN over Burnside Groups

- $G_{n}:=B_{n}, P_{n}:=B_{r}(r$ small constant, e.g., $r=4)$
- $\Gamma_{n}:=\mathbf{U}\left(B_{n}\right)$
- $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(B_{n}, B_{r}\right)\right)$
- $\Psi_{n}:=\left[\mathbf{v} \stackrel{\varsigma}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{\varsigma}{\leftarrow} S_{r}: \prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}\right]$
($S_{r}: r$-permutations)
(unif. dist. over B_{r}-elements of Cayley-norm $\leq r=: \mathcal{B}_{r}$)

$$
a \stackrel{s}{\leftarrow} \mathbf{U}\left(B_{n}\right) \longmapsto \varphi(a) e, \quad\left(e \stackrel{s}{\leftarrow} \mathcal{B}_{r}\right)
$$

B_{n}-LHN: Instantiating LHN over Burnside Groups

- $G_{n}:=B_{n}, P_{n}:=B_{r}(r$ small constant, e.g., $r=4)$
- $\Gamma_{n}:=\mathbf{U}\left(B_{n}\right)$
- $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(B_{n}, B_{r}\right)\right)$
- $\Psi_{n}:=\left[\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{s}{\leftarrow} S_{r}: \prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}\right]$
($S_{r}: r$-permutations)
(unif. dist. over B_{r}-elements of Cayley-norm $\leq r=: \mathcal{B}_{r}$)

$$
a \stackrel{\&}{\leftarrow} \mathbf{U}\left(B_{n}\right) \longmapsto \varphi(a) e, \quad\left(e \stackrel{\varsigma}{s}^{\varsigma} \mathcal{B}_{r}\right)
$$

B_{n}-LHN Assumption

$$
\mathbf{A}_{\varphi}^{\mathcal{B}_{r}} \approx \mathbf{F P T}\left(B_{n} \times B_{r}\right), \quad \varphi \stackrel{s}{\leftarrow} \operatorname{hom}\left(B_{n}, B_{r}\right)
$$

B_{n}-LHN: Instantiating LHN over Burnside Groups

- $G_{n}:=B_{n}, P_{n}:=B_{r}(r$ small constant, e.g., $r=4)$
- $\Gamma_{n}:=\mathbf{U}\left(B_{n}\right)$
- $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(B_{n}, B_{r}\right)\right)$
- $\Psi_{n}:=\left[\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{s}{\leftarrow} S_{r}: \prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}\right]$
($S_{r}: r$-permutations)
(unif. dist. over B_{r}-elements of Cayley-norm $\leq r=: \mathcal{B}_{r}$)

$$
a \leftarrow^{\mathfrak{s}} \mathbf{U}\left(B_{n}\right) \longmapsto \varphi(a) e, \quad\left(e \stackrel{\lessgtr}{\leftarrow} \mathcal{B}_{r}\right)
$$

B_{n}-LHN Assumption

$$
\mathbf{A}_{\varphi}^{\mathcal{B}_{r}} \approx \mathbf{F p r} \mathbf{U}\left(B_{n} \times B_{r}\right), \quad \text { any } \quad \varphi \in \operatorname{Epi}\left(B_{n}, B_{r}\right)
$$

(1) Background

- Burnside Groups $\left(B_{n}\right)$
- Learning Burnside Homomorphisms with Noise ($\left.B_{n}-\mathrm{LHN}\right)$

2) Random Self-Reducibility of B_{n}-LHN

3 Cryptography via Burnside Groups

- Minicrypt via Burnside Groups
- Cryptomania via Burnside Groups? (future work)

Random Self-Reducibility (RSR) of $B_{n}-L H N$

- Worst-case-to-average-case reduction for B_{n}-LHN: Solving random instances not easier than solving an arbitrary instance
- Why does random self-reducibility matter?
- Hallmark of robust crypto assumptions (SIS, LWE, DLog, RSA)
- Desirable "all-or-nothing" hardness property: Either the problem is easy for (almost) all keys, or it is intractable for (almost) all keys
- Critical for actual cryptosystems: Generation of cryptographic keys amounts to sampling hard instances of underlying computational problem: by RSR ensures random instance suffices

Understanding Burnside Homomorphisms

- In B_{n}-LHN, secret key is a $\left(B_{n}, B_{r}\right)$-homomorphism φ
\Rightarrow Need to study hom $\left(B_{n}, B_{r}\right)$
- Key fact: All Burnside groups are relatively free
- For any group P of exponent 3 , any mapping of generators x_{1}, \ldots, x_{n} into P extends uniquely to a (B_{n}, P)-homomorphism
- So $\left|h o m\left(B_{n}, P\right)\right|=3^{|P| n}$
- For $P=B_{r}(r \ll n),\left|\operatorname{hom}\left(B_{n}, B_{r}\right)\right|=3^{\left(r+\binom{r}{2}+\left(\begin{array}{l}\left.\binom{r}{3}\right) n\end{array}\right) .\right.}$
\Rightarrow The key space in B_{n}-LHN is exponential in n (security parameter)

Abelianization in B_{n}

- Abelianization of $B_{n} \equiv$ Quotient by its commutator subgroup:

$$
\begin{aligned}
{\left[B_{n}, B_{n}\right] } & \doteq\left\{w_{1}^{-1} w_{2}^{-1} w_{1} w_{2}: w_{1}, w_{2} \in B_{n}\right\} \\
B_{n} /\left[B_{n}, B_{n}\right] & \cong\left(\mathbb{F}_{3}^{n},+\right)
\end{aligned}
$$

Abelianization in B_{n}

- Abelianization of $B_{n} \equiv$ Quotient by its commutator subgroup:

$$
\begin{aligned}
{\left[B_{n}, B_{n}\right] } & \doteq\left\{w_{1}^{-1} w_{2}^{-1} w_{1} w_{2}: w_{1}, w_{2} \in B_{n}\right\} \\
B_{n} /\left[B_{n}, B_{n}\right] & \cong\left(\mathbb{F}_{3}^{n},+\right)
\end{aligned}
$$

- Abelianization map $\rho_{n}: B_{n} \rightarrow B_{n} /\left[B_{n}, B_{n}\right] \cong\left(\mathbb{F}_{3}^{n},+\right)$

$$
\rho_{n}: \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \mapsto\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

Abelianization in B_{n}

- Abelianization of $B_{n} \equiv$ Quotient by its commutator subgroup:

$$
\begin{aligned}
{\left[B_{n}, B_{n}\right] } & \doteq\left\{w_{1}^{-1} w_{2}^{-1} w_{1} w_{2}: w_{1}, w_{2} \in B_{n}\right\} \\
B_{n} /\left[B_{n}, B_{n}\right] & \cong\left(\mathbb{F}_{3}^{n},+\right)
\end{aligned}
$$

- Abelianization map $\rho_{n}: B_{n} \rightarrow B_{n} /\left[B_{n}, B_{n}\right] \cong\left(\mathbb{F}_{3}^{n},+\right)$

$$
\rho_{n}: \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \mapsto\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

- Abelianization of a $\left(B_{n}, B_{r}\right)$-homomorphism φ

Abelianizing $B_{n}-$ LHN vs. LWE with $p=3$

- Q: Does abelianization reduce B_{n}-LHN to LWE over \mathbb{F}_{3} ?

Abelianizing B_{n}-LHN vs. LWE with $p=3$

- Q: Does abelianization reduce B_{n}-LHN to LWE over \mathbb{F}_{3} ?

$$
\mathbf{A}_{\varphi}^{\mathcal{B}_{r}} \quad[i . e .,(a, \varphi(a) e)] \underset{\text { P戶T }}{\approx} \quad \mathbf{U}\left(B_{n} \times B_{r}\right)
$$

- Recall: $a \stackrel{s}{\leftarrow} \mathbf{U}\left(B_{n}\right), e=\prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}} \quad\left(v_{1}, \ldots, v_{r}\right) \stackrel{\&}{\leftarrow} \mathbf{U}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{s}{\leftarrow} S_{r}$
- Top row represents the B_{n}-LHN assumption

Abelianizing B_{n}-LHN vs. LWE with $p=3$

- Q: Does abelianization reduce B_{n}-LHN to LWE over \mathbb{F}_{3} ?

- Recall: $a \stackrel{\S}{\leftarrow} \mathbf{U}\left(B_{n}\right), e=\prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}} \quad\left(v_{1}, \ldots, v_{r}\right) \stackrel{\S}{\leftarrow}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{\S}{\leftarrow} S_{r}$
- Top row represents the B_{n}-LHN assumption
- Bottom row shows the result of abelianization
- Q: Does abelianization reduce B_{n}-LHN to LWE over \mathbb{F}_{3} ?

- Recall: $a{ }^{\leftarrow} \mathbf{U}\left(B_{n}\right), e=\prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}} \quad\left(v_{1}, \ldots, v_{r}\right) \stackrel{\S}{\leftarrow}\left(\mathbb{F}_{3}^{r}\right), \sigma \stackrel{\S}{\leftarrow} S_{r}$
- Top row represents the B_{n}-LHN assumption
- Bottom row shows the result of abelianization
- Bottom distributions identical-cannot be distinguished!
\Rightarrow Abelianization does not help recognize B_{n}-LHN instances

RSR for B_{n}-LHN: Intuition

Two main steps:
(1) Start with a generic partial key-randomization trick
(2) Show that this randomization is complete in the case of $B_{n}-$ LHN with surjective secret key $\left(\varphi \in \operatorname{Epi}\left(B_{n}, B_{r}\right)\right)$

Lemma

Let α be a G_{n}-permutation, and $(a, b) \in G_{n} \times P_{n}$ be an LHN-instance sampled according to $\mathbf{A}_{\varphi}^{\Psi_{n}}\left(b=\varphi(a) e\right.$ for $\left.e{ }^{\stackrel{s}{\leftarrow}} \Psi_{n}\right)$. Let $a^{\prime} \doteq \alpha^{-1}(a)$. Then $\left(a^{\prime}, b\right) \in G_{n} \times P_{n}$ is sampled according to $\mathbf{A}_{\varphi \circ \alpha}^{\psi_{n}}$

Lemma

Let α be a G_{n}-permutation, and $(a, b) \in G_{n} \times P_{n}$ be an LHN-instance sampled according to $\mathbf{A}_{\varphi}^{\Psi_{n}}\left(b=\varphi(a)\right.$ e for $\left.e{ }_{\leftarrow}^{\varsigma} \Psi_{n}\right)$. Let $a^{\prime} \doteq \alpha^{-1}(a)$. Then $\left(a^{\prime}, b\right) \in G_{n} \times P_{n}$ is sampled according to $\mathbf{A}_{\varphi \circ \alpha}^{\psi_{n}}$

Proof.

Observe that

$$
\begin{aligned}
\left(a^{\prime}, b\right) & =\left(a^{\prime}, \varphi(a) \cdot e\right) \\
& =\left(a^{\prime}, \varphi \circ \alpha\left(\alpha^{-1}(a)\right) \cdot e\right) \\
& =\left(a^{\prime}, \varphi \circ \alpha\left(a^{\prime}\right) \cdot e\right)
\end{aligned}
$$

Step 2: Completeness for Surjections

- Domain Reshuffling provides some partial randomization for an instantiation of the abstract LHN problem
- For any $\mathbf{A}_{\varphi}^{\psi_{n}}$, can transform an $\mathbf{A}_{\varphi}^{\psi_{n} \text {-instance into an } \mathbf{A}_{\varphi}^{\psi_{0} \alpha} \text {-instance, }}$ for any permutation α
- In the case of B_{n}-LHN, this simple randomization is complete for the set of surjective homomorphisms:

Lemma

$$
\left(\forall \varphi, \varphi^{\prime} \in \operatorname{Epi}\left(B_{n}, B_{r}\right)\right)\left(\exists \alpha \in \operatorname{Aut}\left(B_{n}\right)\right)\left[\varphi^{\prime}=\varphi \circ \alpha\right]
$$

Proving Completeness

Claim

Given an arbitrary epimorphism φ and a target epimorphism φ^{*}, there exist an automorphism α such that $\varphi^{*}=\varphi \circ \alpha$

Proof Idea

- Freeness of $B_{n} \Rightarrow \exists \beta \in \operatorname{hom}\left(B_{n}, B_{n}\right)$ such that $\varphi^{*}=\varphi \circ \beta$

- Technical hurdle: β need not be an automorphism!
- Solution: "Patch" β into $\alpha \in \operatorname{Aut}\left(B_{n}\right)$

Proving Transitivity

"Patching argument" (omitted) hinges upon following technical lemma:

Lemma

Surjections $\varphi: B_{n} \rightarrow B_{r}$ are precisely the maps whose abelianization φ^{\prime} is also surjective

Proof $\left(\varphi \in \operatorname{Epi}\left(B_{n}, B_{r}\right) \Longrightarrow \varphi^{\prime} \in \operatorname{Epi}\left(\mathbb{F}_{3}^{n}, \mathbb{F}_{3}^{r}\right)\right)$: Diagram chase

Proof $\left(\varphi^{\prime} \in \operatorname{Epi}\left(\mathbb{F}_{3}^{n}, \mathbb{F}_{3}^{r}\right) \Longrightarrow \varphi \in \operatorname{Epi}\left(B_{n}, B_{r}\right)\right)$

- Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be B_{n} gener's; define $y_{i}=\varphi\left(x_{i}\right)$ and $t_{i}=\rho_{r}\left(y_{i}\right)$
- Thesis amounts to proving $\left\{y_{1}, \ldots, y_{n}\right\}$ generates B_{r}
- By nilpotency of B_{r} (cf. next Lemma), suffices to show $\left\{t_{1}, \ldots, t_{n}\right\}$ generates \mathbb{F}_{3}^{r}
- Diagram chase shows $\rho_{r} \circ \varphi$ surj. $\Rightarrow\left\{t_{1}, \ldots, t_{n}\right\}$ generates \mathbb{F}_{3}^{r}

Proving Transitivity: Generating Sets of B_{r}

Lemma

Let G be a nilpotent group. If $\left\{y_{1}, \ldots, y_{m}\right\}$ generates G modulo the commutator subgroup $[G, G]$, then $\left\{y_{1}, \ldots, y_{m}\right\}$ generates G.

Since B_{r} has nilpotency class 3 , and $B_{r} /\left[B_{r}, B_{r}\right] \cong \mathbb{F}_{3}^{r}$, we get:

Corollary

Let $\rho_{r}: B_{r} \rightarrow \mathbb{F}_{3}^{r}$ denote abelianization, and $y_{1}, \ldots, y_{m} \in B_{r}$. Then $\left\{y_{1}, \ldots, y_{m}\right\}$ generates B_{r} iff $\left\{\rho_{r}\left(y_{1}\right), \ldots, \rho_{r}\left(y_{m}\right)\right\}$ generates \mathbb{F}_{3}^{r}.
(1) Background

- Burnside Groups (B_{n})
- Learning Burnside Homomorphisms with Noise (B_{n}-LHN)

2 Random Self-Reducibility of B_{n}-LHN

3 Cryptography via Burnside Groups

- Minicrypt via Burnside Groups
- Cryptomania via Burnside Groups? (future work)

Bn-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_{r}$ such that the shortest sequence of x_{i} and x_{i}^{-1} to express it is "large" (Cayley norm $\|\cdot\|_{C}$)

$$
t \in\{0,1\}: \quad \operatorname{Enc}_{\varphi}(t)=(a, \tau b) \quad(a, b) \stackrel{s}{\leftarrow} \mathbf{A}_{n}^{\mathcal{B}_{r}}
$$

B_{n}-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_{r}$ such that the shortest sequence of x_{i} and x_{i}^{-1} to express it is "large" (Cayley norm $\|\cdot\|_{C}$)

$$
t \in\{0,1\}: \quad \operatorname{Enc}_{\varphi}(t)=(a, \tau b) \quad(a, b) \stackrel{\mathfrak{s}}{\leftarrow} \mathbf{A}_{n}^{\mathcal{B}_{r}}
$$

Decryption

$$
\operatorname{Dec}_{\varphi}\left(a, b^{\prime}\right)= \begin{cases}0 & \text { if }\left\|\varphi(a), b^{\prime}\right\|_{c} \text { "small" } \\ 1 & 0 / w\end{cases}
$$

- Algebraic generalization of the LWE problem to an abstract group-theoretic setting
- Exploration of the cryptographic viability of Burnside groups
- Technical lemmas about homomorphisms between Burnside groups of exponent thre
- Evidence to the hardness of the B_{n}-LHN problem of
- Random Self-Reducibility: Solving random instances is as hard as solving arbitrary ones

Group operation in B_{n} : Example

$$
x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad \cdot \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]=
$$

Group operation in B_{n} : Example

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]=
\end{aligned}
$$

Group operation in B_{n} : Example

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad \cdot \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]=
\end{aligned}
$$

Group operation in B_{n} : Example

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \cdot x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]=
\end{aligned}
$$

Group operation in B_{n} : Example

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

Group operation in B_{n} : Example

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

Group operation in B_{n} : Example

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \cdot \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]-1\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{2} x_{3}\left[x_{3}, x_{2}\right]\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{2} x_{3}\left[x_{3}, x_{2}\right]\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]= \\
& x_{2} x_{3}\left[x_{2}, x_{3}\right]^{-1}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{2} x_{3}\left[x_{3}, x_{2}\right]\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]= \\
& x_{2} x_{3}\left[x_{2}, x_{3}\right]^{-1}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]= \\
& x_{2} x_{3}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]=
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{-1} x_{3}\left[x_{2}, x_{3}\right] \quad x_{1} x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{2}, x_{3}, x_{1}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]= \\
& x_{1}^{-1} x_{3} x_{1}\left[x_{2}, x_{3}\right] x_{2}\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{3} x_{1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{1}^{-1} x_{1} x_{3}\left[x_{3}, x_{1}\right] x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3}\left[x_{1}, x_{3}\right]^{-1} x_{2}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{3}, x_{2}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{1}, x_{2}, x_{3}\right]\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{3} x_{2}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]\left[x_{1}, x_{2}, x_{3}\right]^{-1}= \\
& x_{2} x_{3}\left[x_{3}, x_{2}\right]\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]= \\
& x_{2} x_{3}\left[x_{2}, x_{3}\right]^{-1}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]= \\
& x_{2} x_{3}\left[x_{1}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]^{-1}\left[x_{2}, x_{3}\right]= \\
& x_{2} x_{3}\left[x_{1}, x_{3}\right]^{-1}
\end{aligned}
$$

[^0]: Q: What computational tasks are hard over Burnside groups?!

