Cryptography via Burnside Groups

Nelly Fazio

Antonio R. Nicolosi

City College of CUNY

Stevens Institute of Technology

Based on joint work with G. Baumslag, K. Iga, L. Perret, V. Shpilrain and W.E. Skeith III

Talk Preview

Goal

Seek sources of **viable** intractability assumptions from combinatorial group theory

- Cryptographically useful
- Evidence of (average-case) hardness (random self-reducibility)

Approach

- Generalize well-established crypto assumptions (LPN/LWE) to a group-theoretic setting
- Study instantiation in suitable non-commutative groups

In Memoriam

Gilbert Baumslag (1933–2014)

Outline

- Background
 - Burnside Groups (B_n)
 - Learning Burnside Homomorphisms with Noise (B_n -LHN)
- 2 Random Self-Reducibility of B_n -LHN
- Cryptography via Burnside Groups
 - Minicrypt via Burnside Groups
 - Cryptomania via Burnside Groups? (future work)

Outline

- Background
 - Burnside Groups (B_n)
 - Learning Burnside Homomorphisms with Noise (B_n -LHN)
- 2 Random Self-Reducibility of B_n-LHN
- 3 Cryptography via Burnside Groups
 - Minicrypt via Burnside Groups
 - Cryptomania via Burnside Groups? (future work)

Burnside Problem (Informal)

- Are groups whose elements all have finite order necessarily finite?
- What is their combinatorial structure?

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x⁻
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$

Burnside Groups (cont'd)

• Characterizing B(n, m) not so easy ...

```
B(n,2) Finite and abelian, isomorphic to (\mathbb{F}_2^n,+) B(n,3) Finite, non-commutative, much larger than (\mathbb{F}_3^n,+) B(n,4) Finite B(n,5) Unknown B(n,6) Finite B(n,7) Unknown \vdots \vdots B(n,m),\ m "large" Infinite
```

Will focus on B(n,3) (simplest case beyond vector spaces)
 Notation: B_n = B(n,3)

Burnside Groups (cont'd)

• Characterizing B(n, m) not so easy ...

```
B(n,2) Finite and abelian, isomorphic to (\mathbb{F}_2^n,+) B(n,3) Finite, non-commutative, much larger than (\mathbb{F}_3^n,+) B(n,4) Finite B(n,5) Unknown B(n,6) Finite Unknown . . .
```

(, ,,

B(n, m), m "large"

• Will focus on B(n,3) (simplest case beyond vector spaces)

Infinite

• Notation: $B_n \doteq B(n,3)$

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x_1, \ldots, x_n
 - Elements are sequences of x_i and x_i^{-1}
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?
 - **A**: The only non-trivial identities in B_n are those implied by (\star)
- $\Rightarrow B_n$ non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x_1, \ldots, x_n
 - Elements are sequences of x_i and x_i^{-1}
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?
 - **A**: The only non-trivial identities in B_n are those implied by (\star)
- $\Rightarrow B_n$ non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x_1, \ldots, x_n
 - Elements are sequences of x_i and x_i^{-1}
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?
 - A: The only non-trivial identities in B_n are those implied by (\star)
- $\Rightarrow B_n$ non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x_1, \ldots, x_n
 - Elements are sequences of x_i and x_i^{-1}
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?
 - A: The only non-trivial identities in B_n are those implied by (\star)
- $\Rightarrow B_n$ non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- ⇒ Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

Commutators

- In B_n , $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_i x_j = x_j x_i [x_i, x_j]$ by defining

$$[x_i,x_j] \doteq x_i^{-1}x_j^{-1}x_ix_j$$

Call $[x_i, x_i]$ a **2-commutator**

• Similarly, define a **3-commutator** $[x_i, x_j, x_k]$ as

$$[x_i, x_j, x_k] \doteq [[x_i, x_j], x_k]$$

• In general, may define ℓ -commutators inductively, but in B_n all ℓ -commutators vanish for $\ell \geq 4$,

$$[x_i, x_j, x_k, x_h] = 1$$

Commutators

- In B_n , $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_i x_j = x_j x_i [x_i, x_j]$ by defining

$$[x_i,x_j] \doteq x_i^{-1}x_j^{-1}x_ix_j$$

Call $[x_i, x_j]$ a **2-commutator**

• Similarly, define a **3-commutator** $[x_i, x_j, x_k]$ as

$$[x_i, x_j, x_k] \doteq [[x_i, x_j], x_k]$$

 In general, may define ℓ-commutators inductively, but in B_n all ℓ-commutators vanish for ℓ ≥ 4,

$$[x_i, x_j, x_k, x_h] = 1$$

Commutators

- In B_n , $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_i x_j = x_j x_i [x_i, x_j]$ by defining

$$[x_i,x_j] \doteq x_i^{-1}x_j^{-1}x_ix_j$$

Call $[x_i, x_i]$ a **2-commutator**

• Similarly, define a **3-commutator** $[x_i, x_j, x_k]$ as

$$[x_i, x_j, x_k] \doteq [[x_i, x_j], x_k]$$

• In general, may define ℓ -commutators inductively, but in B_n all ℓ -commutators vanish for $\ell \geq 4$,

$$[x_i, x_j, x_k, x_h] = 1$$

Commutators Identities in B_n

- $[x_i, x_j, x_k, x_h] = 1$ implies:
 - 3-commutators commute with all $w \in B_n$:

$$[x_i, x_j, x_k]w = w[x_i, x_j, x_k]$$

2-commutators commute among themselves:

$$[X_k, X_h][X_i, X_j] = [X_i, X_j][X_k, X_h]$$

• Other commutator identities in B_n

$$[x_j, x_i] = [x_i, x_j]^{-1} = [x_i, x_j^{-1}] = [x_i^{-1}, x_j]$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_i]^{-1}$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_j] = [x_k, x_j, x_k] = [x_k, x_k, x_j] = [x_k, x_k, x_k] = [x_k, x_$$

[upshot: w.l.o.g, generators always sorted within commutator]

Commutators Identities in B_n

- $[x_i, x_j, x_k, x_h] = 1$ implies:
 - 3-commutators commute with all $w \in B_n$:

$$[x_i, x_j, x_k] w = w[x_i, x_j, x_k]$$

2-commutators commute among themselves:

$$[x_k, x_h][x_i, x_j] = [x_i, x_j][x_k, x_h]$$

• Other commutator identities in B_n

$$[x_j, x_i] = [x_i, x_j]^{-1} = [x_i, x_j^{-1}] = [x_i^{-1}, x_j]$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_i]^{-1}$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_j] = [x_k, x_j, x_k] = [x_k, x_k, x_j] = [x_k, x_k, x_k] = [x_k, x_$$

[upshot: w.l.o.g, generators always sorted within commutator

Commutators Identities in B_n

- $[x_i, x_j, x_k, x_h] = 1$ implies:
 - 3-commutators commute with all $w \in B_n$:

$$[x_i, x_j, x_k]w = w[x_i, x_j, x_k]$$

2-commutators commute among themselves:

$$[x_k, x_h][x_i, x_j] = [x_i, x_j][x_k, x_h]$$

Other commutator identities in B_n:

$$[x_j, x_i] = [x_i, x_j]^{-1} = [x_i, x_j^{-1}] = [x_i^{-1}, x_j]$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_i]^{-1}$$

$$[x_i, x_j, x_k] = [x_j, x_k, x_i] = [x_k, x_i, x_j]$$

[upshot: w.l.o.g, generators always sorted within commutator]

Normal Form in B_n

- In general, elements in non-commutative groups may have multiple equivalent forms
 - *E.g.*, in *B_n*

$$x_i x_j^{-1} x_i = x_j x_i^{-1} x_j$$
 because $x_i x_j^{-1} x_i x_j^{-1} x_i x_j^{-1} = (x_i x_j^{-1})^3 = 1$

• In B_n, commutator identities imply that any w ∈ B_n can always be written uniquely as:

$$w = \prod_{i=1}^{n} x_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

where $\alpha_i, \beta_{i,j}, \gamma_{i,j,k} \in \{-1, 0, 1\}$, for all $1 \le i < j < k \le n$

Normal Form in B_n

- In general, elements in non-commutative groups may have multiple equivalent forms
 - *E.g.*, in *B_n*

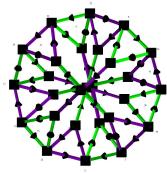
$$x_i x_j^{-1} x_i = x_j x_i^{-1} x_j$$
 because $x_i x_j^{-1} x_i x_j^{-1} x_i x_j^{-1} = (x_i x_j^{-1})^3 = 1$

• In B_n , commutator identities imply that any $w \in B_n$ can always be written uniquely as:

$$w = \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i < j} [x_{i}, x_{j}]^{\beta_{i,j}} \prod_{i < j < k} [x_{i}, x_{j}, x_{k}]^{\gamma_{i,j,k}}$$

where
$$\alpha_i, \beta_{i,j}, \gamma_{i,j,k} \in \{-1, 0, 1\}$$
, for all $1 \le i < j < k \le n$

Example: The Structure of B_2



- Cayley graph of B₂ (left): nodes ≡ elements; edges ≡ multiplication by a generator (green: x₁; purple: x₂)
- B₂ has 27 elements, of the form

$$\mathbf{X}_1^{\alpha_1}\mathbf{X}_2^{\alpha_2}[\mathbf{X}_1,\mathbf{X}_2]^{\beta_{1,2}},\alpha_1,\alpha_2,\beta_{1,2}\in\mathbb{F}_3$$

• Isomorphic to Heisenberg Group $H_1(\mathbb{F}_3)$:

$$\begin{pmatrix} 1 & \alpha_1 & \beta_{1,2} \\ 0 & 1 & \alpha_2 \\ 0 & 0 & 1 \end{pmatrix} \in GL(3, \mathbb{F}_3)$$

- Beware of hasty generalization: for $n \ge 3$, $B_n \not\cong H_m(\mathbb{F}_3)$
- No known poly(n)-order representation of B_n

• Recall the normal form in B_n :

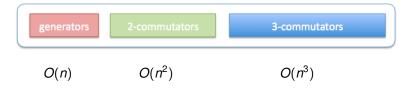
$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

 ... then reduce back to normal by reordering commutators via O(n³) three-stage collecting process

• Recall the normal form in B_n :

$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$



• To multiply two elements w_1 and w_2 , first concatenate them ...

 ...then reduce back to normal by reordering commutators via O(n³) three-stage collecting process

• Recall the normal form in B_n :

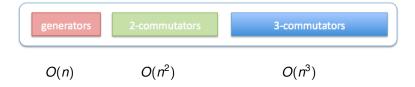
$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

 ... then reduce back to normal by reordering commutators via O(n³) three-stage collecting process

• Recall the normal form in B_n :

$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$

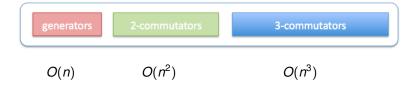


To multiply two elements w₁ and w₂, first concatenate them . . .

 ...then reduce back to normal by reordering commutators via O(n³) three-stage collecting process

• Recall the normal form in B_n :

$$\prod_{i=1}^{n} X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$



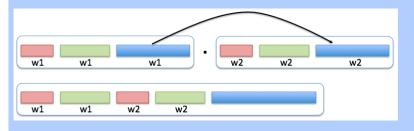
To multiply two elements w₁ and w₂, first concatenate them . . .

• ... then reduce back to normal by reordering commutators via $O(n^3)$ three-stage collecting process

The Collecting Process (1/3)

Stage 1

Aggregate 3-commutators in w_1 and w_2 , adding matching exponents mod 3

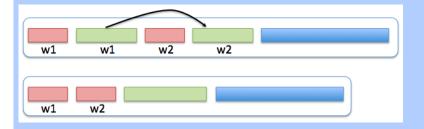


Time: O(1) per 3-commutator, total $O(n^3)$

The Collecting Process (2/3)

Stage 2

Move 2-commutators in w_1 to the right of generators in w_2



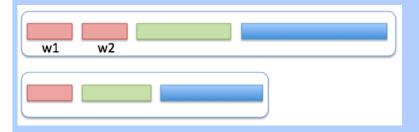
Each 2-commutator traveling right incurs O(n) (constant-time) swaps with generators in w_2 .

Time: O(n) per 2-commutator, total $O(n^3)$

The Collecting Process (3/3)

Stage 3

Restore lexicographic order among generators



Fixing each out-of-order generator takes O(n) swaps, and each swap creates a 2-commutator.

Before moving on to the next generator, these O(n) 2-commutators must travel rightward (similarly to step 2 above), which takes $O(n^2)$ steps

Time: $O(n^2)$ per generator, total $O(n^3)$

Burnside Groups: Recap

Compact normal form:

$$\prod_{i=1}^{n} X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$

$$\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$$

- Efficient $(O(n^3))$ group operation
 - Cubic in security parameter, but linear in input size
 - Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_i, x_k, x_h] = 1$ for any choice of generators
- Q: What computational tasks are hard over Burnside groups?!

Burnside Groups: Recap

Compact normal form:

$$\prod_{i=1}^{n} X_{i}^{\alpha_{i}} \prod_{i < j} [X_{i}, X_{j}]^{\beta_{i,j}} \prod_{i < j < k} [X_{i}, X_{j}, X_{k}]^{\gamma_{i,j,k}}$$

$$\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$$

- Efficient $(O(n^3))$ group operation
 - Cubic in security parameter, but linear in input size
 - Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_j, x_k, x_h] = 1$ for any choice of generators
- Q: What computational tasks are hard over Burnside groups?!

Burnside Groups: Recap

Compact normal form:

$$\prod_{i=1}^{n} X_i^{\alpha_i} \prod_{i < j} [X_i, X_j]^{\beta_{i,j}} \prod_{i < j < k} [X_i, X_j, X_k]^{\gamma_{i,j,k}}$$

$$\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$$

- Efficient $(O(n^3))$ group operation
 - Cubic in security parameter, but linear in input size
 - Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_i, x_k, x_h] = 1$ for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

Burnside Groups: Recap

Compact normal form:

$$\prod_{i=1}^{n} X_{i}^{\alpha_{i}} \prod_{i < j} [X_{i}, X_{j}]^{\beta_{i,j}} \prod_{i < j < k} [X_{i}, X_{j}, X_{k}]^{\gamma_{i,j,k}}$$

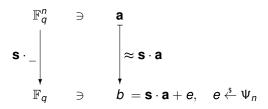
$$\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$$

- Efficient $(O(n^3))$ group operation
 - Cubic in security parameter, but linear in input size
 - Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_i, x_k, x_h] = 1$ for any choice of generators
- Q: What computational tasks are hard over Burnside groups?!

Learning With Errors (LWE)

The LWE Setting

- ullet $\mathbf{s} \in \mathbb{F}_q^n$
- Ψ_n : a discrete gaussian distribution over \mathbb{F}_q centered at 0
- $\mathbf{A}_{\mathbf{s}}^{\Psi_n}$: distribution on $\mathbb{F}_q^n \times \mathbb{F}_q$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a} \stackrel{s}{\leftarrow} \mathbb{F}_q^n, b = \mathbf{s} \cdot \mathbf{a} + e, e \stackrel{s}{\leftarrow} \Psi_n$



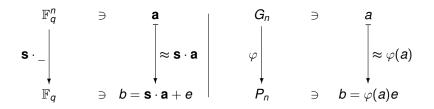
LWE Assumption

$$\mathbf{A}_{\mathbf{s}}^{\Psi_n} \underset{\scriptscriptstyle \mathrm{pro}}{pprox} \mathbf{U}(\mathbb{F}_q^n imes \mathbb{F}_q)$$

LWE over Groups: Learning Homomorphisms w/ Noise

Vector Spaces

Groups



Learning With Errors

secret linear functional $\mathbf{s} \cdot _$ "small" \mathbb{F}_a -noise e

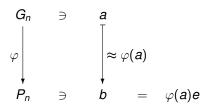
Learning Homomorphisms w/ Noise

secret (G_n, P_n) -homomorphism φ "small" P_n -noise e

Learning Homomorphisms with Noise (LHN)

The LHN Setting

- Groups G_n, P_n
- Distributions Γ_n , Ψ_n , Φ_n over G_n , P_n , hom (G_n, P_n) , resp.
- $\mathbf{A}_{\varphi}^{\Psi_n}$ (for $\varphi \in \text{hom}(G_n, P_n)$): Distribution over $G_n \times P_n$ whose samples are pairs (a, b) where $a \stackrel{5}{\leftarrow} \Gamma_n$, $e \stackrel{5}{\leftarrow} \Psi_n$, $b = \varphi(a)e$

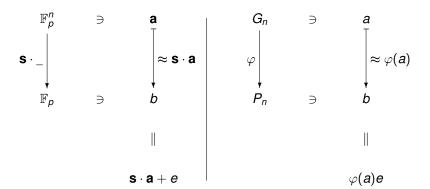


LHN Assumption

$$\mathbf{A}_{\varphi}^{\Psi_n} \underset{\mathrm{PPT}}{\approx} \mathbf{U}(G_n \times P_n), \qquad \varphi \stackrel{\mathfrak{s}}{\leftarrow} \Phi_n$$

LWE As an Instance of LHN

- $G_n := (\mathbb{F}_p^n, +)$ and $\Gamma_n := \mathbf{U}(\mathbb{F}_p^n)$
- $P_n := (\mathbb{F}_p, +)$ and $\Psi_n :=$ discrete gaussian



- $G_n := B_n$, $P_n := B_r$ (r small constant, e.g., r = 4)
- $\Gamma_n := \mathbf{U}(B_n)$
- $\Phi_n := \mathbf{U}(\mathsf{hom}(B_n, B_r))$
- $\Psi_n := \left[\mathbf{v} \overset{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \overset{\$}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$ (unif. dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\$}{\leftarrow} \mathsf{hom}(B_n, B_r)} B_r$$

$$a \stackrel{s}{\leftarrow} \mathbf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{s}{\leftarrow} \Psi_n)$$

$$\mathbf{A}_{arphi}^{\mathcal{B}_r} \underset{\scriptscriptstyle \mathrm{PPT}}{pprox} \mathbf{U}(\mathcal{B}_n imes \mathcal{B}_r),$$

- $G_n := B_n$, $P_n := B_r$ (r small constant, e.g., r = 4)
- \bullet $\Gamma_n := \mathbf{U}(B_n)$
- $\bullet \ \Phi_n := \mathbf{U}(\mathsf{hom}(B_n, B_r))$
- $\Psi_n := \left[\mathbf{v} \overset{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \overset{s}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$ (unif. dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\xi}{\leftarrow} \mathsf{hom}(B_n, B_r)} B_r$$

$$B_r \xrightarrow{} (g(a)) \Box^r \quad \chi^{V_i} \qquad (y \stackrel{\xi}{\sim} \mathsf{H}(\mathbb{R}^r)) \quad g \stackrel{\xi}{\sim} S)$$

$$a \stackrel{\$}{\leftarrow} \mathbf{U}(B_n) \longmapsto \varphi(a) \prod_{i=1}^r X_{\sigma(i)}^{v_i}, \quad (\mathbf{v} \stackrel{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{\$}{\leftarrow} S_r)$$

$$\mathbf{A}_{\varphi}^{\mathcal{B}_r} \underset{\mathtt{PPT}}{pprox} \mathbf{U}(B_n \times B_r),$$

- $G_n := B_n$, $P_n := B_r$ (r small constant, e.g., r = 4)
- $\Gamma_n := \mathbf{U}(B_n)$
- \bullet $\Phi_n := \mathbf{U}(\mathsf{hom}(B_n, B_r))$
- $\Psi_n := \left[\mathbf{v} \overset{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \overset{\$}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$ (unif. dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\$}{\leftarrow} \mathsf{hom}(B_n, B_r)} B_r$$

$$a \stackrel{\$}{\leftarrow} \mathsf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{\$}{\leftarrow} \mathcal{B}_r)$$

$$\mathbf{A}_{\varphi}^{\mathcal{B}_r} \underset{\scriptscriptstyle \mathrm{PPT}}{pprox} \mathbf{U}(B_n \times B_r),$$

- $G_n := B_n$, $P_n := B_r$ (r small constant, e.g., r = 4)
- $\Gamma_n := \mathbf{U}(B_n)$
- $\Phi_n := \mathbf{U}(\mathsf{hom}(B_n, B_r))$
- $\Psi_n := \left[\mathbf{v} \overset{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \overset{\$}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$ (unif. dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\$}{\leftarrow} \mathsf{hom}(B_n, B_r)} B_r$$

$$a \stackrel{\$}{\leftarrow} \mathsf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{\$}{\leftarrow} \mathcal{B}_r)$$

$$\mathbf{A}_{\varphi}^{\mathcal{B}_r} \underset{\text{\tiny ppT}}{\approx} \mathbf{U}(B_n \times B_r), \qquad \varphi \overset{\hspace{0.1cm}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathsf{hom}(B_n, B_r)$$

- $G_n := B_n$, $P_n := B_r$ (r small constant, e.g., r = 4)
- \bullet $\Gamma_n := \mathbf{U}(B_n)$
- $\bullet \ \Phi_n := \mathbf{U}(\mathsf{hom}(B_n, B_r))$
- $\Psi_n := \left[\mathbf{v} \overset{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \overset{\$}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$ (unif. dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\$}{\leftarrow} \mathsf{hom}(B_n, B_r)} B_r$$

$$a \stackrel{\$}{\leftarrow} \mathsf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{\$}{\leftarrow} \mathcal{B}_r)$$

$$\mathbf{A}_{\varphi}^{\mathcal{B}_r} \underset{\scriptscriptstyle \mathrm{ppT}}{pprox} \mathbf{U}(B_n imes B_r), \qquad ext{any} \quad arphi \in \mathrm{Epi}(B_n, B_r)$$

Outline

- Background
 - Burnside Groups (B_n)
 - Learning Burnside Homomorphisms with Noise (B_n -LHN)
- 2 Random Self-Reducibility of B_n-LHN
- 3 Cryptography via Burnside Groups
 - Minicrypt via Burnside Groups
 - Cryptomania via Burnside Groups? (future work)

Random Self-Reducibility (RSR) of B_n -LHN

- Worst-case-to-average-case reduction for B_n-LHN: Solving random instances not easier than solving an arbitrary instance
- Why does random self-reducibility matter?
 - Hallmark of robust crypto assumptions (SIS, LWE, DLog, RSA)
 - Desirable "all-or-nothing" hardness property: Either the problem is easy for (almost) all keys, or it is intractable for (almost) all keys
 - Critical for actual cryptosystems: Generation of cryptographic keys amounts to sampling hard instances of underlying computational problem: by RSR ensures random instance suffices

Understanding Burnside Homomorphisms

- In B_n -LHN, secret key is a (B_n, B_r) -homomorphism φ
- \Rightarrow Need to study hom (B_n, B_r)
- Key fact: All Burnside groups are relatively free
 - For any group P of exponent 3, any mapping of generators x_1, \ldots, x_n into P extends uniquely to a (B_n, P) -homomorphism
 - So $|hom(B_n, P)| = 3^{|P|n}$
 - For $P = B_r$ $(r \ll n)$, $|\text{hom}(B_n, B_r)| = 3^{\binom{r + \binom{r}{2} + \binom{r}{3}}{n}}$
- \Rightarrow The key space in B_n -LHN is exponential in n (security parameter)

Abelianization in B_n

• Abelianization of $B_n \equiv$ Quotient by its **commutator subgroup**:

$$[B_n, B_n] \doteq \{w_1^{-1} w_2^{-1} w_1 w_2 : w_1, w_2 \in B_n\}$$

$$B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$$

• Abelianization map $\rho_n: B_n \to B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$

$$\rho_n: \prod_{i=1}^n x_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)^{\alpha_n}$$

• Abelianization of a (B_n, B_r) -homomorphism φ

Abelianization in B_n

• Abelianization of $B_n \equiv$ Quotient by its **commutator subgroup**:

$$[B_n, B_n] \doteq \{w_1^{-1} w_2^{-1} w_1 w_2 : w_1, w_2 \in B_n\}$$

 $B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$

• Abelianization map $\rho_n: B_n \to B_n/[B_n,B_n] \cong (\mathbb{F}_3^n,+)$

$$\rho_n: \prod_{i=1}^n x_i^{\alpha_i} \prod_{i< j} [x_i, x_j]^{\beta_{i,j}} \prod_{i< j< k} [x_i, x_j, x_k]^{\gamma_{i,j,k}} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)$$

• Abelianization of a (B_n, B_r) -homomorphism φ

Abelianization in B_n

• Abelianization of $B_n \equiv$ Quotient by its **commutator subgroup**:

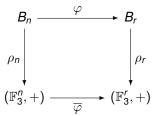
$$[B_n, B_n] \doteq \{w_1^{-1} w_2^{-1} w_1 w_2 : w_1, w_2 \in B_n\}$$

$$B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$$

• Abelianization map $\rho_n: B_n \to B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$

$$\rho_n: \prod_{i=1}^n X_i^{\alpha_i} \prod_{i< j} [x_i, x_j]^{\beta_{i,j}} \prod_{i< j< k} [x_i, x_j, x_k]^{\gamma_{i,j,k}} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)$$

• Abelianization of a (B_n, B_r) -homomorphism φ



Abelianizing B_n -LHN *vs.* LWE with p = 3

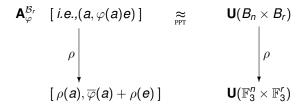
• Recall:
$$a \stackrel{s}{\leftarrow} \mathbf{U}(B_n), e = \prod_{i=1}^r X_{\sigma(i)}^{v_i} \qquad (v_1, \dots, v_r) \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{s}{\leftarrow} S$$

Abelianizing B_n -LHN *vs.* LWE with p=3

$$\mathbf{A}_{\varphi}^{\mathcal{B}_r}$$
 [i.e., $(a, \varphi(a)e)$] $\underset{\text{ppT}}{\approx}$ $\mathbf{U}(B_n \times B_r)$

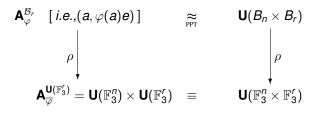
- Recall: $a \stackrel{\$}{\leftarrow} \mathbf{U}(B_n), e = \prod_{i=1}^r X_{\sigma(i)}^{v_i} \qquad (v_1, \dots, v_r) \stackrel{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{\$}{\leftarrow} S_r$
- ullet Top row represents the B_n -LHN assumption

Abelianizing B_n -LHN vs. LWE with p=3



- Recall: $a \stackrel{\$}{\leftarrow} \mathbf{U}(B_n), e = \prod_{i=1}^r X_{\sigma(i)}^{v_i} \qquad (v_1, \dots, v_r) \stackrel{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{\$}{\leftarrow} S_r$
- Top row represents the B_n -LHN assumption
- Bottom row shows the result of abelianization

Abelianizing B_n -LHN *vs.* LWE with $\rho = 3$



- Recall: $a \stackrel{\$}{\leftarrow} \mathbf{U}(B_n), e = \prod_{i=1}^r X_{\sigma(i)}^{v_i} \qquad (v_1, \dots, v_r) \stackrel{\$}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{\$}{\leftarrow} S_r$
- Top row represents the *B_n*-LHN assumption
- Bottom row shows the result of abelianization
- Bottom distributions identical—cannot be distinguished!
- → Abelianization does not help recognize B_n-LHN instances

RSR for B_n -LHN: Intuition

Two main steps:

- Start with a generic partial key-randomization trick
- ② Show that this randomization is complete in the case of B_n -LHN with surjective secret key $(\varphi \in \text{Epi}(B_n, B_r))$

Step 1: Domain Reshuffling

Lemma

Let α be a G_n -permutation, and $(a,b) \in G_n \times P_n$ be an LHN-instance sampled according to $\mathbf{A}_{\varphi}^{\Psi_n}$ ($b = \varphi(a)e$ for $e \overset{\$}{\leftarrow} \Psi_n$). Let $a' \doteq \alpha^{-1}(a)$. Then $(a',b) \in G_n \times P_n$ is sampled according to $\mathbf{A}_{\varphi \circ \alpha}^{\Psi_n}$

Proof.

Observe that

$$(a',b) = (a', \varphi(a) \cdot e)$$

$$= (a', \varphi \circ \alpha(\alpha^{-1}(a)) \cdot e)$$

$$= (a', \varphi \circ \alpha(a') \cdot e)$$

Step 1: Domain Reshuffling

Lemma

Let α be a G_n -permutation, and $(a,b) \in G_n \times P_n$ be an LHN-instance sampled according to $\mathbf{A}_{\varphi}^{\Psi_n}$ ($b = \varphi(a)e$ for $e \overset{\$}{\leftarrow} \Psi_n$). Let $a' \doteq \alpha^{-1}(a)$. Then $(a',b) \in G_n \times P_n$ is sampled according to $\mathbf{A}_{\varphi_{o\alpha}}^{\Psi_n}$

Proof.

Observe that

$$(\mathbf{a}', \mathbf{b}) = (\mathbf{a}', \varphi(\mathbf{a}) \cdot \mathbf{e})$$
$$= (\mathbf{a}', \varphi \circ \alpha(\alpha^{-1}(\mathbf{a})) \cdot \mathbf{e})$$
$$= (\mathbf{a}', \varphi \circ \alpha(\mathbf{a}') \cdot \mathbf{e})$$

Step 2: Completeness for Surjections

- Domain Reshuffling provides some partial randomization for an instantiation of the abstract LHN problem
 - For any ${\bf A}_{\varphi}^{\Psi_n}$, can transform an ${\bf A}_{\varphi}^{\Psi_n}$ -instance into an ${\bf A}_{\varphi\circ\alpha}^{\Psi_n}$ -instance, for any permutation α
- In the case of B_n-LHN, this simple randomization is complete for the set of surjective homomorphisms:

Lemma

$$(\forall \varphi, \varphi' \in \mathsf{Epi}(B_n, B_r))(\exists \alpha \in \mathsf{Aut}(B_n))[\varphi' = \varphi \circ \alpha]$$

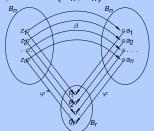
Proving Completeness

Claim

Given an arbitrary epimorphism φ and a target epimorphism φ^* , there exist an automorphism α such that $\varphi^*=\varphi\circ\alpha$

Proof Idea

• Freeness of $B_n \Rightarrow \exists \beta \in \text{hom}(B_n, B_n)$ such that $\varphi^* = \varphi \circ \beta$



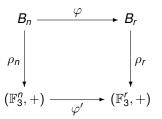
- Technical hurdle: β need not be an automorphism!
- Solution: "Patch" β into $\alpha \in Aut(B_n)$

Proving Transitivity

"Patching argument" (omitted) hinges upon following technical lemma:

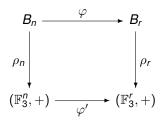
Lemma

Surjections $\varphi: B_n \to B_r$ are precisely the maps whose abelianization φ' is also surjective



Proof $(\varphi \in \text{Epi}(B_n, B_r) \Longrightarrow \varphi' \in \text{Epi}(\mathbb{F}_3^n, \mathbb{F}_3^r))$: Diagram chase

Proving Transitivity (cont'd)



Proof $(\varphi' \in \mathsf{Epi}(\mathbb{F}_3^n, \mathbb{F}_3^r) \Longrightarrow \varphi \in \mathsf{Epi}(B_n, B_r))$

- Let $\{x_1, \ldots, x_n\}$ be B_n gener's; define $y_i = \varphi(x_i)$ and $t_i = \rho_r(y_i)$
- Thesis amounts to proving $\{y_1, \ldots, y_n\}$ generates B_r
- By nilpotency of B_r (cf. next Lemma), suffices to show $\{t_1, \ldots, t_n\}$ generates \mathbb{F}_3^r
- Diagram chase shows $\rho_r \circ \varphi$ surj. $\Rightarrow \{t_1, \ldots, t_n\}$ generates \mathbb{F}_3^r

Proving Transitivity: Generating Sets of B_r

Lemma

Let G be a nilpotent group. If $\{y_1, \ldots, y_m\}$ generates G modulo the commutator subgroup [G, G], then $\{y_1, \ldots, y_m\}$ generates G.

Since B_r has nilpotency class 3, and $B_r/[B_r,B_r]\cong \mathbb{F}_3^r$, we get:

Corollary

Let $\rho_r: B_r \to \mathbb{F}_3^r$ denote abelianization, and $y_1, \ldots, y_m \in B_r$. Then $\{y_1, \ldots, y_m\}$ generates B_r iff $\{\rho_r(y_1), \ldots, \rho_r(y_m)\}$ generates \mathbb{F}_3^r .

Outline

- Background
 - Burnside Groups (B_n)
 - Learning Burnside Homomorphisms with Noise (B_n -LHN)
- 2 Random Self-Reducibility of B_n-LHN
- 3 Cryptography via Burnside Groups
 - Minicrypt via Burnside Groups
 - Cryptomania via Burnside Groups? (future work)

B_n-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_r$ such that the shortest sequence of x_i and x_i^{-1} to express it is "large" (Cayley norm $\|\cdot\|_C$)

$$t \in \{0,1\}: \quad \mathsf{Enc}_{\varphi}(t) = (a, \ \tau b) \qquad (a,b) \overset{\$}{\leftarrow} \mathbf{A}_n^{\mathcal{B}_r}$$

Decryption

$$\mathsf{Dec}_{arphi}(\pmb{a},\pmb{b}') = egin{cases} 0 & \mathsf{if} \ \|arphi(\pmb{a}),\pmb{b}'\|_{\mathcal{C}} \ ext{``small''} \ 1 & \mathsf{o/w} \end{cases}$$

B_n-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_r$ such that the shortest sequence of x_i and x_i^{-1} to express it is "large" (Cayley norm $\|\cdot\|_C$)

$$t \in \{0,1\}$$
: $\mathsf{Enc}_{\varphi}(t) = (a, \ \tau b)$ $(a,b) \overset{\$}{\leftarrow} \mathbf{A}_n^{\mathcal{B}_r}$

Decryption

$$\mathsf{Dec}_{arphi}(a,b') = egin{cases} 0 & \mathsf{if} \ \|arphi(a),b'\|_{\mathcal{C}} \ ext{``small''} \ 1 & \mathsf{o/w} \end{cases}$$

Summary

- Algebraic generalization of the LWE problem to an abstract group-theoretic setting
- Exploration of the cryptographic viability of Burnside groups
 - Technical lemmas about homomorphisms between Burnside groups of exponent thre
- Evidence to the hardness of the B_n-LHN problem of
 - Random Self-Reducibility:
 Solving random instances is as hard as solving arbitrary ones

Thank You!

Group operation in B_n : Example

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_3, x_2]^{-1}[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1}[x_1, x_2]^{-1}[x_2, x_3]^{-1}[x_2]^{-1} = \\ x_2 x_3[x_1, x_3]^{-1}[x_1, x_2]^{-1}[x_2]^{-1} = \\ x_2 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[$$

Group operation in B_n : Example

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_3, x_2]^{-1}[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1}[x_1, x_2]^{-1}[x_2, x_3]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1, x_3]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_3 x_3[x_1]^{-1}[x_2]^{-1}[x_$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_3, x_2]^{-1}[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[$$

$$x_{1}^{-1}x_{3}[x_{2}, x_{3}] \cdot x_{1}x_{2}[x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}][x_{2}, x_{3}, x_{1}]x_{2}[x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]x_{2}[x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}]x_{2}[x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}]x_{2}[x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{1}^{-1}x_{3}x_{1}x_{2}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{1}^{-1}x_{1}x_{3}[x_{3}, x_{1}]x_{2}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{1}^{-1}x_{1}x_{3}[x_{3}, x_{1}]x_{2}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{2}^{-1}x_{1}x_{3}[x_{1}, x_{2}]^{-1}[x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{3}x_{2}[x_{1}, x_{3}]^{-1}[x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{3}x_{2}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{2}x_{3}[x_{2}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{2}x_{3}[x_{1}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{2}x_{3}[x_{1}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{2}x_{3}[x_{1}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{3}x_{3}[x_{1}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{2}x_{3}[x_{1}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{3}x_{3}[x_{1}, x_{2}]^{-1}[x_{1}, x_{2}]^{-1}[x_{2}, x_{3}] =$$

$$x_{3}x_{3}[x_{1}, x_{2}]^{-1}[x_{2}]^{-1}[x_{2}]^{-1}[x_{2}]^{-1$$

$$\begin{aligned} x_1^{-1} x_3 [x_2, x_3] & \cdot & x_1 x_2 [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] [x_2, x_3, x_1] x_2 [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] [x_1, x_2, x_3] x_2 [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] x_2 [x_1, x_2, x_3] [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] x_2 [x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3 [x_3, x_1] x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_3 [x_1, x_3]^{-1} x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_3 x_2 [x_1, x_3]^{-1} [x_1, x_2, x_3] [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_3 x_2 [x_1, x_3]^{-1} [x_2, x_3] [x_1, x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_2 x_3 [x_3, x_2] [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_2]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_2]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3 [x_1, x_2]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_3 [x_1, x_2]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_3 [x_1, x_2]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_3 [x_1, x_2]^{-1} [x_1, x_2]^$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_3, x_2]^{-1}[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_2, x_3]^{-1}[x_1, x_3]^{-1}[x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3]^{-1}[x_2, x_3] = \\ x_3 x_3[x_1, x_2]^{-1}[x_1, x_2]^{-1}[x_2]^{$$

$$\begin{array}{lll} x_1^{-1}x_3[x_2,x_3] & \cdot & x_1x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3][x_2,x_3,x_1]x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3][x_1,x_2,x_3]x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3]x_2[x_1,x_2,x_3][x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3]x_2[x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_3x_1x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_1x_3[x_3,x_1]x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3[x_1,x_3]^{-1}x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_1,x_3,x_2]^{-1}[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_1,x_2,x_3][x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_2,x_3][x_1,x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_2x_3[x_2,x_3]^{-1}[x_1,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_2,x_3]^{-1}[x_1,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_2[x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_1x_1x_2[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_2[x_1,x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_2]^{-1}[x_$$

$$\begin{array}{lll} x_1^{-1}x_3[x_2,x_3] & \cdot & x_1x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3][x_2,x_3,x_1]x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3][x_1,x_2,x_3]x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3]x_2[x_1,x_2,x_3][x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3]x_2[x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_3x_1x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_1x_3[x_3,x_1]x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3[x_1,x_3]^{-1}x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_1,x_3,x_2]^{-1}[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_1,x_2,x_3][x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_2,x_3][x_1,x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_2x_3[x_3,x_2][x_1,x_3]^{-1}[x_2,x_3][x_2,x_3] = \\ x_2x_3[x_2,x_3]^{-1}[x_1,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_1,x_2]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_1,x_2]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_1,x_2]^{-1}[x_2]^{-1} = \\ x_2x_3[x_1,x_2]^{-1}[x_1]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_2[x_1]^{-1}[x_1]^{-1}[x_2]^{-1} = \\ x_2x_2[x_1]^{-1}[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_2[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_2[x_1]^{-1}[x_2]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_2[x_1]^{-1}[x_1]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_1x_2[x_1]^{-1}[x_1]^{-1}[x_2]^{-1} = \\ x_1x_1x_1x_1x_2[x_1]^{-1}[x_1]^{-1}[x_2]^{-1} = \\ x_$$

$$x_{1}^{-1}x_{3}[x_{2}, x_{3}] \cdot x_{1}x_{2}[x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}][x_{2}, x_{3}, x_{1}]x_{2}[x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]x_{2}[x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}]x_{2}[x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}] =$$

$$x_{1}^{-1}x_{3}x_{1}[x_{2}, x_{3}]x_{2}[x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{1}^{-1}x_{3}x_{1}x_{2}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{1}^{-1}x_{1}x_{3}[x_{3}, x_{1}]x_{2}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{3}[x_{1}, x_{3}]^{-1}x_{2}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{3}x_{2}[x_{1}, x_{3}]^{-1}[x_{1}, x_{3}, x_{2}]^{-1}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{3}x_{2}[x_{1}, x_{3}]^{-1}[x_{1}, x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{3}x_{2}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}][x_{1}, x_{2}, x_{3}]^{-1} =$$

$$x_{2}x_{3}[x_{3}, x_{2}][x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{2}x_{3}[x_{2}, x_{3}]^{-1}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{2}x_{3}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$x_{3}x_{2}[x_{1}, x_{3}]^{-1}[x_{2}, x_{3}]^{-1}[x_{2}, x_{3}] =$$

$$\begin{aligned} x_1^{-1}x_3[x_2,x_3] & \cdot & x_1x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3][x_2,x_3,x_1]x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3][x_1,x_2,x_3]x_2[x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3]x_2[x_1,x_2,x_3][x_1,x_2,x_3] = \\ x_1^{-1}x_3x_1[x_2,x_3]x_2[x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_3x_1x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_3x_1x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_1^{-1}x_1x_3[x_3,x_1]x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3[x_1,x_3]^{-1}x_2[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_1,x_3,x_2]^{-1}[x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_1,x_2,x_3][x_2,x_3][x_1,x_2,x_3]^{-1} = \\ x_3x_2[x_1,x_3]^{-1}[x_2,x_3][x_1,x_2,x_3] = \\ x_2x_3[x_2,x_3]^{-1}[x_1,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3] = \\ x_2x_3[x_1,x_2]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^{-1}[x_2,x_3]^$$

$$\begin{aligned} x_1^{-1} x_3 [x_2, x_3] & \cdot & x_1 x_2 [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] [x_2, x_3, x_1] x_2 [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] [x_1, x_2, x_3] x_2 [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] x_2 [x_1, x_2, x_3] [x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1 [x_2, x_3] x_2 [x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3 [x_3, x_1] x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_3 [x_1, x_3]^{-1} x_2 [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_3 x_2 [x_1, x_3]^{-1} [x_1, x_3, x_2]^{-1} [x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_3 x_2 [x_1, x_3]^{-1} [x_1, x_2, x_3] [x_1, x_2, x_3]^{-1} = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_2, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_2 x_3 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_2 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_2 [x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_3 [x_1, x_2]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_3 [x_1$$