

N
C

S
C

 International Journal of Computer Networks and Communications Security

VOL. 1, NO. 3, AUGUST 2013, 102–109
Available online at: www.ijcncs.org
ISSN 2308-9830

Cryptosystem an Implementation of RSA Using Verilog

Rehan Shams1, Fozia Hanif Khan2 and Mohammad Umair3

123Sir Syed University of Engineering and Technology, Deparment of Telecommunication

2Department of Mathematics, Department of Electronics

ABSTRACT

In this paper, we present a new structure to develop 64-bit RSA encryption engine on FPGA that can be
used as a standard device in the secured communication system. The RSA algorithm has three parts i.e. key
generation, encryption and decryption. The algorithm also requires random prime numbers so a primality
tester is also design to meet the needs of the algorithm. We use right-to-left-binary method for the exponent
calculation. This reduces the number of cycles enhancing the performance of the system and reducing the
area usage of the FPGA. These blocks are coded in Verilog and are synthesized and simulated in Xilinx
13.2 design suit.

Keywords: RSA, Verilog, Cryptosystem, Decryption, Encryption, Implementation, Key Generation,
Modular Exponentiation.

1 INTRODUCTION

There has been a lot of work going on in the field
of cryptography and in the recent years it has
increased exponentially. As the usage of
communication system increases so does the need
for securing data over those channels. Many
algorithms are designed to meet these needs.
Cryptographic algorithms have two major types:
symmetric and Asymmetric [1].

Symmetric cryptography requires sharing of a
single key at both ends. The problem is the
selection of the key privately. In asymmetric
(Public key) cryptography this problem is
overcome by using an algorithm that deals with two
keys. One key is for encryption and the other one is
to decrypt the same message. The idea of
publishing one key (the public key) and keeping the
other one secrete (the private key) can surely make
the whole procedure more secure and protected.
Only those will be able to read the massage who
may also have the private key as well, it is
necessary to have both keys if someone encrypt the
massage [2]. RSA algorithm belongs to this type of
cryptography. This problem is discussed in many
ways [12] has provided the high speed RSA
implementation of FPGA platforms, [13] showed
the high speed RSA implementation of a public key
block cipher-MQQ for FPGA platforms. [14] also

provided the implementation of RSA algorithm on
FPGA. In this

paper much work has done by the [14] but here
we are modifying the our proposed engine for 64
bits RSA encryption. Here we are extended the
work given by [14], also other algorithms like
LFSR, Miller Rabin, Extended Euclidean and
Modular exponentiation have been successfully
implemented by using the proposed technique of
XILINX ISE 13.2.

As far as the significance of the RSA is concern
it can be used as a tool for exchanging the secrete
information such as massages and conversation by
generating the keys and producing digital
signatures. However, the complexity comes from
calculating the prime factors of large numbers. This
work implements the modular exponentiation
operation by simple right-to-left-binary method,
which helps to reduce the processing time.

2 OVERVIEW OF RSA

It was developed by Rivest, Shamir &Adleman
of MIT in 1977. This method is supposed to be the
best and commonly used as a public-key scheme
which is based on exponentiation in a finite
(Galois) field over integers modulo a prime. The
security is due to cost of factoring large numbers.
As already explained in RSA cryptosystem there

103

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

are two key, the public and private key. The public
key is advertised to the world and the private key is
supposed to kept secret. Therefore an anonymous
person will not be able do decrypt the encrypted
message if he does not have the private key. The
safety depends upon the length of the key, longer
the key-length much safer is the data [3].

Following are the steps involved in the RSA
algorithm:

2.1 Key generation

Key generation is the most important aspect of
RSA Algorithm.

The steps are as follows:

 “Select two random prime numbers p and q

 Calculate n = p x q

 Calculate ø(n) = (p – 1) x (q – 1)

 Select integer e such that gcd (ø(n),e) =
1;1<e<ø(n); where e & ø(n) are relatively
prime

 Calculate d = e-1 mod ø(n)”

According to the procedure the encryption key e

is available but the decryption key d is not known
to all. Mathematically this procedure is defined as,
M is the actual message, C is the converted
message or cipher text by using publicly available
encryption key e, and d is the decryption key.

C = Me (mod m)
M = Cd (mod m)

RSA encryption and decryption are mutual

inverses and commutative [4].

3 RSA ALGORITHM

RSA algorithm is divided into blocks and each
block is then implemented.

Fig. 1. RSA key generation

The first step is the generation of public and

private keys which is summarized in fig.1. It starts
with a pseudorandom number generator that
generates 32-bit pseudo numbers. These
pseudorandom numbers are stored in a FIFO. The
pseudorandom number generator will stop working
as the FIFO is full. Random numbers from the
FIFO are pulled out by the primality tester as this
happens the PRNG will start again to make sure
that the FIFO remains filled. Coming back to the
primality tester, it takes a random number as input
and check for the number to beprime. If the number
is proved as prime, it goes to the Prime FIFO. The
primality tester only pulls a number out of the FIFO
when the prime FIFO is not full. When there is a
requirement of new keys, two random prime
numbers are extracted from the prime FIFO. The
structure is shown in Fig. 2.

104

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

Fig. 2. Prime Random Number Generation

These two numbers are used to calculate n and

Φ(n). Φ(n) is forwarded to the Greatest Common
Divider (GCD) calculator where a number e is
selected which will be the public or encryption key
if it satisfies the condition that GCD (Φ(n), e) = 1.
This will prove that modular inverse d of this
number exists and the modular multiplicative
inverse will be our private our decryption key. We
got e, d and n, for encryption and decryption.
Modular exponentiation is applied to encrypt or
decrypt the data. This is something that has to be
focused because the performance of RSA algorithm
depends on how modular arithmetic functions are
calculated. They are the core of the algorithm. This
process is shown in Fig. 3:

Fig. 3. Encryption and Decryption

3.1 Random Number Generator

The Linear Feedback Shift Register (LFSR) is
among the most useful techniques used for
generating pseudorandom numbers. Here 32-bit
pseudorandom numbers are generated using LFSR.
LFSR generates a periodic sequence means that the
pattern in which numbers are generated will be
repeated after certain interval.When using a
primitive polynomial, maximum length of an LFSR
sequence is 2n-1.A 32-bit LFSR will produce a
sequence of over 4 billion random bits, or 500
million random bytes.The polynomial used for
generating this sequence of 32-bit pseudorandom
numbers is as under.

P(x) = x32+x22 +x2+x1 +1

3.2 Primality Tester

The numbers generated by the LFSR consists of
both prime and composite numbers. One of the
most commonly used primality test is the Miller-
Rabin test which is considered as a fastest among
all, the main purpose of this test is to separate the
prime numbers and then saved them for further use.
The Miller-Rabin primality test is one of the fastest
and most widely used primality tests that produce
good result in polynomial time [5]. We eliminate
the even numbers generated from the LFSR and
feed the odd numbers to the primality tester. The
following pseudo code shows the Miller-Rabin
primality test algorithm [6].

“Input: n > 2, an odd integer to be tested for primality;
k, determines the accuracy of the test
Output: composite if n is composite, otherwise probably
prime
write n − 1 as 2s·d with d odd by factoring powers of 2
from n − 1
LOOP: repeat k times:
pick a randomly in the range [2, n - 1]
x ← ad mod n
if x = 1 or x = n − 1 then do next LOOP
for r = 1 .. s − 1
x ← x2 mod n
if x = 1 then return composite
if x = n − 1 then do next LOOP
return composite
return probably prime”

The odd integer n from the LFSR to be tested,
kdetermines the numbers of round for the test. For
each round, we use a new integer ‘a’, the upper and
the lower bound for the integer is 2 and n-2
respectively, which may be 1 or 0 for the composite
or probable prime numbers. If the result of any
round is 0 (composite), then there is a possibility
that n is composite and we will not move any

105

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

further. Since there is high probability that n is
prime if the result of all the rounds is 1 (probable
prime). It’s very rare that probable prime n might
be composite [7].

3.3 GCD

For the generation of keys, two prime numbers
are extracted from the Prime FIFO. Applying
respective operations on these two primes gives n
and Φ(n). After Φ(n), a number e is selected which
obeys the condition GCD (Φ(n),e) = 1, means that e
is relatively prime to Φ(n). This will prove that
modulo inverse of e exists.

e × d mod(Φ(n)) = 1

Extended Euclidian algorithm is used and

implemented for this purpose. When the GCD is 1,
the module returns the values of e and the modular
multiplicative inverse d. Otherwise, e gets an
increment of 2 and GCD is calculated again, this is
repeated until the value of e satisfies the condition
and a positive inverse is found. e will be used as the
encryption key and d as the decryption key. The
pseudo code for Extended Euclidian algorithm is as
under.

extended_euclidean_main(p,q)
 e =1
 (gcd, d) = (0, 0)
while (gcd != 1 || d < 0)
begin
 e = e + 2
 (gcd, d)= extended_euclidean_loop((p – 1)(q – 1),
e)
end
return (e,d)

extended_euclidean_loop(a,b)
 (y, y_prev) = (1, 0)
while b != 0
begin
 (y, y_prev) = (y_prev – a/b*y, y)
 (a, b) = (b, a mod b)
end
return (a, y_prev) {gcd((Φ(n), e) is a, inverse is y_prev}

3.4 Encryption/Decryption

Encryption is the process of converting plain text
in such a way that eavesdroppers or hackers cannot
read it, it is called as cipher text. Decryption is the
inverse process by which cipher text is converted
back into the form that is readable namely plain
text. After generation of the keys, RSA encryption
and decryption is done using the mathematical
operation C =Me (mod n) and M = Cd (mod n)
respectively. Hence encryption/decryption is just a
modular exponentiation operation.It involves few

modular operations like modular addition, modular
subtraction and modular multiplication.

4 MODULAR EXPONENTIATION

OPERATION

Modular Exponentiation operation is simplified
using square and multiply algorithm. It is done by
using right-to-left-binary method. The purpose of
using the binary method is to calculate Me by using
the binary expression of exponent e. In binary
method the exponentiation operation is broken in to
a series of squaring and multiplication. This method
is also very useful for speeding up the
exponentiation calculation. The LSB binary
exponentiation algorithm (also called as right-to-
left binary exponentiation algorithm), starting from
the least significant bit position it calculates the
exponent e and proceeding towards left, which can
be write as follows [8].

Input: M, e, n

Output: C = Me mod n

Let e contain k bits

If ek-1=1 then C=M else C=1

 For i=0 to k-1

 C=C×C

 If ei=1 then C=C×M

This algorithm works on the principle of scanning
bits from the right For every iteration, i.e., for every
exponent bit, the current result is squared, If and
only if the currently scanned exponent bit has the
value 1, a multiplication of the current result by M
is executed following the squaring [9].

5 HARDWARE IMPLEMENTATION

For hardware design and implementation, the
RSA Cryptosystem is divided into 4 modules.

i. Initial module
ii. Modular exponentiation
iii. Core algorithm
iv. Top module

6.5 Initial Module

This module consists of a 32-bit LFSR for
generating random numbers for the algorithm,
which are than stored in the FIFO if they are proven
to be odd. As this FIFO fills completely the Miller
Rabin primality tester takes a number out from the
FIFO and test it for prime. The exponentiation part
of this algorithm is done by using the right to left

106

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

binary algorithm implemented for
encryption/decryption. If the test succeeds the
number is stored in PRIME FIFO for later use by
the algorithm. This process will only stop when the
PRIME FIFO is full.

6.6 Modular Exponentiation

The most important and time consuming part of
RSA algorithm is calculating the modular
exponentiation of a number. For this purpose we
implement the Square and Multiply algorithm by
using the right-to-left-binary approach. It speeds up
the exponent calculation and limits the number of
cycles needed.The exponent function is also
required in miller and Rabin tester so this module
can be called there for processing and calculating,
saving both space and time.

6.7 Core Algorithm

Here we implement the basic functions and steps
of RSA algorithm. This is further divided into two
steps:

 Key generation
 Cryptography

When a new used comes to the system this

module takes two numbers as input. These numbers
should be 32-bit prime. n and Φ(n) are calculated
by inserting them into the multiplier, hence getting
a 64-bit number.Φ(n) is then used to find the
encryption and decryption keys. For this purpose
the Euclidean Algorithm is used which calculates
the GCD of Φ(n) and an odd number. If the GCD is
found to be 1 this proves that the modular inverse
of the odd number exists and the number is co-
prime. This number is then saved in a register and
will be used as the encryption key. The Extended
Euclidean Algorithm is then used to find the
decryption key which is the modular inverse of the
encryption key. Hence the key generation process is
completed for this user and he is allotted with a
public and private key that user will use to encrypt
and decrypt the data.

Once the keys are created they can be used for
encrypting and decrypting the message. The
Modular Exponentiation is used for this purpose.
Register e_d switches the exponent value so that it
could be used for both encryption and decryption
by just changing the exponent value to the
respective key.

6.8 Top Module

The top module controls the functions of the
other modules and interconnects them so as the

RSA Algorithms flow is maintained. This module
implements a controller with multiple checks so as
to get the desired results.

Word size
[bits]

Clock
frequency

128 65.532
136 68.31
160 70.763
208 72.546
288 81.325

From the above table we can see that the

frequency can be decrease by the proposed
encryption engine. There is a falling rate of 15% in
each case of word size.

Logic
utilization

used Available utilization

No. of slice 432 587 73%
Number of
slice flip
plops

7632 9512 80%

No. of 4
inputs LUTs

568 931 61%

No of bonded
IOBs

105 323 32%

No. of
BRAMs

8 20 40%

No. of MLT
18X18SIOs

15 20 75%

No. of
GCLKs

6 24 25%

 Minimum Period: 12.473ns

 Maximum frequency 58 MHz

 Maximum combinatorial Path delay 10ns

 Maximum output required time after clock

8.657

6 SIMULATION RESULTS

LFSR, Miller Rabin, Extended Euclidean and
modular exponentiation have been successfully
written and tested on Xilinx ISE 13.2. The
simulation shows the desired results of these
algorithms. The following section shows the
simulation results of these algorithms.

6.1 Linear Feedback Shift Register

The pseudo random numbersare generated by a
32-bit Linear Feedback Shift Register which is
simulated in Xilinx ISE.

107

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

Fig. 4. Simulated Waveform for Pseudo-Random number
generator

Fig. 4 shows some 32-bit random numbers that

are generated by the LFSR. Only odd numbers will
be saved for further processing.

6.2 Miller Rabin Primality Check

Primality tester is implemented using Miller
Rabin Primality Test which is simulated in Xilinx
ISE.

Fig. 5. Simulated Waveform for Primality Tester

Fig.5 shows the simulation of primality test, the

input is 2750263. The tester checks whether the
number is prime or not and after processing returns
that result 2750263 as prime by changing the value
of prime_reg to 1.

6.3 Extended Euclidean

Fig.6 shows the Extended Euclidean algorithm
simulated in Xilinx ISE 13.2.

Fig. 6. Simulated Waveform for GCD

The waveform for extended Euclideanalgorithm

for the calculation of GCD and modular inverse
shows that two inputs are given p=71 and q=59, as
a result the algorithm gives e=13 and d=937 and
output.

7 MODULAR EXPONENTIATION

Modular exponentiation is used for encryption

and decryption. There simulated waveforms are
shown in Fig. 7 and Fig.8 respectively.

7.1 Encryption

Fig.7 shows the encryption of a plain text. n is set
to 4189 and the exponent is 13 i.e. encryption key.
The plain text is 101.

Fig. 7. Simulated Waveform for Encryption

After encryption the resulted cipher text is 3879.

108

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

7.2 Decryption

Fig.7 shows the decryption of the cipher text. The
value of n remains the same, but for decryption the
exponent’s value changes to 937 i.e. the value of
decryption key. The cipher text is 3879.

Fig. 8 Simulated Waveform for Decryption

After decryption it converts the cipher text back to
the original message i.e. 101.

Table 3: Hardware performances

Algorithm
Name

104 bit
RSA

Encrypt/
decrypt

160-bit
MQQ

Encrypt/
decrypt

128-bit
AES

Encrypt/
decrypt

64- bits
RSA

Encrypt/
decrypt

FPGA type
Virtex-5
XC5VL
X30-3

Virtex-5
XC5VL
X70T-2

Virtex-5
XILINX

13.2
Verilog

Frequency 251MHz
276.7/24
9.7 MHz

325MHz 254MHz

Throughput 40Kbps
4427Gb
ps/399.0
4Mbps

3.78
Gbps

9.8Mbps

From the above table we can see that the results are
compared with the other implementations. The
implementations are compared using throughputs
rate. The results of our implementations shows that
in hardware, the proposed method for public key
algorithm in encryption and decryption can be
made fast as a typical block cipher and is several
orders of magnitude faster than other algorithms.

7 CONCLUSION

Here we implemented a 64-bit RSA circuit in
Verilog. It is a full-featured and efficient RSA
circuit this includes Primality testing, key
generation, data encryption and data decryption.
We have implemented random number generator
using 32-bit LFSR, Miller-Rabin primality test,
GCD and modular inverse algorithm using
extended Euclidean algorithm and Encryption and
Decryption using Modular multiplication and

modular exponentiation algorithms (R-L binary
algorithms). Each sub-component and top module
of RSA was simulated in Xilinx and proved
functionally correct. This can easily scale up to
large bits such as 512 or 1024 or even longer.

8 ACKNOWLEDGMENT

The authors would like to express sincere
gratitude to the Research Centre, Sir Syed
University of Engineering and technology for
providing fund for the research.

9 REFERENCES

[1] Symeon (Simos) Xenitellis, “A guide to PKIs

and Open– source

Implementations”, The Open–source PKI Book

[2] VibhorGarg, V. Arunachalam ,“Architectural

Analysis of RSA Cryptosystem on FPGA”,

International Journal of Computer Applications

(0975 – 8887) Volume 26– No.8, July (2011).

[3] William Stallings, “Cryptography and Network

Security Principals and Practices”, 4th edition,

Pearson Education, Inc., (2006).

[4] Sushanta Kumar Sahu, ManoranjanPradhan,

“FPGA Implementation of RSA Encryption

System”, International Journal of Computer

Applications (0975 – 8887), Volume 19– No.9,

April (2011)

[5] Monier, L. "Evaluation and Comparison of

Two Efficient Probabilistic Primality Testing

Algorithms." Theor.Comput.Sci. 12, 97-108,

(1980).

[6] Rabin, M. O. "Probabilistic Algorithm for

Testing Primality." J. Number Th. 12, 128-138,

(1980).

[7] Joe Hurd, “Verification of the Miller-Rabin

Probabilistic Primality Test”, Computer

Laboratory, University of Cambridge

[8] Chia-Long WU, “An Efficient Montgomery

Exponentiation Algorithm for Cryptographic

Applications”, INFORMATICA, Vol. 16,

(2005) No. 3, 449–468.

[9] AnkitAnand, Pushkar Praveen,

“Implementation of RSA Algorithm on

FPGA”, International Journal of Engineering

Research & Technology (IJERT), Vol. 1 Issue

5, July – (2012).

[10] http://rosettacode.org/wiki/Miller-Rabin_test.

109

R. Shams et al. / International Journal of Computer Networks and Communications Security, 1 (3), August 2013

[11] Alkhatib, Mohammad. "On The Design of

Projective Binary Edwards Elliptic Curves

Over GF (P) Benefiting From Mapping Elliptic

Curves Computations to Variable Degree of

Parallel Design", International Journal on

Computer Science & Engineering/09753397,

20110401.

[12] Thomas wokinger, “High Speed RSA

Implementation of FPGA Platforms”, MS

thesis Institution of Applied Information

Processing and Communications, Graz

University of Technology, (2005).

[13] Mohammad El- Hahidy, Danilo G. and Sevin J.

K., “High performance Implementation

of public key block cipher-MQQ, for FPGA

Platforms”,(2004),

eprint.iacr.org/2008/339.pdf .

[14] Ankit A. Pushkar P., “Implementation of RSA

Algorithm on FPGA”, International Journal of

Engineering Research and Technology, Vol. 1,

Issue 5, pp. 1-7, (2012).

	Rehan Shams1, Fozia Hanif Khan2 and Mohammad Umair3

