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ABSTRACT 
 

In this paper, we present a new structure to develop 64-bit RSA encryption engine on FPGA that can be 
used as a standard device in the secured communication system. The RSA algorithm has three parts i.e. key 
generation, encryption and decryption. The algorithm also requires random prime numbers so a primality 
tester is also design to meet the needs of the algorithm. We use right-to-left-binary method for the exponent 
calculation. This reduces the number of cycles enhancing the performance of the system and reducing the 
area usage of the FPGA. These blocks are coded in Verilog and are synthesized and simulated in Xilinx 
13.2 design suit.   

Keywords: RSA, Verilog, Cryptosystem, Decryption, Encryption, Implementation, Key Generation, 
Modular Exponentiation. 

 
1 INTRODUCTION  
 

There has been a lot of work going on in the field 
of cryptography and in the recent years it has 
increased exponentially. As the usage of 
communication system increases so does the need 
for securing data over those channels. Many 
algorithms are designed to meet these needs. 
Cryptographic algorithms have two major types: 
symmetric and Asymmetric [1].  

Symmetric cryptography requires sharing of a 
single key at both ends. The problem is the 
selection of the key privately. In asymmetric 
(Public key) cryptography this problem is 
overcome by using an algorithm that deals with two 
keys. One key is for encryption and the other one is 
to decrypt the same message. The idea of 
publishing one key (the public key) and keeping the 
other one secrete (the private key) can surely make 
the whole procedure more secure and protected. 
Only those will be able to read the massage who 
may also have the private key as well, it is 
necessary to have both keys if someone encrypt the 
massage [2]. RSA algorithm belongs to this type of 
cryptography. This problem is discussed in many 
ways [12] has provided the high speed RSA 
implementation of FPGA platforms, [13] showed 
the high speed RSA implementation of a public key 
block cipher-MQQ for FPGA platforms. [14] also 

provided the implementation of RSA algorithm on 
FPGA. In this  

paper much work has done by the [14] but here 
we are modifying the our proposed engine for 64 
bits RSA encryption. Here we are extended the 
work given by [14], also other algorithms like 
LFSR, Miller Rabin, Extended Euclidean and 
Modular exponentiation have been successfully 
implemented by using the proposed technique of 
XILINX ISE 13.2.    

As far as the significance of the RSA is concern 
it can be used as a tool for exchanging the secrete 
information such as massages and conversation by 
generating the keys and producing digital 
signatures. However, the complexity comes from 
calculating the prime factors of large numbers. This 
work implements the modular exponentiation 
operation by simple right-to-left-binary method, 
which helps to reduce the processing time. 
 
2 OVERVIEW OF RSA 

 

It was developed by Rivest, Shamir &Adleman 
of MIT in 1977. This method is supposed to be the 
best and commonly used as a public-key scheme 
which is based on exponentiation in a finite 
(Galois) field over integers modulo a prime. The 
security is due to cost of factoring large numbers. 
As already explained in RSA cryptosystem there 
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are two key, the public and private key. The public 
key is advertised to the world and the private key is 
supposed to kept secret. Therefore an anonymous 
person will not be able do decrypt the encrypted 
message if he does not have the private key. The 
safety depends upon the length of the key, longer 
the key-length much safer is the data [3]. 

Following are the steps involved in the RSA 
algorithm: 

 
2.1 Key generation 

Key generation is the most important aspect of 
RSA Algorithm. 

The steps are as follows: 
 

 “Select two random prime numbers p and q 

 Calculate n = p x q 

 Calculate ø(n) = (p – 1) x (q – 1) 

 Select integer e such that gcd (ø(n),e) = 
1;1<e<ø(n); where e & ø(n) are relatively 
prime 

 Calculate d = e-1 mod ø(n)” 

 
According to the procedure the encryption key e 

is available but the decryption key d is not known 
to all. Mathematically this procedure is defined as, 
M is the actual message, C is the converted 
message or cipher text by using publicly available 
encryption key e, and d is the decryption key. 

 
C = Me (mod m) 
M = Cd (mod m) 

 
RSA encryption and decryption are mutual 

inverses and commutative [4]. 
 

3 RSA ALGORITHM 

 

RSA algorithm is divided into blocks and each 
block is then implemented. 

 
 

Fig. 1. RSA key generation 

 
The first step is the generation of public and 

private keys which is summarized in fig.1. It starts 
with a pseudorandom number generator that 
generates 32-bit pseudo numbers. These 
pseudorandom numbers are stored in a FIFO. The 
pseudorandom number generator will stop working 
as the FIFO is full. Random numbers from the 
FIFO are pulled out by the primality tester as this 
happens the PRNG will start again to make sure 
that the FIFO remains filled. Coming back to the 
primality tester, it takes a random number as input 
and check for the number to beprime. If the number 
is proved as prime, it goes to the Prime FIFO. The 
primality tester only pulls a number out of the FIFO 
when the prime FIFO is not full. When there is a 
requirement of new keys, two random prime 
numbers are extracted from the prime FIFO. The 
structure is shown in Fig. 2. 
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Fig. 2. Prime Random Number Generation 

 
These two numbers are used to calculate n and 

Φ(n). Φ(n) is forwarded to the Greatest Common 
Divider (GCD) calculator where a number e is 
selected which will be the public or encryption key 
if it satisfies the condition that GCD (Φ(n), e) = 1. 
This will prove that modular inverse d of this 
number exists and the modular multiplicative 
inverse will be our private our decryption key. We 
got e, d and n, for encryption and decryption. 
Modular exponentiation is applied to encrypt or 
decrypt the data. This is something that has to be 
focused because the performance of RSA algorithm 
depends on how modular arithmetic functions are 
calculated. They are the core of the algorithm. This 
process is shown in Fig. 3: 

 
 

 
 

 

Fig. 3. Encryption and Decryption 

 
 
 

3.1 Random Number Generator 

The Linear Feedback Shift Register (LFSR) is 
among the most useful techniques used for 
generating pseudorandom numbers. Here 32-bit 
pseudorandom numbers are generated using LFSR. 
LFSR generates a periodic sequence means that the 
pattern in which numbers are generated will be 
repeated after certain interval.When using a 
primitive polynomial, maximum length of an LFSR 
sequence is 2n-1.A 32-bit LFSR will produce a 
sequence of over 4 billion random bits, or 500 
million random bytes.The polynomial used for 
generating this sequence of 32-bit pseudorandom 
numbers is as under. 
 

P(x) = x32+x22 +x2+x1 +1 
 

3.2 Primality Tester 

The numbers generated by the LFSR consists of 
both prime and composite numbers. One of the 
most commonly used primality test is the Miller-
Rabin test which is considered as a fastest among 
all, the main purpose of this test is to separate  the 
prime numbers and then saved them for further use. 
The Miller-Rabin primality test is one of the fastest 
and most widely used primality tests that produce 
good result in polynomial time [5]. We eliminate 
the even numbers generated from the LFSR and 
feed the odd numbers to the primality tester. The 
following pseudo code shows the Miller-Rabin 
primality test algorithm [6]. 
 
“Input: n > 2, an odd integer to be tested for primality; 
k, determines the accuracy of the test 
Output: composite if n is composite, otherwise probably 
prime 
write n − 1 as 2s·d with d odd by factoring powers of 2 
from n − 1 
LOOP: repeat k times: 
pick a randomly in the range [2, n - 1] 
x ← ad mod n 
if x = 1 or x = n − 1 then do next LOOP 
for r = 1 .. s − 1 
x ← x2 mod n 
if x = 1 then return composite 
if x = n − 1 then do next LOOP 
return composite 
return probably prime” 
 

The odd integer n from the LFSR to be tested, 
kdetermines the numbers of round for the test. For 
each round, we use a new integer ‘a’, the upper and 
the lower bound for the integer is 2 and n-2 
respectively, which may be 1 or 0 for the composite 
or probable prime numbers. If the result of any 
round is 0 (composite), then there is a possibility 
that n is composite and we will not move any 
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further. Since there is high probability that n is 
prime if the result of all the rounds is 1 (probable 
prime). It’s very rare that probable prime n might 
be composite [7]. 

 
3.3 GCD 

For the generation of keys, two prime numbers 
are extracted from the Prime FIFO. Applying 
respective operations on these two primes gives n 
and Φ(n). After Φ(n), a number e is selected which 
obeys the condition GCD (Φ(n),e) = 1, means that e 
is relatively prime to Φ(n). This will prove that 
modulo inverse of e exists.  

 
e × d mod( Φ(n) ) = 1 

 
Extended Euclidian algorithm is used and 

implemented for this purpose. When the GCD is 1, 
the module returns the values of e and the modular 
multiplicative inverse d. Otherwise, e gets an 
increment of 2 and GCD is calculated again, this is 
repeated until the value of e satisfies the condition 
and a positive inverse is found. e will be used as the 
encryption key and d as the decryption key. The 
pseudo code for Extended Euclidian algorithm is as 
under. 
 
extended_euclidean_main(p,q) 
     e =1 
     (gcd, d) = (0, 0) 
while (gcd != 1 || d < 0) 
begin 
          e = e + 2 
          (gcd, d)= extended_euclidean_loop((p – 1)(q – 1), 
e) 
end 
return (e,d) 
 
extended_euclidean_loop(a,b) 
     (y, y_prev) = (1, 0) 
while b != 0 
begin 
          (y, y_prev) = (y_prev – a/b*y, y) 
          (a, b) = (b, a mod b) 
end 
return (a, y_prev) {gcd( (Φ(n), e) is a, inverse is y_prev} 
 

3.4 Encryption/Decryption 

Encryption is the process of converting plain text 
in such a way that eavesdroppers or hackers cannot 
read it, it is called as cipher text. Decryption is the 
inverse process by which cipher text is converted 
back into the form that is readable namely plain 
text. After generation of the keys, RSA encryption 
and decryption is done using the mathematical 
operation C =Me (mod n) and M = Cd (mod n) 
respectively. Hence encryption/decryption is just a 
modular exponentiation operation.It involves few 

modular operations like modular addition, modular 
subtraction and modular multiplication. 

 
4 MODULAR EXPONENTIATION 

OPERATION  

 

Modular Exponentiation operation is simplified 
using square and multiply algorithm. It is done by 
using right-to-left-binary method. The purpose of 
using the binary method is to calculate Me by using 
the binary expression of exponent e. In binary 
method the exponentiation operation is broken in to 
a series of squaring and multiplication. This method 
is also very useful for speeding up the 
exponentiation calculation. The LSB binary 
exponentiation algorithm (also called as right-to-
left binary exponentiation algorithm), starting from 
the least significant bit position it calculates the 
exponent e and proceeding towards left, which can 
be write as follows [8]. 

 

Input: M, e, n 

Output: C = Me mod n 

Let e contain k bits 

If ek-1=1 then C=M else C=1 

     For i=0 to k-1 

     C=C×C 

     If ei=1 then C=C×M 

 

This algorithm works on the principle of scanning 
bits from the right For every iteration, i.e., for every 
exponent bit, the current result is squared, If and 
only if the currently scanned exponent bit has the 
value 1, a multiplication of the current result by M 
is executed following the squaring [9]. 
 
5 HARDWARE IMPLEMENTATION 

 

For hardware design and implementation, the 
RSA Cryptosystem is divided into 4 modules. 

 
i. Initial module 
ii. Modular exponentiation 
iii. Core algorithm 
iv. Top module 

 

6.5 Initial Module 

This module consists of a 32-bit LFSR for 
generating random numbers for the algorithm, 
which are than stored in the FIFO if they are proven 
to be odd. As this FIFO fills completely the Miller 
Rabin primality tester takes a number out from the 
FIFO and test it for prime. The exponentiation part 
of this algorithm is done by using the right to left 
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binary algorithm implemented for 
encryption/decryption. If the test succeeds the 
number is stored in PRIME FIFO for later use by 
the algorithm. This process will only stop when the 
PRIME FIFO is full. 

 
6.6 Modular Exponentiation 

The most important and time consuming part of 
RSA algorithm is calculating the modular 
exponentiation of a number. For this purpose we 
implement the Square and Multiply algorithm by 
using the right-to-left-binary approach. It speeds up 
the exponent calculation and limits the number of 
cycles needed.The exponent function is also 
required in miller and Rabin tester so this module 
can be called there for processing and calculating, 
saving both space and time. 
 
6.7 Core Algorithm 

Here we implement the basic functions and steps 
of RSA algorithm. This is further divided into two 
steps:  

 Key generation 
 Cryptography 

 
When a new used comes to the system this 

module takes two numbers as input. These numbers 
should be 32-bit prime. n and Φ(n) are calculated 
by inserting them into the multiplier, hence getting 
a 64-bit number.Φ(n) is then used to find the 
encryption and decryption keys. For this purpose 
the Euclidean Algorithm is used which calculates 
the GCD of Φ(n) and an odd number. If the GCD is 
found to be 1 this proves that the modular inverse 
of the odd number exists and the number is co-
prime. This number is then saved in a register and 
will be used as the encryption key. The Extended 
Euclidean Algorithm is then used to find the 
decryption key which is the modular inverse of the 
encryption key. Hence the key generation process is 
completed for this user and he is allotted with a 
public and private key that user will use to encrypt 
and decrypt the data. 

Once the keys are created they can be used for 
encrypting and decrypting the message. The 
Modular Exponentiation is used for this purpose. 
Register e_d switches the exponent value so that it 
could be used for both encryption and decryption 
by just changing the exponent value to the 
respective key.  

 
6.8 Top Module 

The top module controls the functions of the 
other modules and interconnects them so as the 

RSA Algorithms flow is maintained. This module 
implements a controller with multiple checks so as 
to get the desired results. 

 
Word size 
[bits] 

Clock 
frequency 

128 65.532 
136 68.31 
160 70.763 
208 72.546 
288 81.325 

 
From the above table we can see that the 

frequency can be decrease by the proposed 
encryption engine. There is a falling rate of 15% in 
each case of word size. 

 
Logic 
utilization 

used  Available utilization 

No. of slice 432 587 73% 
Number of 
slice flip 
plops 

7632 9512 80% 

No. of 4 
inputs LUTs 

568 931 61% 

No of bonded 
IOBs 

105 323 32% 

No. of 
BRAMs 

8 20 40% 

No. of MLT 
18X18SIOs 

15 20 75% 

No. of 
GCLKs 

6 24 25% 

 
 Minimum Period: 12.473ns  

 Maximum frequency 58 MHz 

 Maximum combinatorial Path delay 10ns 

 Maximum output required time after clock 

8.657 

 

6 SIMULATION RESULTS 

 

LFSR, Miller Rabin, Extended Euclidean and 
modular exponentiation have been successfully 
written and tested on Xilinx ISE 13.2. The 
simulation shows the desired results of these 
algorithms. The following section shows the 
simulation results of these algorithms.  

 
6.1 Linear Feedback Shift Register 

The pseudo random numbersare generated by a 
32-bit Linear Feedback Shift Register which is 
simulated in Xilinx ISE. 
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Fig. 4. Simulated Waveform for Pseudo-Random number 
generator 

 
Fig. 4 shows some 32-bit random numbers that 

are generated by the LFSR. Only odd numbers will 
be saved for further processing.  

 
6.2 Miller Rabin Primality Check 

Primality tester is implemented using Miller 
Rabin Primality Test which is simulated in Xilinx 
ISE. 

 

 

Fig. 5. Simulated Waveform for Primality Tester 

 
Fig.5 shows the simulation of primality test, the 

input is 2750263. The tester checks whether the 
number is prime or not and after processing returns 
that result 2750263 as prime by changing the value 
of prime_reg to 1. 

 
6.3 Extended Euclidean  

Fig.6 shows the Extended Euclidean algorithm 
simulated in Xilinx ISE 13.2. 

 

 

Fig. 6. Simulated Waveform for GCD 

 
The waveform for extended Euclideanalgorithm 

for the calculation of GCD and modular inverse 
shows that two inputs are given p=71 and q=59, as 
a result the algorithm gives e=13 and d=937 and 
output. 

 
7 MODULAR EXPONENTIATION 

 
Modular exponentiation is used for encryption 

and decryption. There simulated waveforms are 
shown in Fig. 7 and Fig.8 respectively.  

 
7.1 Encryption 

Fig.7 shows the encryption of a plain text. n is set 
to 4189 and the exponent is 13 i.e. encryption key. 
The plain text is 101. 
 

 

Fig. 7. Simulated Waveform for Encryption 

 
After encryption the resulted cipher text is 3879. 
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7.2 Decryption 

Fig.7 shows the decryption of the cipher text. The 
value of n remains the same, but for decryption the 
exponent’s value changes to 937 i.e. the value of 
decryption key. The cipher text is 3879.  
 

 

Fig. 8  Simulated Waveform for Decryption 

After decryption it converts the cipher text back to 
the original message i.e. 101. 
 

Table 3: Hardware performances 

Algorithm 
Name 

104 bit 
RSA 

Encrypt/
decrypt 

160-bit 
MQQ 

Encrypt/
decrypt 

128-bit 
AES 

Encrypt/
decrypt 

64- bits 
RSA 

Encrypt/
decrypt 

FPGA type 
Virtex-5 
XC5VL
X30-3 

Virtex-5 
XC5VL
X70T-2 

Virtex-5 
XILINX 

13.2 
Verilog 

Frequency 251MHz 
276.7/24
9.7 MHz 

325MHz 254MHz 

Throughput 40Kbps 
4427Gb
ps/399.0
4Mbps 

3.78 
Gbps 

9.8Mbps 

 
From the above table we can see that the results are 
compared with the other implementations. The 
implementations are compared using throughputs 
rate. The results of our implementations shows that 
in hardware, the proposed method for public key 
algorithm in encryption and decryption can be 
made fast as a typical block cipher and is several 
orders of magnitude faster than other algorithms. 
 
7 CONCLUSION 

 

Here we implemented a 64-bit RSA circuit in 
Verilog. It is a full-featured and efficient RSA 
circuit this includes Primality testing, key 
generation, data encryption and data decryption. 
We have implemented random number generator 
using 32-bit LFSR, Miller-Rabin primality test, 
GCD and modular inverse algorithm using 
extended Euclidean algorithm and Encryption and 
Decryption using Modular multiplication and 

modular exponentiation algorithms (R-L binary 
algorithms). Each sub-component and top module 
of RSA was simulated in Xilinx and proved 
functionally correct. This can easily scale up to 
large bits such as 512 or 1024 or even longer. 
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