
Operating System Lab Manual CS 2254

@www.getitcse.tk Page 1

CS 2257 OPERATING SYSTEMS LAB 0 0 3 2

(Implement the following on LINUX or other Unix like platform. Use C for high level

language implementation)

1. Write programs using the following system calls of UNIX operating system:

fork, exec, getpid, exit, wait, close, stat, opendir, readdir

2. Write programs using the I/O system calls of UNIX operating system (open, read,

 write, etc)

3. Write C programs to simulate UNIX commands like ls, grep, etc.

4. Given the list of processes, their CPU burst times and arrival times, display/print

 the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute

 and print the average waiting time and average turnaround time. (2 sessions)

5. Given the list of processes, their CPU burst times and arrival times, display/print

 the Gantt chart for Priority and Round robin. For each of the scheduling policies,

 compute and print the average waiting time and average turnaround time. (2

 sessions)

6. Developing Application using Inter Process communication (using shared

 memory, pipes or message queues)

7. Implement the Producer – Consumer problem using semaphores (using UNIX

 system calls).

8. Implement some memory management schemes – I

9. Implement some memory management schemes – II

10. Implement any file allocation technique (Linked, Indexed or Contiguous)

Example for exercises 8 & 9 :

Free space is maintained as a linked list of nodes with each node having the starting byte

address and the ending byte address of a free block. Each memory request consists of the

process-id and the amount of storage space required in bytes. Allocated memory space is again

maintained as a linked list of nodes with each node having the process-id, starting byte address

and the ending byte address of the allocated space. When a process finishes (taken as input) the

appropriate node from the allocated list should be deleted and

this free disk space should be added to the free space list. [Care should be taken to merge

contiguous free blocks into one single block. This results in deleting more than one node from

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 2

the free space list and changing the start and end address in the appropriate node]. For

allocation use first fit, worst fit and best fit

 INDEX

E.No Date Contents Page No.

1 Shell Programming:

a) Unix Commands

b) Vi Commands

c) Unix Shell programming commands

a) Concatenation of two strings

b) Comparison of two strings

c) Maximum of three numbers

d) Fibonacci series

e) Arithmetic operation using case

2 System Calls

a) Process Creation

b) Executing a command

c) Sleep command

d) Sleep command using getpid

e) Signal handling using kill

 k) Wait command

3 I/O System Calls

a) Reading from a file

b) Writing into a file

 c) File Creation

4 a)Implementation of ls command

b)Implementation of grep command

5 Given the list of processes, their CPU burst times and arrival times,

display/print the Gantt chart for FCFS and SJF.Print avg.waiting time

and turnaround time.

6 Given the list of processes, their CPU burst times and arrival times,

display/print the Gantt chart for Priority and Round robin. Print

avg.waiting time and turnaround time.

7 Developing Application using Inter Process communication

(using shared memory, pipes or message queues)

8 Producer-Consumer Problem using Semaphore

9 Memory management Scheme-I

 a) Paging Concept

10 Memory management Scheme-II

 a) Segmentation Concept

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 3

11 Implement any file allocation technique (Linked, Indexed or

Contiguous)

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 4

Ex.No : 1.a UNIX COMMANDS

Date:

AIM :

 To study and excute the commands in unix.

COMMAND :

1.Date Command :

 This command is used to display the current data and time.

 Syntax :

 $date

 $date +%ch

 Options : -

 a = Abbrevated weekday.

 A = Full weekday.

 b = Abbrevated month.

 B = Full month.

 c = Current day and time.

 C = Display the century as a decimal number.

 d = Day of the month.

 D = Day in „mm/dd/yy‟ format

 h = Abbrevated month day.

 H = Display the hour.

 L = Day of the year.

 m = Month of the year.

 M = Minute.

 P = Display AM or PM

 S = Seconds

 T = HH:MM:SS format

 u = Week of the year.

 y = Display the year in 2 digit.

 Y = Display the full year.

 Z = Time zone .

 To change the format :

 Syntax :

 $date „+%H-%M-%S‟

2.Calender Command :

 This command is used to display the calendar of the year or the particular month of

calendar year.

Syntax :

 a.$cal <year>

 b.$cal <month> <year>

 Here the first syntax gives the entire calendar for given year & the second Syntax gives

the calendar of reserved month of that year.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 5

3.Echo Command :

 This command is used to print the arguments on the screen .

 Syntax : $echo <text>

 Multi line echo command :

To have the output in the same line , the following commands can be used.

 Syntax : $echo <text\>text

 To have the output in different line, the following command can be used.

 Syntax : $echo “text

 >line2

 >line3”

4.Banner Command :

 It is used to display the arguments in „#‟ symbol .

 Syntax : $banner <arguments>

5.’who’ Command :

 It is used to display who are the users connected to our computer currently.

 Syntax : $who – option‟s

 Options : -

 H–Display the output with headers.

 b–Display the last booting date or time or when the system was lastely rebooted.

6.’who am i’ Command :

 Display the details of the current working directory.

 Syntax : $who am i

7.’tty’ Command :

 It will display the terminal name.

 Syntax : $tty

8.’Binary’ Calculator Command :

 It will change the „$‟ mode and in the new mode, arithematic operations such as +,-

,*,/,%,n,sqrt(),length(),=, etc can be performed . This command is used to go to the binary

calculus mode.

 Syntax :

 $bc operations

 ^d

 $

 1 base –inputbase

 0 base – outputbase are used for base conversions.

 Base :

 Decimal = 1 Binary = 2 Octal = 8 Hexa = 16

9.’CLEAR’ Command :

It is used to clear the screen.

 Syntax : $clear

10.’MAN’ Command :

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 6

It help us to know about the particular command and its options & working. It is like

„help‟ command in windows .

 Syntax : $man <command name>

11.MANIPULATION Command :

 It is used to manipulate the screen.

 Syntax : $tput <argument>

 Arguments :

 1.Clear – to clear the screen.

 2.Longname – Display the complete name of the terminal.

 3.SMSO – background become white and foreground become black color.

 4.rmso – background become black and foreground becomes white color.

 5.Cop R C – Move to the cursor position to the specified location.

 6.Cols – Display the number of columns in our terminals.

12.LIST Command :

 It is used to list all the contents in the current working directory.

 Syntax : $ ls – options <arguments>

If the command does not contain any argument means it is working in the

Current directory.

 Options :

 a– used to list all the files including the hidden files.

 c– list all the files columnwise.

 d- list all the directories.

 m- list the files separated by commas.

 p- list files include „/‟ to all the directories.

 r- list the files in reverse alphabetical order.

 f- list the files based on the list modification date.

 x-list in column wise sorted order.

DIRECTORY RELATED COMMANDS :

1.Present Working Directory Command :

 To print the complete path of the current working directory.

 Syntax : $pwd

2.MKDIR Command :

 To create or make a new directory in a current directory .

 Syntax : $mkdir <directory name>

3.CD Command :

 To change or move the directory to the mentioned directory .

 Syntax : $cd <directory name.

4.RMDIR Command :

 To remove a directory in the current directory & not the current directory itself.

 Syntax : $rmdir <directory name>

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 7

FILE RELATED COMMANDS :

1.CREATE A FILE :

 To create a new file in the current directory we use CAT command.

Syntax :

 $cat > <filename.

 The > symbol is redirectory we use cat command.

2.DISPLAY A FILE :

 To display the content of file mentioned we use CAT command without „>‟ operator.

 Syntax :

 $cat <filename.

 Options –s = to neglect the warning /error message.

3.COPYING CONTENTS :

 To copy the content of one file with another. If file doesnot exist, a new file is created

and if the file exists with some data then it is overwritten.

 Syntax :

 $ cat <filename source> >> <destination filename>

 $ cat <source filename> >> <destination filename> it is avoid

overwriting.

 Options : -

 -n content of file with numbers included with blank lines.

 Syntax :

 $cat –n <filename>

4.SORTING A FILE :

 To sort the contents in alphabetical order in reverse order.

 Syntax :

 $sort <filename >

 Option : $ sort –r <filename>

5.COPYING CONTENTS FROM ONE FILE TO ANOTHER :

 To copy the contents from source to destination file . so that both contents are same.

 Syntax :

 $cp <source filename> <destination filename>

 $cp <source filename path > <destination filename path>

6.MOVE Command :

 To completely move the contents from source file to destination file and to remove the

source file.

 Syntax :

 $ mv <source filename> <destination filename>

7.REMOVE Command :

 To permanently remove the file we use this command .

 Syntax :

 $rm <filename>

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 8

8.WORD Command :

 To list the content count of no of lines , words, characters .

 Syntax :

 $wc<filename>

 Options :

 -c – to display no of characters.

 -l – to display only the lines.

 -w – to display the no of words.

9.LINE PRINTER :

 To print the line through the printer, we use lp command.

 Syntax :

 $lp <filename>

10.PAGE Command :

 This command is used to display the contents of the file page wise & next page can be

viewed by pressing the enter key.

 Syntax :

 $pg <filename>

11. FILTERS AND PIPES

HEAD : It is used to display the top ten lines of file.

 Syntax: $head<filename>

TAIL : This command is used to display the last ten lines of file.

 Syntax: $tail<filename>

PAGE : This command shows the page by page a screenfull of information is displayed after

which the page command displays a prompt and passes for the user to strike the enter key to

continue scrolling.

 Syntax: $ls –a\p

MORE : It also displays the file page by page .To continue scrolling with more command ,

press the space bar key.

 Syntax: $more<filename>

GREP :This command is used to search and print the specified patterns from the file.

 Syntax: $grep [option] pattern <filename>

SORT : This command is used to sort the datas in some order.

 Syntax: $sort<filename>

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 9

PIPE : It is a mechanism by which the output of one command can be channeled into the input

of another command.

 Syntax: $who | wc-l

TR :The tr filter is used to translate one set of characters from the standard inputs to another.

 Syntax: $tr “[a-z]” “[A-Z]”

COMMUNICATION THROUGH UNIX COMMANDS

MESG

 Description: The message command is used to give permission to other users to send

message to your terminal.

 Syntax: $mesg y

2.Command: WRITE

 Description: This command is used to communicate with other users, who are logged in at

the same time.

Syntax: $write <user name>

 3.Command: WALL

 Description: This command sends message to all users those who are logged in using the

unix server.

Syntax: $wall <message>

 4.Command: MAIL

Description: It refers to textual information, that can be transferred from one user to

another

Syntax: $mail <user name>

 5.Command: REPLY

 Description: It is used to send reply to specified user.

 Syntax: $reply<user name>

RESULT:

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 10

EX.NO :1.b vi EDITOR COMMANDS

DATE :

AIM :

 To study the various commands operated in vi editor in UNIX.

DESCRIPTION :

 The Vi editor is a visual editor used to create and edit text, files, documents and

programs. It displays the content of files on the screen and allows a user to add, delete or

change part of text . There are three modes available in the Vi editor , they are

 1.Command mode

 2.Input (or) insert mode.

Starting Vi :

 The Vi editor is invoked by giving the following commands in UNIX prompt.

 Syntax : $vi <filename> (or)

 $vi

 This command would open a display screen with 25 lines and with tilt (~) symbol at the

start of each line. The first syntax would save the file in the filename mentioned and for the

next the filename must be mentioned at the end.

Options :

 1.vi +n <filename> - this would point at the nth line (cursor pos).

2.vi –n <filename> - This command is to make the file to read only to change

from one mode to another press escape key.

INSERTING AND REPLACING COMMANDS :

 To move editor from command node to edit mode, you have to press the <ESC> key.

For inserting and replacing the following commands are used.

1.ESC a Command :

 This command is used to move the edit mode and start to append after the current

character.

 Syntax : <ESC> a

2.ESC A COMMAND :

 This command is also used to append the file , but this command append at the end of

current line.

 Syntax : <ESC> A

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 11

3.ESC i Command :

 This command is used to insert the text before the current cursor position.

 Syntax : <ESC> i

4.ESC I Command :

 This command is used to insert at the beginning of the current line.

 Syntax : <ESC> I

5.ESC o Command :

 This command is insert a blank line below the current line & allow insertion of

contents.

 Syntax : <ESC> o

6.ESC O Command :

 This command is used to insert a blank line above & allow insertion of contents.

 Syntax : <ESC> O

7.ESC r Command :

 This command is to replace the particular character with the given characters.

 Syntax : <ESC> rx Where x is the new character.

8.ESC R Command :

 This command is used to replace the particular text with a given text.

Syntax : <ESC> R text

9.<ESC> s Command :

 This command replaces a single character with a group of character .

 Syntax : <ESC> s

10.<ESC> S Command :

 This command is used to replace a current line with group of characters.

 Syntax : <ESC> S

CURSOR MOVEMENT IN vi :

1.<ESC> h :

 This command is used to move to the previous character typed. It is used to move to

left of the text . It can also used to move character by character (or) a number of characters.

 Syntax : <ESC> h – to move one character to left.

 <ESC> nh – tomove „n‟ character to left.

2.<ESC> l :

 This command is used to move to the right of the cursor (ie) to the next character. It can

also be used to move the cursor for a number of character.

 Syntax : <ESC> l – single character to right.

 <ESC> nl - „n‟ characters to right.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 12

3.<ESC> j :

 This command is used to move down a single line or a number of lines.

 Syntax :

 <ESC> j – single down movement.

 <ESC> nj – „n‟ times down movement.

4.<ESC> k :

 This command is used to move up a single line or a number of lines.

Syntax :

 <ESC> k – single line above.

 <ESC> nk – „n‟ lines above.

5.ENTER (OR) N ENTER :

 This command will move the cursor to the starting of next lines or a group of lines

mentioned.

 Syntax :

 <ESC> enter <ESC> n enter.

6.<ESC> + Command :

 This command is used to move to the beginning of the next line.

 Syntax :

 <ESC> + <ESC> n+

7.<ESC> - Command :

 This command is used to move to the beginning of the previous line.

 Syntax :

 <ESC> - <ESC> n-

8.<ESC> 0 :

This command will bring the cursor to the beginning of the same current line.

 Syntax :

 <ESC> 0

9.<ESC> $:

This command will bring the cursor to the end of the current line.

 Syntax :

 <ESC> $

10.<ESC> ^ :

 This command is used to move to first character of first lines.

Syntax :

 <ESC> ^

11.<ESC> b Command :

 This command is used to move back to the previous word (or) a number of words.

Syntax :

 <ESC> b <ESC>nb

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 13

12.<ESC> e Command :

 This command is used to move towards and replace the cursor at last character of the

word (or) no of words.

 Syntax :

 <ESC> e <ESC>ne

13.<ESC> w Command :

 This command is used to move forward by a single word or a group of words.

 Syntax :

 <ESC> w <ESC> nw

DELETING THE TEXT FROM Vi :

1.<ESC> x Command :

 To delete a character to right of current cursor positions , this command is used.

 Syntax :

 <ESC> x <ESC> nx

2.<ESC> X Command :

 To delete a character to left of current cursor positions , this command is used.

 Syntax :

 <ESC> X <ESC> nX

3.<ESC> dw Command :

 This command is to delete a single word or number of words to right of current cursor

position.

 Syntax :

 <ESC> dw <ESC> ndw

4.db Command :

 This command is to delete a single word to the left of the current cursor position.

 Syntax :

 <ESC> db <ESC> ndb

5.<ESC> dd Command :

 This command is used to delete the current line (or) a number of line below the current

line.

Syntax :
<ESC> dd <ESC> ndd

6.<ESC> d$ Command :

 This command is used to delete the text from current cursor position to last character of

current line.

 Syntax : <ESC> d$

SAVING AND QUITING FROM vi :-

1.<ESC> w Command :

 To save the given text present in the file.

 Syntax : <ESC> : w

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 14

2.<ESC> q! Command :

 To quit the given text without saving.

 Syntax : <ESC> :q!

3.<ESC> wq Command :

 This command quits the vi editor after saving the text in the mentioned file.

 Syntax : <ESC> :wq

4.<ESC> x Command :

 This command is same as „wq‟ command it saves and quit.

 Syntax : <ESC> :x

5.<ESC> q Command :

 This command would quit the window but it would ask for again to save the file.

 Syntax : <ESC> : q

RESULT:

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 15

EX.NO :1.c UNIX SHELL PROGRAMMING COMMANDS.

DATE :

AIM :

To study about the Unix Shell Programming Commands.

INTRODUCTION :

 Shell programming is a group of commands grouped together under single filename.

After logging onto the system a prompt for input appears which is generated by a Command

String Interpreter program called the shell. The shell interprets the input, takes appropriate

action, and finally prompts for more input. The shell can be used either

interactively - enter commands at the command prompt, or as an interpreter to execute a shell

script. Shell scripts are dynamically interpreted, NOT compiled.

Common Shells.

C-Shell - csh : The default on teaching systems Good for interactive systems Inferior

programmable features

Bourne Shell - bsh or sh - also restricted shell - bsh : Sophisticated pattern matching

and file name substitution

Korn Shell : Backwards compatible with Bourne Shell Regular expression

substitution emacs editing mode

Thomas C-Shell - tcsh : Based on C-Shell Additional ability to use emacs to edit the

command line Word completion & spelling correction Identifying your

shell.

01. SHELL KEYWORDS :

echo, read, if fi, else, case, esac, for , while , do , done, until , set, unset, readonly, shift,

export, break, continue, exit, return, trap , wait, eval ,exec, ulimit , umask.

02. General things SHELL
The shbang line The "shbang" line is the very first line of the script and lets the kernel know what

shell will be interpreting the lines in the script. The shbang line consists of a #!

followed by the full pathname to the shell, and can be followed by options to

control the behavior of the shell.

EXAMPLE

#!/bin/sh

Comments Comments are descriptive material preceded by a # sign. They are in effect until

the end of a line and can be started anywhere on the line.

EXAMPLE

this text is not

interpreted by the shell

Wildcards There are some characters that are evaluated by the shell in a special way. They are

called shell metacharacters or "wildcards." These characters are neither numbers

nor letters. For example, the *, ?, and [] are used for filename expansion. The <, >,

2>, >>, and | symbols are used for standard I/O redirection and pipes. To prevent

these characters from being interpreted by the shell they must be quoted.

EXAMPLE

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 16

Filename expansion:

rm *; ls ??; cat file[1-3];

Quotes protect metacharacter:

echo "How are you?"

03. SHELL VARIABLES :

 Shell variables change during the execution of the program .The C Shell offers a

command "Set" to assign a value to a variable.

For example:

% set myname= Fred

% set myname = "Fred Bloggs"

% set age=20

A $ sign operator is used to recall the variable values.

For example:

% echo $myname will display Fred Bloggs on the screen

A @ sign can be used to assign the integer constant values.

For example:

%@myage=20

%@age1=10

%@age2=20

%@age=$age1+$age2

%echo $age

List variables
% set programming_languages= (C LISP)

% echo $programming _languages

C LISP

% set files=*.*

% set colors=(red blue green)

% echo $colors[2]

 blue

 % set colors=($colors yellow)/add to list

Local variables Local variables are in scope for the current shell. When a script ends, they

are no longer available; i.e., they go out of scope. Local variables are set and

assigned values.
 EXAMPLE

 variable_name=value

name="John Doe"

x=5

Global variables Global variables are called environment variables. They are set for the currently

running shell and any process spawned from that shell. They go out of scope when

the script ends.

 EXAMPLE

 VARIABLE_NAME=value

export VARIABLE_NAME

PATH=/bin:/usr/bin:.

export PATH

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 17

Extracting values from variables To extract the value from variables, a dollar sign is used.

 EXAMPLE

 echo $variable_name

echo $name

echo $PATH

Rules : -

 1.A variable name is any combination of alphabets, digits and an

 underscore („-„);

 2.No commas or blanks are allowed within a variable name.

 3.The first character of a variable name must either be an alphabet or an

 underscore.

 4.Variables names should be of any reasonable length.

 5.Variables name are case sensitive . That is , Name, NAME, name,

 NAme, are all different variables.

04. EXPRESSION Command :

 To perform all arithematic operations .

 Syntax :

 Var = „expr$value1‟ + $ value2‟

Arithmetic The Bourne shell does not support arithmetic. UNIX/Linux commands must

be used to perform calculations.
 EXAMPLE

 n=`expr 5 + 5`

echo $n

Operators The Bourne shell uses the built-in test command operators to test numbers and

strings.

 EXAMPLE

 Equality:

 = string

!= string

-eq number

-ne number

 Logical:

 -a and

-o or

! not

 Logical:

 AND &&

 OR ||

 Relational:

 -gt greater than

-ge greater than, equal to

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 18

-lt less than

-le less than, equal to

Arithmetic :

 +, -, *, /, %

Arguments (positional parameters) Arguments can be passed to a script from the command line.

Positional parameters are used to receive their values from within the script.

 EXAMPLE

 At the command line:

 $ scriptname arg1 arg2 arg3 ...

 In a script:

 echo $1 $2 $3 Positional parameters

echo $* All the positional paramters

echo $# The number of positional parameters

05.READ Statement :

 To get the input from the user.

 Syntax :

 read x y

 (no need of commas between variables)

06. ECHO Statement :

Similar to the output statement. To print output to the screen, the echo command is used.

Wildcards must be escaped with either a backslash or matching quotes.

 Syntax :

 Echo “String” (or) echo $ b(for variable).
EXAMPLE

echo "What is your name?"

Reading user input The read command takes a line of input from the user and assigns it to

a variable(s) on the right-hand side. The read command can accept muliple variable names.

Each variable will be assigned a word.

EXAMPLE

echo "What is your name?"

read name

read name1 name2 ...

6. CONDITIONAL STATEMENTS :
 The if construct is followed by a command. If an expression is to be tested, it is enclosed in

square brackets. The then keyword is placed after the closing parenthesis. An if must end with a fi.

Syntax :

 1.if

This is used to check a condition and if it satisfies the condition if then

does the next action , if not it goes to the else part.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 19

 2.if…else

Syntax :

 If cp $ source $ target

 Then

 Echo File copied successfully

 Else

 Echo Failed to copy the file.

 3.nested if

 here sequence of condition are checked and the corresponding

 performed accordingly.

 Syntax :

 if condition

 then

 command

 if condition

 then

 command

 else

 command

 fi

 fi

 4.case ….. esac

 This construct helps in execution of the shell script based on

 Choice.

EXAMPLE

The if construct is:

if command

then

 block of statements

fi

if [expression]

then

 block of statements

fi

The if/else/else if construct is:

if command

then

 block of statements

elif command

then

 block of statements

elif command

then

The case command construct is:

case variable_name in

 pattern1)

 statements

 ;;

 pattern2)

 statements

 ;;

 pattern3)

 ;;

 *) default value

 ;;

esac

case "$color" in

 blue)

 echo $color is blue

 ;;

 green)

 echo $color is green

 ;;

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 20

 block of statements

else

 block of statements

fi

if [expression]

then

 block of statements

elif [expression]

then

 block of statements

elif [expression]

then

 block of statements

else

 block of statements

fi

 red|orange)

 echo $color is red or orange

 ;;

 *) echo "Not a color" # default

esac

The if/else construct is:

if [expression]

then

 block of statements

else

 block of statements

fi

07. LOOPS

There are three types of loops: while, until and for. The while loop is followed by a command

or an expression enclosed in square brackets, a do keyword, a block of statements, and terminated with

the done keyword. As long as the expression is true, the body of statements between do and done will

be executed.

 The until loop is just like the while loop, except the body of the loop will be executed as long as

the expression is false.

 The for loop used to iterate through a list of words, processing a word and then shifting it off, to

process the next word. When all words have been shifted from the list, it ends. The for loop is followed

by a variable name, the in keyword, and a list of words then a block of statements, and terminates with

the done keyword.

 The loop control commands are break and continue.

EXAMPLE

while command

do

block of statements

done

while [expression]

do

block of statements

done

until command for variable in word1 word2 word3 ...

do do

block of statements block of statements

done done

until [expression]

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 21

do

 block of statements

done

until control command

do

 commands

done

08. Break Statement :

 This command is used to jump out of the loop instantly, without waiting to get the

control command.

09. ARRAYS

(positional parameters) The Bourne shell does support an array, but a word list can be created by

using positional parameters. A list of words follows the built-in set command, and

the words are accessed by position. Up to nine positions are allowed.The built-in

shift command shifts off the first word on the left-hand side of the list. The

individual words are accessed by position values starting at 1.

 EXAMPLE

 set word1 word2 word3

echo $1 $2 $3 Displays word1, word2, and word3

 set apples peaches plums

shift Shifts off apples

echo $1 Displays first element of the list

echo $2 Displays second element of the list

echo $* Displays all elements of the list

Command substitution To assign the output of a UNIX/Linux command to a variable, or use

the output of a command in a string, backquotes are used.
 EXAMPLE

 variable_name=`command`

echo $variable_name

now=`date`

echo $now

echo "Today is `date`"

10. FILE TESTING

The Bourne shell uses the test command to evaluate conditional expressions and has a built-in

set of options for testing attributes of files, such as whether it is a directory, a plain file (not a directory),

a readable file, and so forth.

EXAMPLE

-d File is a directory

-f File exists and is not a directory

–r Current user can read the file

–s File is of nonzero size

–w Current user can write to the file

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 22

–x Current user can execute the file

#!/bin/sh

1 if [–f file]

 then

 echo file exists

 fi

2 if [–d file]

 then

 echo file is a directory

 fi

3 if [-s file]

 then

 echo file is not of zero length

 fi

4 if [-r file -a -w file]

 then

 echo file is readable and writable

 fi

11. EXECUTION OF SHELL SCRIPT :

 1.By using change mode command

 2.$ chmod u + x sum.sh

 3.$ sum.sh

 or

 $ sh sum.sh

RESULT:

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 23

 SHELL PROGRAMMING

Ex.No :2a CONCATENATION OF TWO STRINGS

Date:

Aim:

 To write a shell program to concatenate two strings.

Algorithm:

Step1: Enter into the vi editor and go to the insert mode for entering the code

Step2: Read the first string.

Step3: Read the second string

Step4: Concatenate the two strings

Step5: Enter into the escape mode for the execution of the result and verify the output

Program:

 echo “enter the first string”

 read str1

 echo “enter the second string”

 read str2

 echo “the concatenated string is” $str1$str2

Sample I/P:

Enter first string: Hello

Enter first string: World

Sample O/P:

The concatenated string is HelloWorld

Result:

 Thus the shell program to concatenate two strings is executed and output is verified

successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 24

Ex.No. :2b COMPARISON OF TWO STRINGS

Date:

Aim:

 To write a shell program to compare the two strings.

Algorithm:

Step1: Enter into the vi editor and go to the insert mode for entering the code

Step2: Read the first string.

Step3: Read the second string

Step4: Compare the two strings using the if loop

Step5: If the condition satisfies then print that two strings are equal else print two

 strings are not equal.

Step6: Enter into the escape mode for the execution of the result and verify the output

Program:

 echo “enter the first string”

 read str1

 echo “enter the second string”

 read str2

 if [$str1 = $str2]

 then

 echo “strings are equal”

 else

 echo “strings are unequal”

 fi

Sample I/P:1

 Enter first string: hai

Enter second string: hai

Sample O/P:1

 The two strings are equal

Sample I/P:2

 Enter first string: hai

Enter second string: cse

Sample O/P:2

 The two strings are not equal

Result:

 Thus the shell program to compare the two strings is executed and output is verified

successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 25

Ex.No:2c MAXIMUM OF THREE NUMBERS

Date:

Aim:

 To write a shell program to find greatest of three numbers.

Algorithm:

 Step1: Declare the three variables.

 Step2: Check if A is greater than B and C.

 Step3: If so print A is greater.

 Step4: Else check if B is greater than C.

 Step5: If so print B is greater.

 Step6: Else print C is greater.

Program:

echo "enter A"

read a

echo "enter B"

read b

echo "enter C"

read c

if [$a -gt $b -a $a -gt $c]

then

echo "A is greater"

elif [$b -gt $a -a $b -gt $c]

then

echo "B is greater"

else

echo "C is greater"

fi

Sample I/P:

 Enter A:23

 Enter B:45

 Enter C:67

Sample O/P:

C is greater

Result:

 Thus the shell program to find the maximum of three numbers is executed and output is

verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 26

Ex.No:2d FIBONACCI SERIES

Date:

Aim:

 To write a shell program to generate fibonacci series.

Algorithm :

 Step 1 : Initialise a to 0 and b to 1.

 Step 2 : Print the values of 'a' and 'b'.

 Step 3 : Add the values of 'a' and 'b'. Store the added value in variable 'c'.

 Step 4 : Print the value of 'c'.

 Step 5 : Initialise 'a' to 'b' and 'b' to 'c'.

 Step 6 : Repeat the steps 3,4,5 till the value of 'a' is less than 10.

Program :

echo enter the number

read n

a=-1

b=1

i=0

while [$i –le $n]

do

t=`expr $a + $b`

echo $t

a=$b

b=$t

i=`expr $i + 1

done

Sample I/P :

Enter the no: 5

Sample O/P:

0

1

1

2

3

5

Result :

Thus the shell program to find the fibonacci series is executed and output is

verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 27

Ex.No:2e ARITHMETIC OPERATIONS USING CASE

Date:

Aim:

 To write a shell program to perform the arithmetic operations using case

Algorithm :

 Step 1 : Read the input variables and assign the value

 Step 2 : Print the various arithmetic operations which we are going to perform

 Step 3 : Using the case operator assign the various functions for the arithmetic

 operators.

 Step 4 : Check the values for all the corresponding operations.

 Step 5 : Print the result and stop the execution.

.

Program :

echo 1.Addition

echo 2.Subraction

echo 3.Multiplication

echo 4.Division

echo enter your choice

read a

echo enter the value of b

read b

echo enter the value of c

read c

echo b is $b c is $c

case $a in

1)d=`expr $b + $c`

echo the sum is $d

;;

2)d=`expr $b - $c`

echo the difference is $d

;;

3)d=`expr $b * $c`

echo the product is $d

;;

4)d=`expr $b / $c`

echo the quotient is $d

;;

esac

Sample I/P :

1.Addition

2.Subraction

3.Multiplication

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 28

Division

Enter your choice:1

Enter the value of b:3

Enter the value of c:4

b is 3 c is 4

the sum is 7

Sample O/P:

b is 3 c is 4

the sum is 7

Result :

Thus the shell program to perform arithmetic operations using case is executed and

output is verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 29

 SYSTEM CALLS
Ex.No:3a PROCESS CREATION

Date:

AIM:

 To write a program to create a process in UNIX.

ALGORITHM:

STEP 1: Start the program.

STEP 2: Declare pid as integer.

STEP 3: Create the process using Fork command.

STEP 4: Check pid is less than 0 then print error else if pid is equal to 0 then execute

 command else parent process wait for child process.

STEP 5: Stop the program.

PROGRAM:

void main()

{

 int id;

 id=fork();

 if(id<0)

 {

 Printf(“cannot create the file”);

 Exit(-1);

 }

 if(id==0)

 {

 Printf(“child process”);

 Exit(0);

 }

 else

 {

 Printf(“parent process”);

 }

}

SAMPLE OUTPUT:

 $cc pc.c

 $a.out

 parent process$ child process

 $ps

 PID CLS PRI TTY TIME COMD

 5913 TS 70 pts022 0:00 ksh

 6229 TS 59 pts022 0:00 ps

 RESULT: Thus the program was executed and verified successfully

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 30

Ex.No:3b EXECUTING A COMMAND

Date:

AIM:

 To write a program for executing a command.

ALGORITHM:

 STEP 1: Start the program.

 STEP 2: Execute the command in the shell program using exec ls.

 STEP 3: Stop the execution.

PROGRAM:

 echo Program for executing UNIX command using shell programming

 echo Welcome

 ps

 exec wc e

SAMPLE OUTPUT:

$ sh exec.sh

program for executing UNIX command using shell programming

Welcome

PID CLS PRI TTY TIME COMD

958 TS 70 pts001 0:00 ksh

971 TS 70 pts001 0:00 sh

972 TS 59 pts001 0:00 ps

3 41 81 e

RESULT:

 Thus the program was executed and verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 31

Ex.No:3c SLEEP COMMAND

Date:

AIM:

 To create child with sleep command.

ALGORITHM:

 STEP 1: Start the program.

 STEP 2: Create process using fork and assign into a variable.

 STEP 3: If the value of variable is < zero print not create and > 0 process create and

 else print child create.

 STEP 4: Create child with sleep of 2.

 STEP 5: Stop the program.

PROGRAM:

 void main()

 {

 int id=fork();

 if(id==-1)

 {

 printf(“cannot create the file”);

 exit(1);

 }

 else if(id==0)

 {

 sleep(2);

 printf(“this is child process”);

 }

 else

 {

 printf(“parent process”);

 exit(1);

 }

}

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 32

OUTPUT:

 $ cc sleep.c

 $ a.out

 parent process$ this is child process

RESULT:

 Thus the program was executed and verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 33

Ex.No:3d SLEEP COMMAND USING GETPID

Date:

AIM:

 To create child with sleep command using getpid.

ALGORITHM:

 STEP 1: Start the execution and create a process using fork() command.

 STEP 2: Make the parent process to sleep for 10 seconds.

 STEP 3:In the child process print it pid and it corresponding pid.

 STEP 4: Make the child process to sleep for 5 seconds.

 STEP 5: Again print it pid and it parent pid.

 STEP 6: After making the sleep for the parent process for 10 seconds print it pid.

 STEP 7: Stop the execution.

PROGRAM:

 void main()

 {

 int pid;

 pid=fork();

 if (pid==0)

 {

 printf(“\n Child Process\n”);

 printf(“\n Child Process id is %d ”,getpid());

 printf(“\n Its parent process id is %d”,getppid());

 sleep(5);

 printf(“Child process after sleep=5\n”);

 printf(“\n Child Process id is %d ”,getpid());

 printf(“\n Its parent process id is %d”,getppid());

 }

 else

 {

 printf(“\nParent process”);

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 34

 sleep(10);

 printf(“\n Child Process id is %d ”,getpid());

 printf(“\n Its parent process id is %d”,getppid());

 printf(“\nParent terminates\n”);

 }

}

OUTPUT:

 $ cc sleepid.c

 $ a.out

 parent process

 child process

 child process id is 12691

 its parent process id is 12690

 child process after sleep=5

 child process id is 12691

 its parent process id is 12690

 child process after sleep=10

 child id is 12690

 parent id is 11383

 parent terminates

 $

RESULT:

 Thus the program was executed and verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 35

Ex.No:3e SIGNAL HANDLING

Date:

AIM:

 To write a program for signal handling in UNIX.

ALGORITHM:

 STEP 1:start the program

 STEP 2:Read the value of pid.

 STEP 3:Kill the command surely using kill-9 pid.

 STEP 4:Stop the program.

PROGRAM:

 echo program for performing KILL operations

 ps

 echo enter the pid

 read pid

 kill-9 $pid

 echo finished

OUTPUT:

 $sh kill.sh

program for performing KILL operations

 PID CLS PRI TTY TIME COMD

 858 TS 70 pts001 0:00 ksh

 858 TS 70 pts001 0:00 sh

 858 TS 59 pts001 0:00 ps

enter the pid

872

killed

 $sh kill.sh

program for performing KILL operations

 PID CLS PRI TTY TIME COMD

 858 TS 70 pts001 0:00 ksh

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 36

 858 TS 70 pts001 0:00 sh

 858 TS 59 pts001 0:00 ps

enter the pid

876

UX:kill(kill.sh):ERROR: no such proccess

 $sh kill.sh

program for performing KILL operations

 PID CLS PRI TTY TIME COMD

 858 TS 70 pts001 0:00 ksh

 858 TS 70 pts001 0:00 sh

 858 TS 59 pts001 0:00 ps

enter the pid

858

finished

RESULT:

 Thus the program was executed and verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 37

Ex.No:3f WAIT COMMAND

Date:

AIM:

 To perform wait command using c program.

ALGORITHM:

 STEP 1:Start the execution

 STEP 2:Create process using fork and assign it to a variable

 STEP 3:Check for the condition pid is equal to 0

 STEP 4:If it is true print the value of i and teriminate the child process

 STEP 5:If it is not a parent process has to wait until the child teriminate

 STEP 6:Stop the execution

PROGRAM:

 int i=10;

 void main()

 {

 int pid=fork();

 if(pid==0)

 {

 printf(“initial value of i %d \n “,i);

 i+=10;

 printf(“value of i %d \n “,i);

 printf(“child terminated \n”);

 }

 else

 {

 wait(0);

 printf(“value of i in parent process %d”,i);

 }

 }

OUTPUT:

 $cc wait.c

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 38

 $a.out

 initial value of i 10

 value of i 20

 child teriminated

 value of i in parent process 10$

RESULT:

 Thus the program was executed and verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 39

ExNo:4a READING FROM A FILE

Date:

AIM:

 To create the file,read data from the file,update the file.

ALGORITHM:

 1.Get the data from the user.

 2.Open a file.

 3.Read from the file.

 4.Close the file.

PROGRAM:

#include<stdio.h>

int main()

{

 char str[100];

FILE *fp;

fp=fopen("file1.dat","r");

while(!feof(fp))

{

fscanf(fp,"%s",str);

printf(" %s ",str);

}

 fclose(fp);

}

OUTPUT:

$ vi read1.c

$gcc read1.c

$./a.out

 hai this is a program to read the content of the file.

RESULT:

 Thus C program to write data into a file was executed successfully

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 40

ExNo:4b WRITING INTO A FILE

Date

AIM:

 To write a C program to write the data into a file.

ALGORITHM:

Step1.Get the data from the user.

Step2.Open a file.

Step3.Write the data from the file.

Step4.Get the data and update the file.

PROGRAM:

#include<stdio.h>

int main()

{

char str[100];

FILE *fp;

printf("Enter the string");

gets(str);

fp=fopen("file1.dat","w+");

while(!feof(fp))

{

fscanf(fp,"%s",str);

}

fprintf(fp,"%s",str);

}

OUTPUT:

$ gcc write.c

$./a.out

Enter the string: os lab

$vi file1.dat

 os lab

RESULT:

 Thus C program to write data into a file was executed successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 41

ExNo:4c FILE CREATION

Date:

AIM:

 To write a C program to create a file.

ALGORITHM:

 Step1:Start the program.

Step2:Create the file using create function and assign a variable to it.

Step3:If the value of the variable is less then print file cannot be created ,otherwise

print file is created.

Step4:Stop the program.

PROGRAM:

void main()

{

 int id;

if(id=creat(“z.txt”,0)==-1)

{

printf(“cannot create the file”);

exit(1);

}

else

{

 printf(“file is created”);

 exit(1);

}

}

OUTPUT:

$ cc fc.c

$ a.out

file is created $

RESULT:

 Thus the C program to create a file was executed successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 42

Ex. No:5a IMPLEMENTATION OF ls COMMAND

Date:

AIM:
 To write a C program to simulate the operation of “ls” command in Unix.

ALGORITHM:

1. Check if the number of command line arguments is less than 2. If yes,

Print error and exit.

2. Check if the second argument (i.e. directory to be listed) is valid or not. If not then

exit.

3. Print the content of the directory till it becomes NULL.

4. Close the directory entry file.

PROGRAM:

#include<stdio.h>

#include<sys/types.h>

#include<dirent.h>

main(int argc, char *argv[])

{

 DIR *dp;

 struct dirent *dirp;

 if(argc<2)

 {

 printf("\n You have provided only 1 argument\n");

 exit(1);

 }

 if((dp=opendir(argv[1]))==NULL)

 {

 printf("\nCannot open %s file!\n",argv[1]);

 exit(1);

 }

 while((dirp=readdir(dp))!=NULL)

 printf("%s\n",dirp->d_name);

 closedir(dp);

}

OUTPUT:

[root@lab1cab01 orbit]# gcc lsdemo.c

[root@lab1cab01 orbit]# ./a.out

You have provided only 1 argument

[root@lab1cab01 orbit]# ./a.out /xyz/foo

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 43

Cannot open /xyz/foo file!

[root@lab1cab01 orbit]# ./a.out /root

[root@lab1cab01 orbit]# ./a.out /tmp/orbit

.

..

sem.c

first.c

best.c

a.out

lsdemo.c

roundrobin.c

bestop.doc

firstop.doc

roundrobin.doc

[root@lab1cab01 orbit]#

RESULT:

Thus the program for implementing the ls command was executed and the output was

verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 44

ExNo:6a FIRST COME FIRST SERVE

Date :

AIM:

 To write a C program to implement the CPU scheduling algorithm for FIRST

COME FIRST SERVE.

PROBLEM DESCRIPTION:

 Cpu scheduler will decide which process should be given the CPU for its execution.For this

it use different algorithm to choose among the process. one among that algorithm is fcfs

algorithm.

 In this algorithm the process which arrive first is given the cpu after finishing its request

only it will allow cpu to execute other process.

ALGORITHM:

 Step1: Create the number of process.

 Step2: Get the ID and Service time for each process.

 Step3: Initially, Waiting time of first process is zero and Total time for the first

 process is the starting time of that process.

 Step4: Calculate the Total time and Processing time for the remaining processes.

 Step5: Waiting time of one process is the Total time of the previous process.

 Step6: Total time of process is calculated by adding Waiting time and Service time.

 Step7: Total waiting time is calculated by adding the waiting time for lack process.

 Step8: Total turn around time is calculated by adding all total time of each process.

 Step9: Calculate Average waiting time by dividing the total waiting time by total

 number of process.

 Step10: Calculate Average turn around time by dividing the total time by the

 number of process.

 Step11: Display the result.

PROGRAM

#include<stdio.h>

struct process

{

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 45

int id,wait,ser,tottime;

}p[20];

main()

{

 int i,n,j,totalwait=0,totalser=0,avturn,avwait;

 printf("enter number of process");

 scanf("%d",&n);

 for(i=1;i<=n;i++)

 {

 printf("enter process_id");

 scanf("%d",&p[i].id);

 printf("enter process service time");

 scanf("%d",&p[i].ser);

 }

 p[1].wait=0;

 p[1].tottime=p[1].ser;

 for(i=2;i<=n;i++)

 {

 for(j=1;j<i;j++)

 {

 p[i].wait=p[i].wait+p[j].ser;

 }

 totalwait=totalwait+p[i].wait;

 p[i].tottime=p[i].wait+p[i].ser;

 totalser=totalser+p[i].tottime;

 }

 avturn=totalser/n;

 avwait=totalwait/n;

 printf("Id\tservice\twait\ttotal");

 for(i=1;i<=n;i++)

 {

 printf("\n%d\t%d\t%d\t%d\n",p[i].id,p[i].ser,p[i].wait,p[i].tottime);

 }

 printf("average waiting time %d\n",avwait);

 printf("average turnaround time %d\n",avturn);

}

OUTPUT

[admin@lab1cab5 admin]$ gcc fcfs.c

[admin@lab1cab5 admin]$./a.out

enter number of process4

enter process_id901

enter process service time4

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 46

enter process_id902

enter process service time3

enter process_id903

enter process service time5

enter process_id904

enter process service time2

Id service wait total

901 4 0 4

902 3 4 7

903 5 7 12

904 2 12 14

average waiting time 5

average turnaround time 8

RESULT:

 Thus the C program to implement CPU scheduling algorithm for first come first

serve was executed successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 47

ExNo:6b SHORTEST JOB FIRST

Date :

AIM:

 To write a C program to implement the CPU scheduling algorithm for Shortest job

first.

PROBLEM DESCRIPTION:

Cpu scheduler will decide which process should be given the CPU for its execution.

For this it use different algorithm to choose among the process. one among that algorithm is sjf

algorithm.

 In this algorithm the process which has less service time given the cpu after finishing its

request only it will allow cpu to execute next other process.

ALGORITHM:

 Step1:Get the number of process.

 Step2:Get the id and service time for each process.

 Step3:Initially the waiting time of first short process as 0 and total time of first

 short is process the service time of that process.

 Step4:Calculate the total time and waiting time of remaining process.

 Step5:Waiting time of one process is the total time of the previous process.

 Step6:Total time of process is calculated by adding the waiting time and service

 time of each process.

 Step7:Total waiting time calculated by adding the waiting time of each process.

 Step8:Total turn around time calculated by adding all total time of each process.

 Step9:calculate average waiting time by dividing the total waiting time by total

 number of process.

 Step10:Calculate average turn around time by dividing the total waiting time by

 total number of process.

 Step11:Display the result.

PROGRAM:

#include<stdio.h>

struct ff

{

int pid,ser,wait;

}p[20];

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 48

struct ff tmp;

main()

{

int i,n,j,tot=0,avwait,totwait=0,tturn=0,aturn;

printf("enter the number of process");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("enter process id");

scanf("%d",&p[i]);

printf("enter service time");

scanf("%d",&p[i].ser);

p[i].wait=0;

}

for(i=0;i<n-1;i++)

{

for(j=i+1;j<n;j++)

{

if(p[i].ser>p[j].ser)

{

tmp=p[i];

p[i]=p[j];

p[j]=tmp;

}

}

}

printf("PID\tSER\tWAIT\tTOT\n");

for(i=0;i<n;i++)

{

tot=tot+p[i].ser;

tturn=tturn+tot;

p[i+1].wait=tot;

totwait=totwait+p[i].wait;

printf("%d\t%d\t%d\t%d\n",p[i].pid,p[i].ser,p[i].wait,tot);

}

avwait=totwait/n;

aturn=tturn/n;

printf("TOTAL WAITING TIME :%d\n",totwait);

printf("AVERAGE WAITING TIME : %d\n",avwait);

printf("TOTAL TURNAROUND TIME :%d\n",tturn);

printf("AVERAGE TURNAROUND TIME:%d\n",aturn);

}

OUTPUT :

[root@lab1cab5 home]# ./a.out

enter the number of process4

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 49

enter process id701

enter service time6

enter process id702

enter service time4

enter process id703

enter service time8

enter process id704

enter service time1

PID SER WAIT TOT

704 1 0 1

702 4 1 5

701 6 5 11

703 8 11 19

TOTAL WAITING TIME :17

AVERAGE WAITING TIME : 4

TOTAL TURNAROUND TIME :36

AVERAGE TURNAROUND TIME:9

Result:

 Thus the C program to implement the CPU scheduling algorithm for shortest job first

was executed successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 50

Ex.No :7a ROUND ROBIN

Date:

AIM :

 To write a C program to simulate the CPU scheduling algorithm for round robin

PROBLEM DESCRIPTION:

 CPU scheduler will decide which process should be given the CPU for its execution .For

this it use different algorithm to choose among the process .one among that algorithm is Round

robin algorithm.

 In this algorithm we are assigning some time slice .The process is allocated according to

the time slice ,if the process service time is less than the time slice then process itself will

release the CPU voluntarily .The scheduler will then proceed to the next process in the ready

queue .If the CPU burst of the currently running process is longer than time quantum ,the timer

will go off and will cause an interrupt to the operating system .A context switch will be

executed and the process will be put at the tail of the ready queue.

ALGORITHM:

Step 1: Initialize all the structure elements

Step 2: Receive inputs from the user to fill process id,burst time and arrival time.

Step 3: Calculate the waiting time for all the process id.

 i) The waiting time for first instance of a process is calculated as:

 a[i].waittime=count + a[i].arrivt

 ii) The waiting time for the rest of the instances of the process is

 calculated as:

a) If the time quantum is greater than the remaining burst time then

waiting time is calculated as:

 a[i].waittime=count + tq

 b) Else if the time quantum is greater than the remaining burst

 time then waiting time is calculated as:

 a[i].waittime=count - remaining burst time

Step 4: Calculate the average waiting time and average turnaround time

Step 5: Print the results of the step 4.

PROGRAM

/*

 This program has assumed that the inputs are given in ordered fashion according to their

arrival times.

*/

struct roundRobin

{

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 51

 int pburst,pburst1,wtime,endtime,arrivt,boolean,flagcntl;

 char pname[5];

}a[5];

int n,tq;

void input();

void initialize();

void calculate();

void display_waittime();

int main()

{

 input();

 initialize();

 calculate();

 display_waittime();

 //getch();

 //return 0;

}

void input()

{ int i;

 printf("Enter Total no. of processes\n");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf("Enter process name:");

 scanf("%s",&a[i].pname);

 printf("Enter process burst time:");

 scanf("%d",&a[i].pburst);

 printf("Enter process arrival time:");

 scanf("%d",&a[i].arrivt);

 }

 printf("\nEnter the time quantum/Time Slice:");

 scanf("%d",&tq);

}

void initialize()

{ int i;

 for(i=0;i<n;i++)

 {

 a[i].pburst1=a[i].pburst;

 a[i].wtime=0;

 a[i].endtime=0;

 a[i].boolean=0;

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 52

 a[i].flagcntl=0;

 }

}

void calculate()

{ int i,j=0,k=0,flag=1,count=0;

 printf("\n---GANTT CHART---\n");

 printf("0 | ");

 while(flag)

 {

 for(i=0;i<n;i++)

 {

 if((k<n)&&(a[i].arrivt<=count)&&(a[i].flagcntl==0)) //calculating waiting time for first

time

 {

 a[i].wtime=count-a[i].arrivt;

 a[i].endtime=count;

 a[i].boolean=1;

 a[i].flagcntl=1;

 k++;

 }

 if((a[i].pburst1>tq)&&(a[i].arrivt<=count))

 {

 if(a[i].boolean==1)

 a[i].boolean=0;

 else

 a[i].wtime=a[i].wtime+(count-a[i].endtime);

 count=count+tq;

 a[i].pburst1=a[i].pburst1-tq;

 a[i].endtime=count;

 printf("%d %s| ",count,a[i].pname);

 }

 else if((a[i].pburst1>0) && (a[i].pburst1<=tq) && (a[i].arrivt<=count))

 {

 if(a[i].boolean==1)

 a[i].boolean=0;

 else

 a[i].wtime=a[i].wtime+(count-a[i].endtime);

 count=count+a[i].pburst1;

 a[i].endtime=count;

 printf("%d %s| ",count,a[i].pname);

 a[i].pburst1=0;

 j++;

 }

 else if(j==n) flag=0;

 }//end of for loop

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 53

 }//end of while loop

}

void display_waittime()

{ int i,tot=0,turn=0;

 for(i=0;i<n;i++)

 {

 printf("\n\nWaiting time for Process %s is %d",a[i].pname,a[i].wtime);

 tot=tot+a[i].wtime;

 turn=turn+a[i].endtime-a[i].arrivt;

 }

 printf("\n\n\tAverage waiting time=%f",(float)tot/(float)n);

 printf("\n\tAverage turnaround time=%f\n",(float)turn/(float)n);

}

OUTPUT:

[root@lab1cab7 orbit]# gcc roundrobin.c

[root@lab1cab7 orbit]# ./a.out

Enter Total no. of processes

3

Enter process name:A

Enter process burst time:4

Enter process arrival time:0

Enter process name:B

Enter process burst time:3

Enter process arrival time:3

Enter process name:C

Enter process burst time:2

Enter process arrival time:3

Enter the time quantum/Time Slice:2

---GANTT CHART---

0 | 2 A| 4 A| 6 B| 8 C| 9 B|

Waiting time for Process A is 0

Waiting time for Process B is 3

Waiting time for Process C is 3

 Average waiting time=2.000000

 Average turnaround time=5.000000

[root@lab1cab7 orbit]#

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 54

RESULT:

 Thus the C program to simulate CPU scheduling algorithm for round robin was

executed successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 55

ExNo:7b PRIORITY SCHEDULING

Date:

AIM:

 To write a C program to implement CPU scheduling algorithm for priority

scheduling.

PROBLEM DESCRIPTION:

 Cpu scheduler will decide which process should be given the CPU for its execution.For this

it use different algorithm to choose among the process. one among that algorithm is fcfs

algorithm.

 In this algorithm the process which arrive first is given the cpu after finishing its request

only it will allow cpu to execute other process.

ALGORITHM:

 Step1:Get the number of process,burst time and priority.

 Step2:Using for loopi=0 to n-1 do step 1 to 6.

 Step3:If i=0,wait time=0,T[0]=b[0];

 Step4:T[i]=T[i-1]+b[i] and wt[i]=T[i]-b[i].

 Step5: Total waiting time is calculated by adding the waiting time for lack process.

 Step6: Total turn around time is calculated by adding all total time of each process.

 Step7: Calculate Average waiting time by dividing the total waiting time by total numberof

process.

 Step8: Calculate Average turn around time by dividing the total time by the number of

process.

 Step9: Display the result.

PROGRAM:

void main()

{

 int i,j,n,t,turn[20],burst[20],p[20],wt[20],c[20];

 float await,aturn,twait=0,tturn=0;

 printf(“\nEnter the value of n:”);

scanf(“%d”,&n);

printf(“\n Enter the process no burst and arrivaltime”);

for(i=0;i<n;i++)

{

 scanf(“%d”,&c[i]);

 scanf(“%d”,&burst[i]);

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 56

 scanf(“%d”,&p[i]);

}

for(i=0;i<n;i++)

 for(j=i+1;j<n;j++)

 {

 if(p[i]>p[j])

 {

 t=p[i];

 p[i]=p[j];

 p[j]=t;

 t=burst[i];

 burst[i]=burst[j];

 burst[j]=t;

 t=c[i];

 c[i]=c[j];

 c[j]=t;

 }

 }

for(i=0;i<n;i++)

{

 if(i==0)

 {

 wt[i]=0;

 turn[i]=burst[i];

 }

}

else

{

 turn[i]=turn[i-1]+burst[i];

 wt[i]=turn[i]-burst[i];

 twait=twait+wt[i];

 tturn=tturn+turn[i];

}

await=twait/n;

aturn=tturn/n;

printf(“pno\tbtime\tatime\twtime\tttime”);

for(i=0;i<n;i++)

{

 printf(“\n%d\t%d\t%d\t%d\t%d\n”,c[i],burst[i],p[i],wt[i],turn[i]);

}

printf(“\n The average waiting time is:%f”,await);

printf(“\n The average turn around time is:%f”,aturn);

}

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 57

OUTPUT:

$$ cc ps.c

$a.out

Enter the process burst no and priority

1 15 2

2 5 1

3 10 3

pno btime priority wtime ttime

2 5 1 0 5

1 15 2 5 20

3 10 3 20 30

The average waiting time is :8.333333

The average turn around time is:18.333334

RESULT:
 Thus C program to implement CPU scheduling algorithm for priority scheduling

was executed successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 58

ExNo:8 PRODUCER CONSUMER PROBLEM USING SEMAPHORE

Date :

AIM:

 To write a C program to implement the Producer & consumer Problem (Semaphore)

ALGORITHM:

Step 1: The Semaphore mutex, full & empty are initialized.

Step 2: In the case of producer process

i) Produce an item in to temporary variable.

ii) If there is empty space in the buffer check the mutex value for enter into the critical

section.

iii) If the mutex value is 0, allow the producer to add value in the temporary variable to the

buffer.

Step 3: In the case of consumer process

i) It should wait if the buffer is empty

ii) If there is any item in the buffer check for mutex value, if the mutex==0, remove item

from buffer

iii) Signal the mutex value and reduce the empty value by 1.

iv) Consume the item.

Step 4: Print the result

PROGRAM :

#define BUFFERSIZE 10

int mutex,n,empty,full=0,item,item1;

int buffer[20];

int in=0,out=0,mutex=1;

void wait(int s)

{

 while(s<0)

 {

printf(“\nCannot add an item\n”);

exit(0);

 }

 s--;

}

void signal(int s)

{

 s++;

}

void producer()

{

 do

 {

 wait (empty);

 wait(mutex);

 printf(“\nEnter an item:”);

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 59

 scanf(“%d”,&item);

 buffer[in]=item;

 in=in+1;

 signal(mutex);

 signal(full);

 }

while(in<n);

}

void consumer()

{

 do

{

 wait(full);

 wait(mutex);

 item1=buffer[out];

 printf(“\nConsumed item =%d”,item1);

 out=out+1;

 signal(mutex);

 signal(empty);

 }

 while(out<n);

}

 void main()

{

 printf(“Enter the value of n:”);

scanf(“%d “,&n);

empty=n;

while(in<n)

producer();

while(in!=out)

consumer();

}

OUTPUT:

 $ cc prco.c

 $ a.out

Enter the value of n :3

Enter the item:2

Enter the item:5

Enter the item:9

consumed item=2

consumed item=5

consumed item=9

$

 RESULT:

Thus the program for solving producer and consumer problem using semaphore was executed

successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 60

Ex.No:9 MEMORY MANAGEMENT SCHEME- PAGING

Date:

AIM:

 To write a C program to implement memory management using paging technique.

ALGORITHM:

 Step1 : Start the program.

 Step2 : Read the base address, page size, number of pages and memory unit.

 Step3 : If the memory limit is less than the base address display the memory

 limit is less than limit.

Step4 : Create the page table with the number of pages and page address.

 Step5 : Read the page number and displacement value.

 Step6 : If the page number and displacement value is valid, add the displacement

value with the address corresponding to the page number and display the

result.

Step7 : Display the page is not found or displacement should be less than page

 size.

Step8 : Stop the program.

PROGRAM:

#include<stdio.h>

#include<unistd.h>

void main()

{

 int b[20],n,i,pa,p,a,d;

printf(“\nProgram for paging”);

scanf(“%d”,&n);

printf(“\nEnter the base address:”);

for(i=0;i<n;i++)

{

 scanf(“%d”,&b[i]);

}

printf(“\nEnter the logical address:”);

scanf(“%d”,&p);

for(i=0;i<n;i++)

{

 if(i==p)

{

 pa=b[i]+d;

 a=b[i];

printf(“\n\tPageNo.\t BaseAdd. PhysicalAdd. \n\t %d \t %d \t %d \t

”,p,a,pa);

}

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 61

}

printf(“\nInvalid page”);

}

Sample Input 1:

Program for paging

Enter the number of pages:2

Enter the base address:

100

150

Enter the Logical address:50

Enter the page number:1

Sample Output 1:
PageNo. BaseAdd. PhysicalAdd.

1 150 200

Sample Input 2:

Program for paging

Enter the number of pages:1

Enter the base address:

100

Enter the Logical address:2

Enter the page number:2

Sample Output 2:
Invalid page.

RESULT:

Thus the program for implementing the paging concept was executed and the output

was verified successfully.

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 62

Ex.No:10 MEMORY MANAGEMENT SCHEME-SEGMENTATION

Date:

AIM:

 To write a C program to implement memory management using segmentation

ALGORITHM:

 Step1 : Start the program.

Step2 : Read the base address, number of segments, size of each segment, memory

limit.

Step3 : If memory address is less than the base address display “invalid memory

limit”.

Step4 : Create the segment table with the segment number and segment address and

display it.

 Step5 : Read the segment number and displacement.

Step6 : If the segment number and displacement is valid compute the real address and

display the same.

 Step7 : Stop the program.

PROGRAM:

#include<stdio.h>

#include<unistd.h>

void main()

{

 int b[20],l[20],n,i,pa,s,a,d;

printf(“\nProgram for segmentation”);

printf(“\nEnter the number of segments:”);

scanf(“%d”,&n);

printf(“\nEnter the base address and limit register:”);

for(i=0;i<n;i++)

{

 scanf(“%d”,&b[i]);

 scanf(“%d”,&l[i])

}

printf(“\nEnter the logical address:”);

scanf(“%d”,&d);

for(i=0;i<n;i++)

{

 if(i==s)

 {

 if(d<l[i])

 {

 pa=b[i]+d;

 a=b[i];

Operating System Lab Manual CS 2254

@www.getitcse.tk Page 63

printf(“(“\n\tPageNo.\t BaseAdd. PhysicalAdd. \n\t %d \t %d \t

%d \t ”,s,a,pa);

exit(0);

}

else

{

 printf(“\nPage size exceeds”);

 exit(0);

}

 }

}

printf(“\nInvalid segment”);

}

Sample Input 1:

Program for segmentation

Enter the number of segments:3

Enter the base address and limit register:

100 50

150 20

130 34

Enter the Logical address:25

Enter the segment number:1

Sample Output 1:
PageNo. BaseAdd. PhysicalAdd.

2 130 155

Sample Input 2:

Program for segmentation

Enter the number of segments:2

Enter the Logical address and limit register:

100 50

150 20

Enter the logical address:25

Enter the segment number:1

Sample Output 2:

page size exceeds

RESULT:

Thus the program for implementing the segmentation concept was executed and the

output was verified successfully.

