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Abstract
The validation of autonomous driving algorithms
in simulation requires good models of human driv-
ing behavior. In this project, we explored GAIL
based imitation learning algorithms and compared
them with the rule based model. The NGSIM
dataset was used which represented a freeway US
101. Results have shown that PS-GAIL performs
significantly better and InfoRAIL performs worse
over the domain examined. In some cases, Info-
GAIL matches the performance of the PS-GAIL.
However, we hypothesize that the training time
was not long enough and that the implementation
of InfoGAIL and InfoRAIL requires more iter-
ations in comparison to PS-GAIL and RAIL as
the expert policy is a mixture of numerous expert
policies for different latent variables.

1. Introduction
One of the main challenges in the creation of autonomous
vehicles is ensuring the safety of the designed system in
simulation before any of the real world testing begins. Tak-
ing inspiration from the recent interest in robot learning
from demonstrations (Argall et al., 2009), this project aims
to use the different imitation learning approaches for the
driver behaviour modelling. The intended contributions are
twofold:

1. Compare different adversarial imitation learning al-
gorithms in the case study of driver modelling and
compare it with a rule-based method

2. Investigate whether the latent state inferencing can
help imitation performance. Latent state refers to the
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Table 1. Features of NGSIM Dataset used in the project

COLUMN NAME DESCRIPTION

VEHICLE ID VEHICLE IDENTIFICATION NUMBER
FRAME ID FRAME IDENTIFICATION NUMBER
TOTAL FRAMES TOTAL NUMBER OF FRAMES
LOCAL X VEHICLE LATERAL POSITION
LOCAL Y VEHICLE LONGITUDINAL POSITION
V. LENGTH VEHICLE LENGTH
V. WIDTH VEHICLE WIDTH
V. VELOCITY VEHICLE VELOCITY
V. ACCELERATION VEHICLE ACCELERATION
LANE ID CURRENT LANE POSITION

underlying driving style that is not directly observable
from the demonstration or policy rollout data.

1.1. Background work

The first instance of adversarial learning in driving was using
GAIL (Ho & Ermon, 2016) in single agent settings (Kuefler,
2017). Subsequently, there has been work on using GAIL in
multi-agent driving situations (Bhattacharyya et al., 2018)
and reward augmentation to provide domain knowledge to
the learning agent (Bhattacharyya et al., 2019). However,
there still remains room for improvement in driver modeling
performance as we have not reached the point of perfect
driving behavior as manifested by the presence of undesir-
able occurrences such as collisions and off the road driving
in resulting driving.

At this point, the literature seems to be scattered in multiple
directions with different approaches having been proposed.
With this project, our goals are to collect these different ap-
proaches into one cohesive study with results on multi-agent
situations benchmarked against rule based models. Simul-
taneously, we propose to investigate InfoGAIL (Li et al.,
2017) in terms of imitation performance. Our hypothesis
is that latent state inferencing provided by InfoGAIL will
enable better imitation performance. This hypothesis rests
on the assumption that the NGSIM dataset (see Dataset)
captures enough driver variation for latent state inferencing
to provide tangible benefits.
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1.2. Dataset

The dataset used in this project originated from the Next
Generation Simulation (NGSIM) program which collected
vehicle trajectories and various supporting data through a
network of synchronized digital video cameras (Colyar &
Halkias, 2007). We have focused on dataset representing
US 101 freeway (see Figure 1). The features included in the
datasets range from the position and velocity to the type of
the vehicle and the name of the freeway. Features used in
this project are described in the Table 1.

Figure 1. US 101 road from the NGSIM datasat. The length of
the analyzed road is 640 meters and it consists of five lanes, an
on-ramp and an off-ramp (Colyar & Halkias, 2007).

2. Approach
2.1. Formulation

We formulate highway driving as a sequential decision mak-
ing task, in which the driver obeys a stochastic policy that
maps observed road conditions to a probability distribution
over driving actions (Kaelbling et al., 1998; Kochenderfer,
2015). Given a dataset consisting of a sequence of state-
action tuples (st, at) demonstrating highway driving and a
class of policies πθ parameterized by θ, we adopt imitation
learning to infer this policy.

We use the multi-agent extension of Markov decision pro-
cesses adapted to the imitation learning framework (Littman,
1994). Suppose there are n agents. The state, action,
and policy of agent i are denoted si, ai, and πi, respec-
tively. The state, action, and policy of the multi-agent sys-
tem are denoted s = [s1, . . . , sn], a = [a1, . . . , an], and

π̄(s1, . . . , sn) = (π1(s1), . . . , πn(sn)). The state space
and the action space of the multi-agent system are denoted
S and A, respectively. In the remainder of this paper, we
use s and a without the subscripts to refer to the single agent
scenario. We make some simplifying assumptions to the
general Markov Games framework, which include agents
being homogeneous (every agent has the same action and
observation space), each agent getting independent rewards
(as opposed to there being a joint reward function), and the
reward function being the same for all the agents.

2.2. Problem Definition

We have compiled a set of Generative Adversarial Imitation
Learning (GAIL) based algorithms we have investigated
(GAIL, RAIL, InfoGAIL, InfoRAIL) and decided to use
rule-based method as an benchmark. Each of the methods
is described below.

2.3. Rule-Based Benchmark Implementation

We have implemented the IDM+MOBIL rule based driv-
ing controllers (Treiber et al., 2000). The driving behav-
ior obtained using these rule based models will serve as
a benchmark for for evaluating the performance of GAIL
based algorithms in imitating human driving behavior. We
expect the rule based models to perform well in terms of
avoiding undesirable driving behavior but not perform well
in imitating human driving behavior.

2.4. GAIL

Generative Adversarial Imitation Learning (GAIL) is a pol-
icy gradient method leveraging Generative Adversarial Net-
works. It is a useful method to train generative models by
making them play a minimax game against a criticDω(s, a).
The critic is trained to distinguish between trajectories com-
ing from the demonstration dataset and those generated
by the generative model. In this driving case study, our
generative model is a driving policy πθ(a|s) that outputs
acceleration and turn rate based on the input features. To
deal with the difficulty of training GAIL, we decided to use
the Wasserstein distance metric (Arjovsky et al., 2017).

Algorithm 1 GAIL (Ho & Ermon, 2016)

for i = 0, 1, 2, ... do
Sample trajectories: τi ∼ πθ
Update ω by ascending with gradients:
∆ω = Êτi [∇ωlog(Dω(s, a))] + ÊτE [∇ωlog(1 −
Dω(s, a))]
Update θ using TRPO update rule with the following
objective:
Êτi [∇ωlogπθ(a|s)Q(s, a)]− λ∇θH(πθ)

end for
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2.5. RAIL

Reward Augmented Imitation Learning (RAIL) augments
the learning agent with domain specific knowledge. The
designer of the imitation learning agent can provide exter-
nal reward signals. In this driving study, we penalized the
learning agent for colliding and driving off the road. The
rest of the algorithm proceeds similarly to GAIL with the
augmented reward being added to the reward signal from
the critic in the TRPO optimization process.

2.6. InfoGAIL and InfoRAIL

The application of Generative Adversarial Imitation Learn-
ing (GAIL) provided the tool to learn the policy from expert
demonstrations. However, one of the major drawbacks of
GAIL is its dependence on the quality of the expert demon-
strations which can vary, as in our case drivers skills and
driving conditions does. Hence, there is a need to disentan-
gle these states called latent factors. The approach which
addresses this issue is called InfoGAIL (Li et al., 2017). It
learns the latent variables depending on the expert trajecto-
ries and the policy depending on those variables. To enforce
the disentangling of the trajectories based on the latent vari-
able, information-theoretic regularization (LI(πθ, Qψi+1

)
is used to maximize mutual information between trajecto-
ries and latent variable, where Q(c|τ ) provides a posterior
approximation P (c|τ) (Li et al., 2017). Our final policy is
then a mixture of expert policies for different latent variables.
The algorithm is outlined in Algorithm 2.

Algorithm 2 InfoGAIL (Li et al., 2017)

for i = 0, 1, 2, ... do
Sample a batch of latent codes:ci ∼ p(c)
Sample trajectories: τi ∼ πθ(ci)
Sample state-action pairs: χi ∼ τi, χE ∼ τE
Update ω by ascending with gradients:
∆ωi = Êχi [∇ωi log(Dωi(s, a))] + ÊχE

[∇ωi log(1 −
Dωi(s, a))]
Update ψ by descending with gradients:
∆ψi

= −λ1Êχi
[∇ψi

logQψi
(c|s, a)]

Update θ using the TRPO update rule with the
following objective: Êχi

[∇ωi
logDωi+1

(s, a)] −
λ1LI(πθ, Qψi+1)− λ2H(πθ)

end for

2.7. Imitation Learning Implementation

We have implemented the GAIL (Ho & Ermon, 2016) and
InfoGAIL (Li et al., 2017) using the rllab framework (Duan
et al., 2016). We have integrated the algorithm with our driv-
ing simulator wherein the states and action demonstrations
are provided from the NGSIM driving data and the resulting
learned policies from imitation learning are fed back into
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Figure 2. The high level system diagram of GAIL using parameter
sharing TRPO and reward augmentation from external domain
knowledge.

the driving simulator for validation.

3. Experiments
We use the results from Rules based as a baseline to com-
pare against the PS-GAIL, InfoGAIL, RAIL and InfoRAIL
algorithms by learning policies and calculating specific met-
rics, as described in (Bhattacharyya et al., 2018). We train a
policy for each set of parameters that we want to compare

Figure 3. The green vehicles are expert demonstrations from the
NGSIM dataset. The blue vehicle is controlled by our policy. The
white object is where the controlled agent was in the demonstration
data.
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in the 10-agent training environment. The results presented
in section 4 are extracted by evaluating our policies in the
same manner, but on scenes sampled from the held-out
testing dataset.

3.1. Experimental Setup

We evaluate our algorithm using the same simulator as is
used in the development of PS-GAIL (Bhattacharyya et al.,
2018). The simulator allows us to sample initial scenes
from real traffic data and then simulate for 5 s at 10 Hz.
The most important feature of this simulator is that expert
vehicles observed in the real data can be replaced with
policy controlled agents, crucial to both learning a good
policy and evaluating final policies. We replace 10 vehicles
from the initial scene with vehicles driven by the learned
policy. Another crucial component of the simulator is the
extraction of features from the environment which are then
fed into the policy controller as observations. The agent’s
decisions are translated into actions, which the simulator
uses to determine the next state.

3.2. Coding Environment

Moreover, we have been working on updating the entire
system (environment, imitation learning training framework,
data visualization, etc.) to work with a more up-to-date
version of Julia (the programming language). This is not
reflected in any other section of the milestone, but we do
believe it consists of working on the implementation of our
algorithm.

3.3. Evaluation Methodology

We have written scripts to evaluate the imitation perfor-
mance in terms of local and global properties. Further, we
have scripts to evaluate the resulting driving behavior for
undesirable metrics as well as emergent properties. These
scripts act on the output of simulating data from initial
scenes that are sampled from the NGSIM dataset. We calcu-
late the RMSE of the generated trajectories compared to the
demonstrations, as well as emergent values such as the num-
ber of collisions or total off-road duration. The procedure
to generate the necessary simulated trajectories is described
here.

First, we sample a random scene from the dataset. We then
sample 10 vehicles from the scene, which we will control
with the desired policy. If there are less than 10 vehicles
present, we pick a new random scene from the dataset. With
the 10 policy controlled vehicles, termed agents, we sim-
ulate the scene forward, interacting with the environment
and expert demonstrations to generate observations for our
policy. Each agent then responds with its own action. We
repeat this process for the duration of the simulation, sav-

ing the trajectory at the end. We also have a visualization
script, which generates videos of the policy interacting with
the environment. This allows us to qualitatively compare
the different policies. By controlling the random seed of
the initial scene, we can force the policies to start from the
same state. We include a screenshot from the environment
in fig. 3.

4. Results
4.1. State and Trajectory Comparison

This section describes the local imitation performance in
terms of how well the vehicles driven using our driving
models imitate the original demonstration data. fig. 4 shows
the root mean square error between the position of the origi-
nal vehicles in the demonstration data and the the position
of the vehicles in the rollouts generated using our trained
driving policies. Similarly, fig. 5 describes the imitation
performance in terms of the lane relative heading.

In general InfoRAIL performs the worst when it comes to
local imitation, and InfoGAIL does slightly better. How-
ever, PS-GAIL performs the best with the lowest root mean
square error both in terms of value and the rate of growth
with time. As expected, the rules-based model does not
provide good imitation performance.

4.2. Undesirable Phenomena

Figure 7 describes the undesirable metrics of driving such
as collisions, hard deceleration, and driving off the road. In
terms of collision instances, the driving policy generated us-
ing InfoRAIL performs the worst while PS-GAIL performs
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Figure 4. The root mean squared error of the position for 100
trajectory rollouts over 5 seconds. The error is calculated relative
to the expert vehicle replaced by our policy-controlled agent.
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Figure 5. The root mean squared error of the lane relative head-
ing over 100 trajectory rollouts of 5 seconds. The error is cal-
culated relative to the expert vehicle that we replace with our
policy-controlled agent.

the best.

However, InfoRAIL performs the best when it comes to
hard-deceleration while RAIL performs the worst. We note
that all the values are high as compared to the demonstration
data and the rule-based baseline. RAIL again performs
the worst in terms of driving off the road while PS-GAIL
performs the best. Adding the latent state information does
not really help with the undesirable metrics. It is important
to note that these are preliminary results based on training
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Figure 6. The root mean squared error of the velocity of policy-
controlled agents with respect to the expert demonstration that they
replaced, over 100 trajectory rollouts to 5 seconds.
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Figure 7. Prevalence of undesirable characteristics that emerge
from driving simulations. Lower values are generally better, where
a perfect model would exactly match the values from the expert
(NGSIM) demonstrations.

using 10 agents for 200 iterations, which is a remarkably
short duration. We hypothesize that more training time will
improve these metrics and we leave it for future work.

5. Conclusions
This project has only scratched the surface of this prob-
lem. We have compared four GAIL-based algorithms with a
Rules-Based. We believe that significantly more training is
needed to validate our conclusions. We also believe that In-
foGAIL and InfoRAIL should be trained for longer to fairly
compare them against PS-GAIL and RAIL as the expert
policy is a mixture of policies defined for different latent
factors.

6. Future Work
First of all, it is necessary to train all models for significantly
longer to validate the results of this project. We have trained
all models for 10 agents. However, we noticed that the
training with more agents would improve the performance
of our models and should be explored in the future work.
Secondly, a hybrid between Rules-based model and GAIL-
based model would be interesting to explore. If we are
able to differentiate between regular driving and emergent
maneuvers that we would be able to use different models
depending on the scenario, e.g. use rules-based in regular,
calm driving and GAIL in emergency situations.

Moreover, the intention as outlined in our proposal was to
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use two datasets, NGSIM US 101 and NGSIM Lankershim
Boulevard in Los Angeles. The datasets capture two dif-
ferent driving scenarios: highway traffic and urban traffic,
respectively. While vehicle trajectories and the road were
successfully imported into our coding environment, we ran
into many issues with the traffic signal representation for
Lankershim Boulevard.

As a result of these issues, we reached out to the dataset
providers to get their assistance and guidance. They, while
helpful, described a situation that seems unlikely to succeed
for the purposes of this project: we would have to find a
“traffic signal guru from the Department of Transportation,”
who would ideally be able to decode the traffic signal tim-
ing sheets included in the NGSIM dataset. Due to the time
constraints associated with a class project, we have decided
to focus on the NGSIM US 101 dataset for our experiments.
However, we hope to make progress towards eventual inte-
gration of the Lankershim data for external research.
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7. Appendix: Supplementary materials
Rllab environment for learning human driver models with
imitation learning we have been working on during this
project with video examples:

https://github.com/sisl/ngsim_env

Julia package for working with the NGSIM dataset:

https://github.com/sisl/NGSIM.jl

NGSIM dataset:

https://ops.fhwa.dot.gov/trafficanalysistools/
ngsim.htm


