CS 250B: Modern Computer Systems

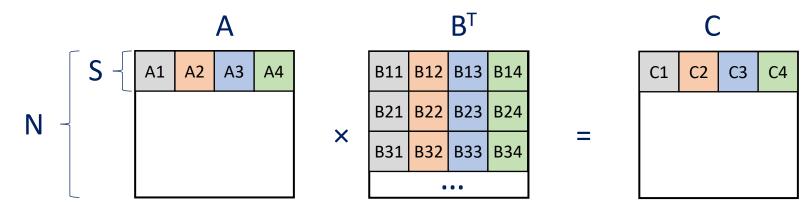
Cache-Efficient Algorithms

Sang-Woo Jun

Back To The Matrix Multiplication Example

Blocked matrix multiplication recap

- C1 sub-matrix = A1×B11 + A1×B21 + A1×B31 ...
- $\circ~$ Intuition: One full read of $B^{\scriptscriptstyle T}$ per S rows in A. Repeated N/S times
- \Box Best performance when S² ~= Cache size
 - Machine-dependent magic number!



Back To The Matrix Multiplication Example

 \Box For sub-block size S × S -> N * N * (N/S) reads. What S do we use?

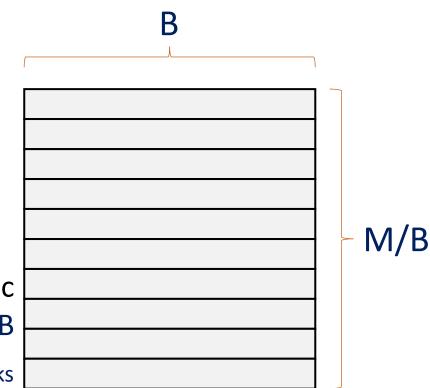
- Optimized for L1? (32 KiB for me, who knows for who else?)
- If S*S exceeds cache, we lose performance
- If S*S is too small, we lose performance
- Do we ignore the rest of the cache hierarchy?
 - $\,\circ\,\,$ Say S optimized for L3,
 - S × S multiplication is further divided into T×T blocks for L2 cache
 - $\circ~$ T \times T multiplication is further divided into U×U blocks for L1 cache

0 ...

Solution: Cache Oblivious Algorithms

□ No explicit knowledge of cache architecture/structure

- $\circ~$ Except that one exists, and is hierarchical
- Also, "tall cache assumption", which is natural
- □ Still (mostly) cache optimal
- □ Typically recursive, divide-and-conquer



Aside: Even More Important With Storage/Network

- □ Latency difference becomes even larger
 - Cache: ~5 ns
 - DRAM: 100+ ns
 - Network: 10,000+ ns
 - Storage: 100,000+ ns
- □ Access granularity also becomes larger
 - Cache/DRAM: Cache lines (64 B)
 - Storage: Pages (4 KB 16 KB)

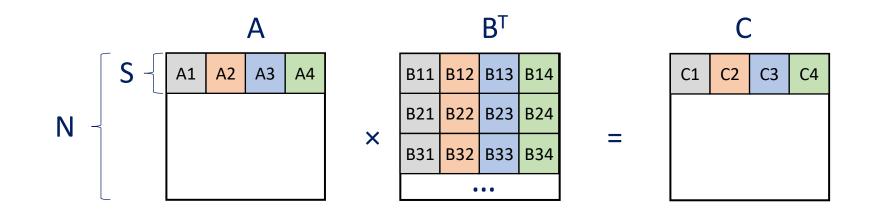
Also see: "Latency Numbers Every Programmer Should Know" <u>https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html</u>

Applications of Interest

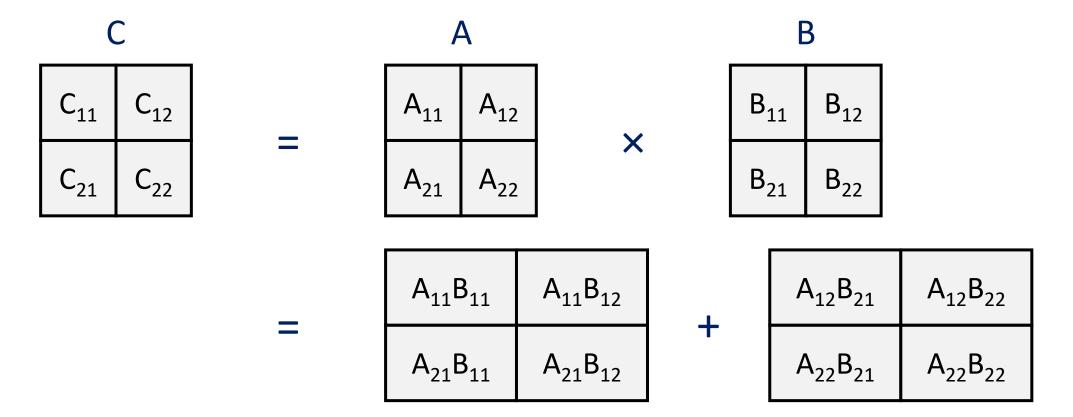
- □ Matrix multiplication
- Merge Sort
- □ Stencil Computation
- Trees And Search

Cache Optimized Matrix Multiplication

□ How to make sure we use an optimal S, for all cache levels?



Recursive Matrix Multiplication



8 multiply-adds of $(n/2) \times (n/2)$ matrices Recurse down until very small

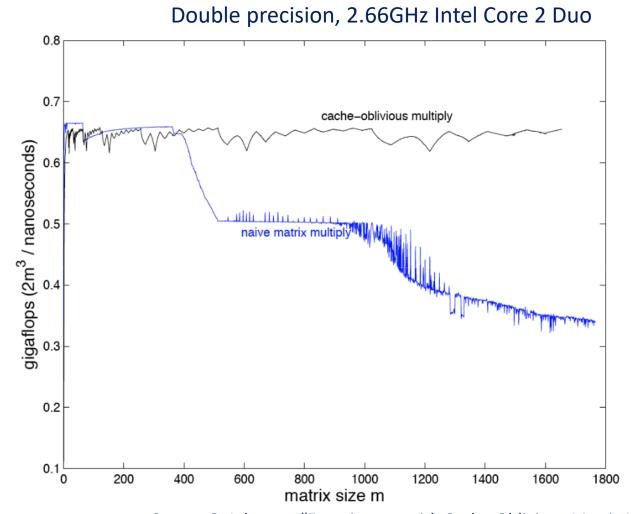
Performance Analysis

Generation Work:

- \circ Recursion tree depth is $\log_2(N)$, each node fan-out is 8
- $\circ 8^{\log_2 N} = N^{\log_2 8} = N^3$
- o Same amount of work!
- Cache misses:
 - Recurse tree for cache access has depth log(N)-1/2(log(cM))
 - (Because we stop recursing at n² < cM for a small c)
 - So number of leaves = $8^{\log N 1/2 \log cM} = N^{\log 8} \div cM^{1/2 \log 8} = N^3 / cM^{3/2}$
 - \circ At leaf, we load cM/B cache lines
 - Total cache lines read = $\theta(\frac{n^3}{BM^{1/2}})$ <- Optimal

Also, logN function call overhead is not high

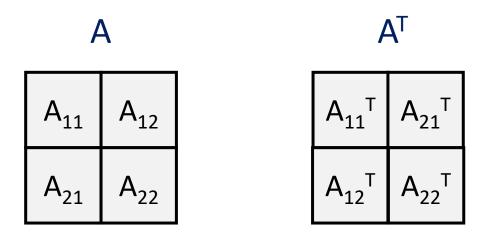
Performance Oblivious to Cache Size



Steven G. Johnson, "Experiments with Cache-Oblivious Matrix Multiplication for 18.335," MIT Applied Math

Bonus: Cache-Oblivious Matrix Transpose

□ Also possible to define recursively



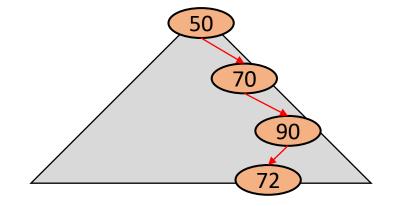
Applications of Interest

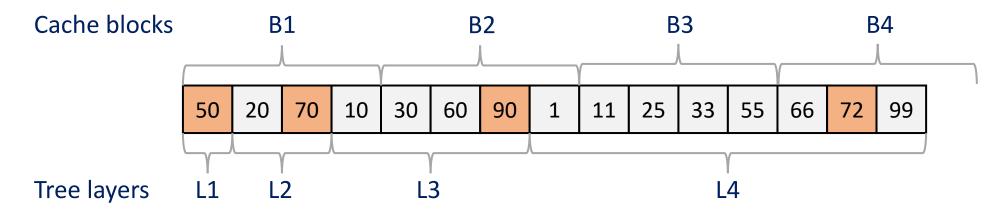
- □ Matrix multiplication
- Trees And Search
- □ Merge Sort
- □ Stencil Computation

Trees And Search

□ Binary Search Trees are cache-ineffective

- \circ e.g., Searching for 72 results in 3 cache line reads
- \circ Not to mention trees in the heap!



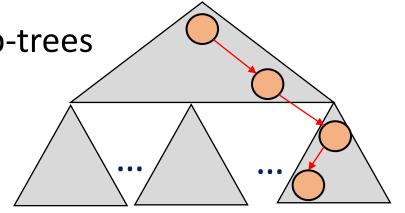


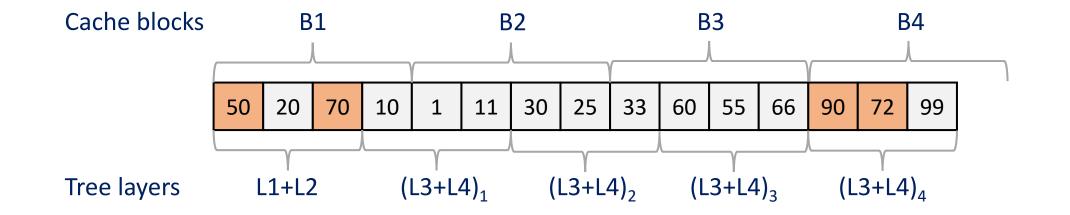
Each traversal pretty much hits new cache line: $\Theta(Log(N))$ cache lines read

Better Layout For Trees

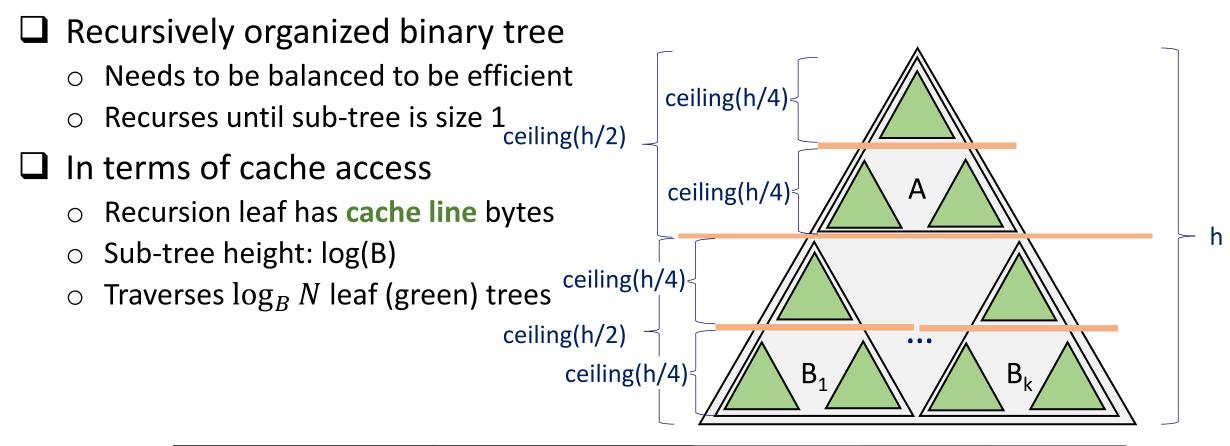
□ Tree can be organized into locally encoded sub-trees

- Much better cache characteristics!
- We want cache-obliviousness:
 How to choose the size of sub-tree?



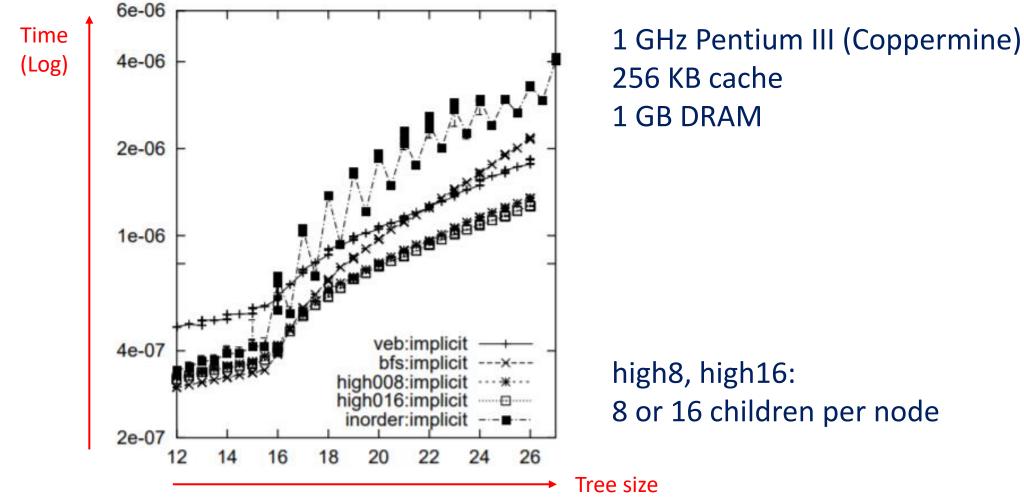


Recursive Tree Layout: van Emde Boas Layout



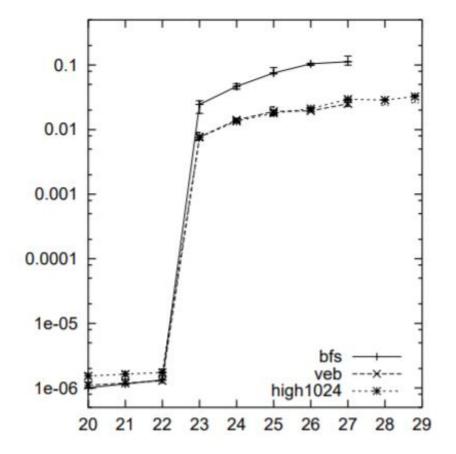
		•••	•••		•••
--	--	-----	-----	--	-----

Performance Evaluations Against Binary Tree



Brodal et.al., "Cache Oblivious Search Trees via Binary Trees of Small Height," SODA 02

Performance Evaluations Against Binary Tree And B-Tree



* *High1024:* 1024 elements per node, to make use of the whole cache line (B-Tree)

Question: How do we optimize N in HighN? Databases use N optimized for storage page

Note: Storage access not explicitly handled! Letting swap handle storage management

Figure 8: Beyond main memory

Brodal et.al., "Cache Oblivious Search Trees via Binary Trees of Small Height," SODA 02

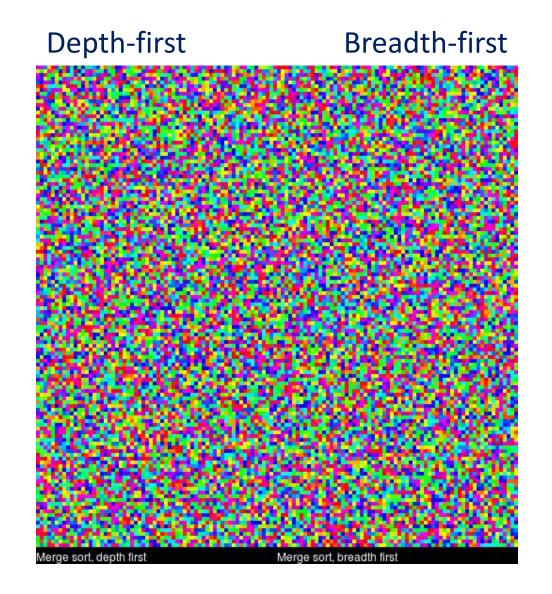
More on the van Emde Boas Tree

- □ Actually a tricky data structure to do inserts/deletions
 - $\circ~$ Tree needs to be balanced to be effective
 - $\circ~$ van Emde Boas trees with van Emde Boas trees as leaves?
- Good thing to have, in the back of your head!

Applications of Interest

- □ Matrix multiplication
- **Trees And Search**
- □ Merge Sort
- □ Stencil Computation

Merge Sort

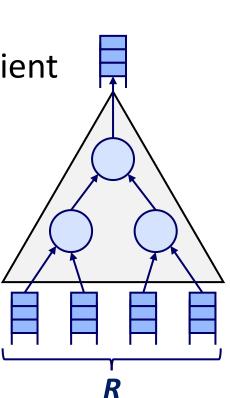


Source: <u>https://imgur.com/gallery/voutF</u>, created by morolin

Merge Sort Cache Effects

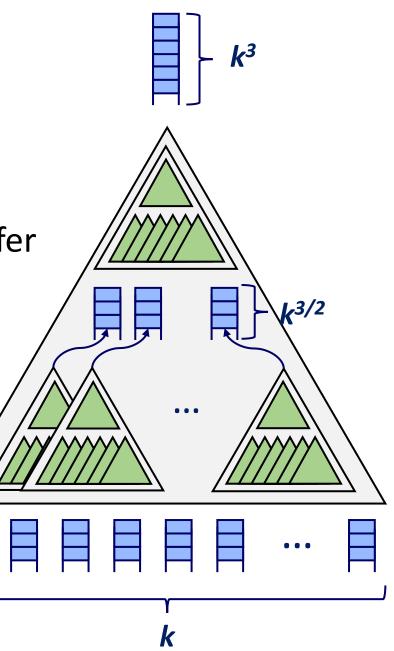
Depth-first binary merge sort is relatively cache efficient

- Log(N) full accesses on data, for blocks larger than M
- \circ n × log($\frac{n}{M}$)
- □ Binary merge sort of higher fan-in (say, R) is more cache-efficient
 - Using a tournament of mergers!
 - \circ n × log_R($\frac{n}{M}$)
- Cache obliviousness: how to choose R?
 - Too large R spills merge out of cache -> Thrash -> Performance loss!



Lazy K-Merger

- □ Again, recursive definition of mergers!
- □ Each sub-merger has k³ element output buffer
- \Box Second level has $\sqrt{k} + 1$ sub-mergers
 - $\circ \sqrt{k}$ sub-mergers feeding into 1 sub-merger
 - \circ Each sub-merger has \sqrt{k} inputs
 - $\circ k^{3/2}$ -element buffer per bottom sub-merger
 - Recurses until very small fan-in (two?)



Lazy K-Merger

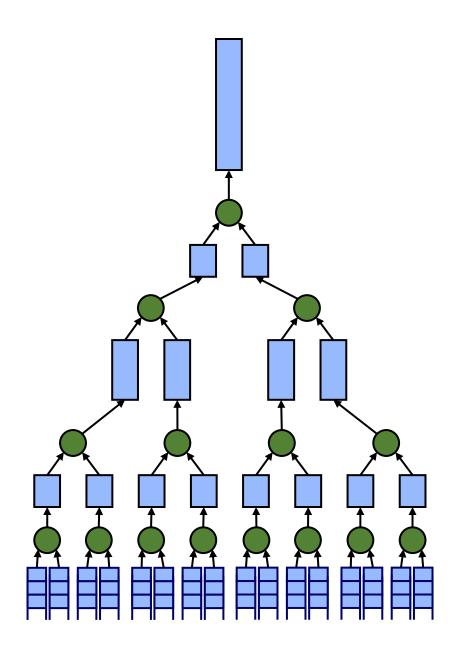
Procedure Fill(v):

while v's output buffer is not full
if left input buffer empty
Fill(left child of v)

if right input buffer empty
 Fill(right child of v)

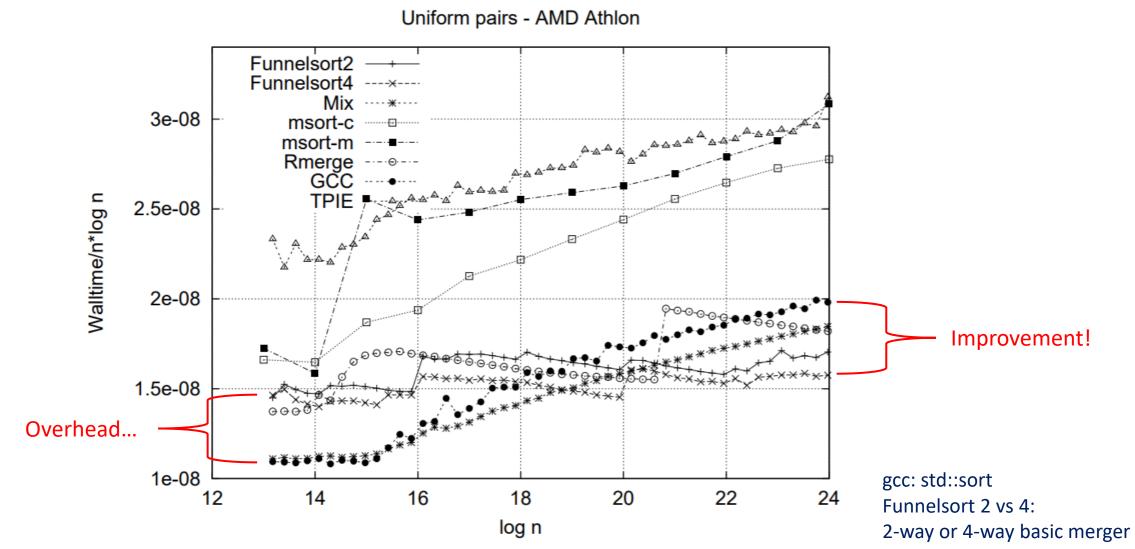
perform one merge step

- Each k merger fits in k² space
- □ Ideal cache effects!
 - Proof too complex to show today...
- What should k be?
 - Given N elements, $k = N^{(1/3)}$ "Funnelsort"



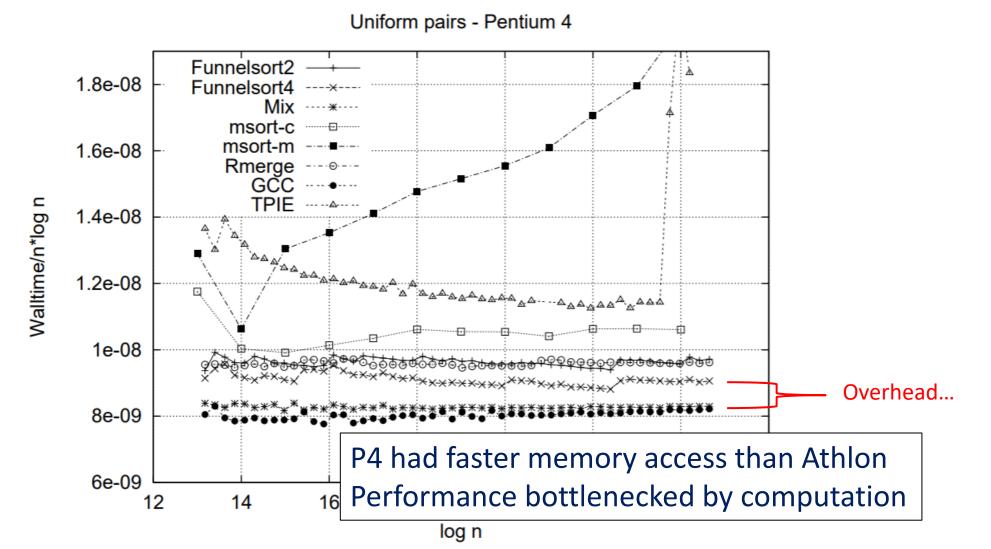
Source: Brodal et. al., "Engineering a Cache-Oblivious Sorting Algorithm," 2008

In-Memory Funnelsort Empirical Performance



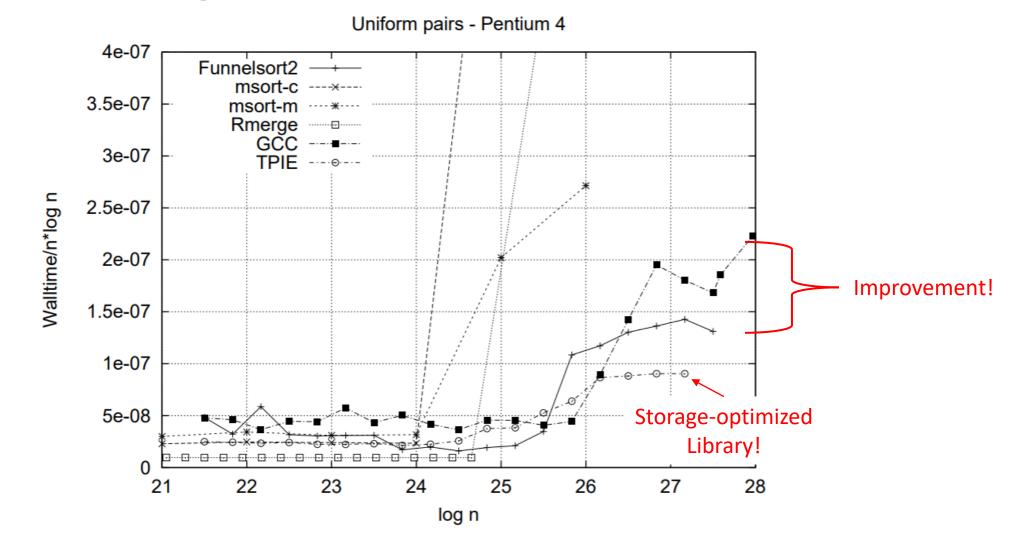
Source: Brodal et. al., "Engineering a Cache-Oblivious Sorting Algorithm"

In-Memory Funnelsort Empirical Performance



Source: Brodal et. al., "Engineering a Cache-Oblivious Sorting Algorithm"

In-Storage Funnelsort Empirical Performance



Applications of Interest

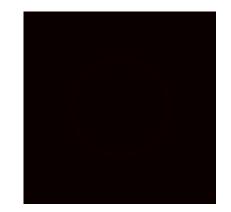
- □ Matrix multiplication
- **Trees And Search**
- Merge Sort
- □ Stencil Computation

Stencil Computation

D Example: Heat diffusion

o Uses parabolic partial differential equation to simulate heat diffusion

$$rac{\partial u}{\partial t} = lpha \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2}
ight)$$



Heat Equation In Stencil Form

$$\Box \text{ Simplified model: 1-dimensional heat diffusion } \frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2}\right)$$

$$\frac{\partial u}{\partial t} = \lim_{\Delta t \to 0} \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$$

$$\frac{\partial u}{\partial t} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$$

$$\frac{\partial^2 u}{\partial t} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u_x}{\partial x}$$

$$\approx \frac{u(x + \Delta x, t) - u(x, t)}{\Delta x}$$

$$\approx \frac{u(x + \Delta x, t) - u(x, t)}{\Delta x}$$

$$\frac{u(x, t + \Delta t) - u(x, t)}{\Delta t} \approx k \frac{u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t)}{(\Delta x)^2} \quad \longleftrightarrow \quad = \frac{u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t)}{(\Delta x)^2}$$

$$u(x, t + \Delta t) \approx u(x, t) + \alpha \left[u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t)\right]$$

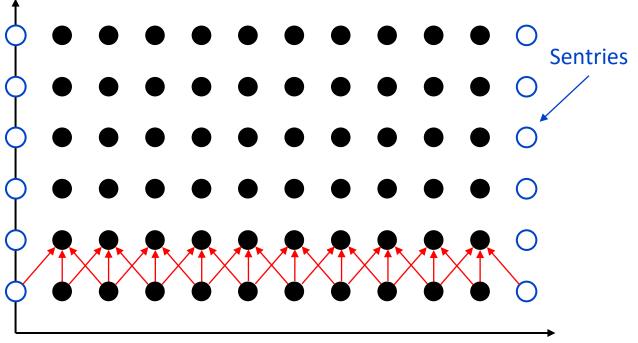
\

A 3-point Stencil

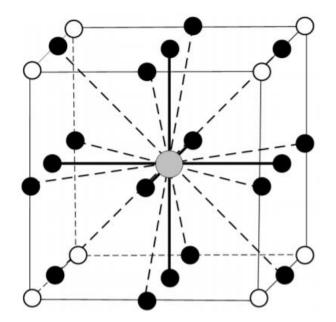
$$u(x,t + \Delta t) \approx u(x,t) + \alpha \left[u(x + \Delta x,t) - 2u(x,t) + u(x - \Delta x,t) \right]$$

 \Box u(x, t + Δ t) can be calculated using u(x, t), u(x + Δ x, t), u(x - Δ x, t)

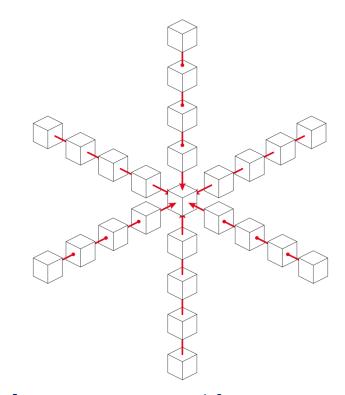
- A "stencil" updates each position t using surrounding values as input
 - This is a 1D 3-point stencil
 - 2D 5 point, 2D 9 point, 3D 7 point,
 3D 25-point stencils popular
 - Popular for simulations, including fluid dynamics, solving linear equations and PDEs



Some Important Stencils



[1] 19-point 3D Stencil for Lattice Boltzmann Method flow simulation



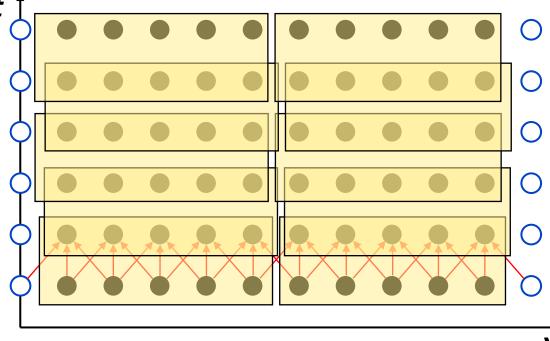
[2] 25-point 3D stencil for seismic wave propagation applications

[1] Peng, et. al., "High-Order Stencil Computations on Multicore Clusters"[2] Gentryx, Wikipedia

Cache Behavior of Naïve Loops

Using the 1D 3-point stencil

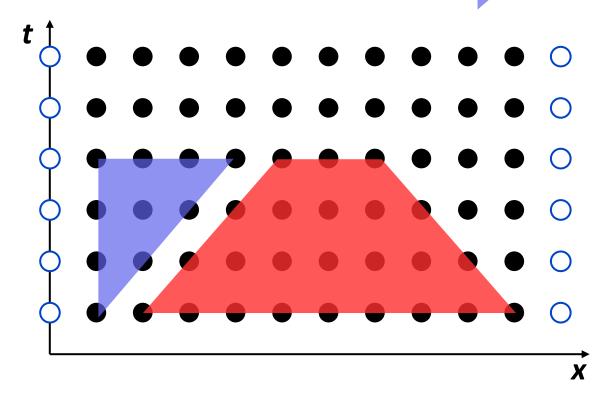
- Unless x is small enough, there is no cache reuse
- Continuing the theme, can we recursively process data in a cacheoptimal way?



Cache Efficient Processing: Trapezoid Units

Computation in a trapezoid is either:

- Self-contained, does not require anything from outside(_____), or
- \circ Only uses data that has been computed and ready (



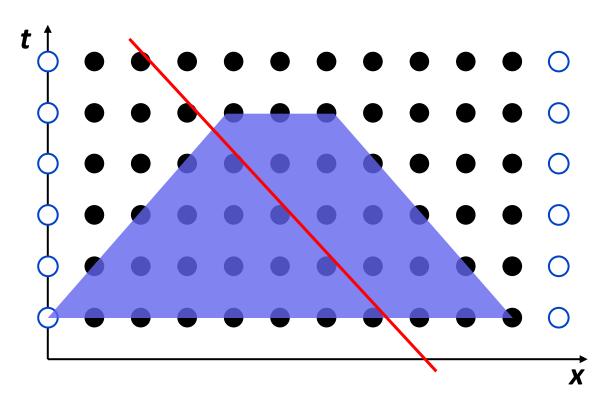
, after

Recursion #1: Space Cut

$\Box \text{ If width } >= \text{height} \times 2$

 $\circ~$ Cut the trapezoid through the center using a line of slope -1

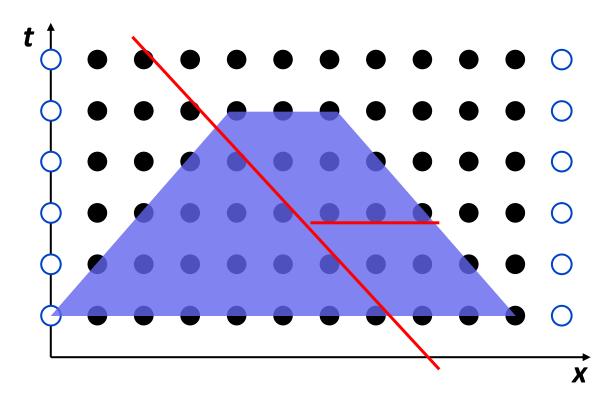
 \circ Process left, then right



Recursion #2: Time Cut

\Box If width < height × 2

- $\circ~$ Cut the trapezoid with a horizontal line through the center
- $\circ~$ Process bottom, then top



Cache Analysis

- □ Intuitively, trapezoids are split until they are of size M (cache size)
- **D**ata read = $\Theta(NT/M)$
 - Cache lines read = $\Theta(NT/MB)$
 - \circ Good!

Parallelism-Aware Cutting

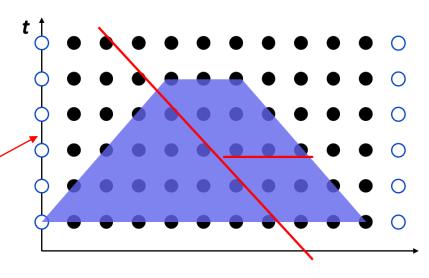
Vanilla method not good for parallelism /
 Three splits have strict dependencies...

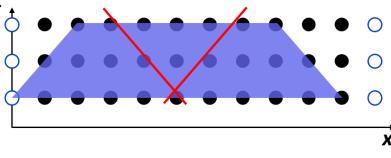
Space cuts can be made parallelism-friendly!

Bottom two first, top one next

Effects on parallel scalability

- \circ Difference in impact of four cores
- o Why? DRAM bandwidth bottleneck!





1.93x

3.96x

Code	Time	
Serial looping	128.95s	1
Parallel looping	66.97s	S
Serial trapezoidal	66.76s	٦
Parallel trapezoidal	16.86s	S

Performance scaling with four cores Source: 2008-2018 by the MIT 6.172 Lecturers