
CS 250B: Modern Computer Systems

Cache-Efficient Algorithms

Sang-Woo Jun

Back To The Matrix Multiplication Example

❑ Blocked matrix multiplication recap
o C1 sub-matrix = A1×B11 + A1×B21 + A1×B31 …

o Intuition: One full read of BT per S rows in A. Repeated N/S times

❑ Best performance when S2 ~= Cache size
o Machine-dependent magic number!

×

A BT

A1

C

=

A2 A3 A4 C1 C2 C3 C4B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

…

S

N

Back To The Matrix Multiplication Example

❑ For sub-block size S × S -> N * N * (N/S) reads. What S do we use?
o Optimized for L1? (32 KiB for me, who knows for who else?)

o If S*S exceeds cache, we lose performance

o If S*S is too small, we lose performance

❑ Do we ignore the rest of the cache hierarchy?
o Say S optimized for L3,

S × S multiplication is further divided into T×T blocks for L2 cache

o T × T multiplication is further divided into U×U blocks for L1 cache

o …

Solution: Cache Oblivious Algorithms

❑ No explicit knowledge of cache architecture/structure
o Except that one exists, and is hierarchical

o Also, “tall cache assumption”, which is natural

❑ Still (mostly) cache optimal

❑ Typically recursive, divide-and-conquer

B

M/B
Tall cache assumption: B2 < cM for a small c

ex) Modern Intel L1: M: 64 KiB, B: 16 B

Shorter cache with larger lines can’t efficiently divide data into small blocks

Aside: Even More Important With
Storage/Network

❑ Latency difference becomes even larger
o Cache: ~5 ns

o DRAM: 100+ ns

o Network: 10,000+ ns

o Storage: 100,000+ ns

❑ Access granularity also becomes larger
o Cache/DRAM: Cache lines (64 B)

o Storage: Pages (4 KB – 16 KB)

Also see: “Latency Numbers Every Programmer Should Know”
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Applications of Interest

❑ Matrix multiplication

❑ Merge Sort

❑ Stencil Computation

❑ Trees And Search

Cache Optimized Matrix Multiplication

×

A BT

A1

C

=

A2 A3 A4 C1 C2 C3 C4B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

…

S

N

❑ How to make sure we use an optimal S, for all cache levels?

Recursive Matrix Multiplication

C11

=

C

C12

C21 C22

A11

×

A

A12

A21 A22

B11

B

B12

B21 B22

=
A11B11

A21B11

A11B12

A21B12

+
A12B21

A22B21

A12B22

A22B22

8 multiply-adds of (n/2) × (n/2) matrices
Recurse down until very small

Performance Analysis

❑ Work:
o Recursion tree depth is log2(N), each node fan-out is 8

o 8log2 𝑁 = 𝑁log2 8 = 𝑁3

o Same amount of work!

❑ Cache misses:
o Recurse tree for cache access has depth log(N)-1/2(log(cM))

• (Because we stop recursing at n2 < cM for a small c)

o So number of leaves = 8log 𝑁−1/2 log 𝑐𝑀 = 𝑁log 8 ÷ 𝑐𝑀1/2 log 8 = 𝑁3/𝑐𝑀3/2

o At leaf, we load 𝑐𝑀/𝐵 cache lines

o Total cache lines read = 𝜃(
𝑛3

𝐵𝑀1/2) <- Optimal

Also, logN function call overhead is not high

Performance Oblivious to Cache Size

Steven G. Johnson, “Experiments with Cache-Oblivious Matrix Multiplication for 18.335,” MIT Applied Math

Double precision, 2.66GHz Intel Core 2 Duo

Bonus: Cache-Oblivious Matrix Transpose

❑ Also possible to define recursively

A11 A12

A21 A22

A

A11
T

A12
T

A21
T

A22
T

AT

Applications of Interest

❑ Matrix multiplication

❑ Trees And Search

❑ Merge Sort

❑ Stencil Computation

Trees And Search

❑ Binary Search Trees are cache-ineffective
o e.g., Searching for 72 results in 3 cache line reads

o Not to mention trees in the heap!

50 20 70 10 30 60 90 1 11 25 33 55 66 72 99

L1 L2 L3 L4Tree layers

B1 B2 B3 B4Cache blocks

Each traversal pretty much hits new cache line:
Ɵ(Log(N)) cache lines read

50

70

90

72

Better Layout For Trees

50 20 70 10 30 60 901 11 25 33 55 66 72 99

L1+L2 (L3+L4)1Tree layers

B2 B3 B4Cache blocks

(L3+L4)2 (L3+L4)3 (L3+L4)4

❑ Tree can be organized into locally encoded sub-trees
o Much better cache characteristics!

o We want cache-obliviousness:
How to choose the size of sub-tree? … …

B1

Recursive Tree Layout:
van Emde Boas Layout

h

…

A

B1 Bk

ceiling(h/2)

ceiling(h/2)

ceiling(h/4)

ceiling(h/4)

ceiling(h/4)

ceiling(h/4)

A B1 Bk
…… … …

❑ Recursively organized binary tree
o Needs to be balanced to be efficient

o Recurses until sub-tree is size 1

❑ In terms of cache access
o Recursion leaf has cache line bytes

o Sub-tree height: log(B)

o Traverses log𝐵 𝑁 leaf (green) trees

Performance Evaluations
Against Binary Tree

Brodal et.al., “Cache Oblivious Search Trees via Binary Trees of Small Height,” SODA 02

1 GHz Pentium III (Coppermine)
256 KB cache
1 GB DRAM

Tree size

Time
(Log)

high8, high16:
8 or 16 children per node

Performance Evaluations
Against Binary Tree And B-Tree

Brodal et.al., “Cache Oblivious Search Trees via Binary Trees of Small Height,” SODA 02

* High1024: 1024 elements per node, to make use
of the whole cache line (B-Tree)

Question: How do we optimize N in HighN?
Databases use N optimized for storage page

Note: Storage access not explicitly handled!
Letting swap handle storage management

More on the van Emde Boas Tree

❑ Actually a tricky data structure to do inserts/deletions
o Tree needs to be balanced to be effective

o van Emde Boas trees with van Emde Boas trees as leaves?

❑ Good thing to have, in the back of your head!

Applications of Interest

❑ Matrix multiplication

❑ Trees And Search

❑ Merge Sort

❑ Stencil Computation

Merge Sort

Source: https://imgur.com/gallery/voutF, created by morolin

Depth-first Breadth-first

https://imgur.com/gallery/voutF

Merge Sort Cache Effects

❑ Depth-first binary merge sort is relatively cache efficient
o Log(N) full accesses on data, for blocks larger than M

o n × log(
𝑛

𝑀
)

❑ Binary merge sort of higher fan-in (say, R) is more cache-efficient
o Using a tournament of mergers!

o n × log𝑅(
𝑛

𝑀
)

❑ Cache obliviousness: how to choose R?
o Too large R spills merge out of cache -> Thrash -> Performance loss!

R

Lazy K-Merger

…

k

❑ Again, recursive definition of mergers!

❑ Each sub-merger has k3 element output buffer

❑ Second level has 𝑘 + 1 sub-mergers
o 𝑘 sub-mergers feeding into 1 sub-merger

o Each sub-merger has 𝑘 inputs

o 𝑘3/2-element buffer per bottom sub-merger

o Recurses until very small fan-in (two?)

…

k3

k3/2

Lazy K-Merger

while v’s output buffer is not full
if left input buffer empty

Fill(left child of v)
if right input buffer empty

Fill(right child of v)
perform one merge step

Procedure Fill(v):

❑ Each k merger fits in k2 space

❑ Ideal cache effects!
o Proof too complex to show today…

❑ What should k be?
o Given N elements, k = N(1/3) – “Funnelsort”

In-Memory
Funnelsort Empirical Performance

Improvement!

Overhead…

Source: Brodal et. al., “Engineering a Cache-Oblivious Sorting Algorithm,” 2008

gcc: std::sort
Funnelsort 2 vs 4:
2-way or 4-way basic merger

In-Memory
Funnelsort Empirical Performance

Overhead…

Source: Brodal et. al., “Engineering a Cache-Oblivious Sorting Algorithm”

P4 had faster memory access than Athlon
Performance bottlenecked by computation

In-Storage
Funnelsort Empirical Performance

Storage-optimized
Library!

Improvement!

Source: Brodal et. al., “Engineering a Cache-Oblivious Sorting Algorithm”

Applications of Interest

❑ Matrix multiplication

❑ Trees And Search

❑ Merge Sort

❑ Stencil Computation

Stencil Computation

❑ Example: Heat diffusion
o Uses parabolic partial differential equation to simulate heat diffusion

Heat Equation In Stencil Form

❑ Simplified model: 1-dimensional heat diffusion

A 3-point Stencil

❑ u(x, t + Δt) can be calculated using u(x, t), u(x + Δx, t), u(x - Δx, t)

Sentries

x

t❑ A “stencil” updates each position
using surrounding values as input
o This is a 1D 3-point stencil

o 2D 5 point, 2D 9 point, 3D 7 point,
3D 25-point stencils popular

o Popular for simulations, including
fluid dynamics, solving linear
equations and PDEs

Some Important Stencils

[1] 19-point 3D Stencil for
Lattice Boltzmann Method flow simulation

[1] Peng, et. al., “High-Order Stencil Computations on Multicore Clusters”
[2] Gentryx, Wikipedia

[2] 25-point 3D stencil for
seismic wave propagation applications

Cache Behavior of Naïve Loops

❑ Using the 1D 3-point stencil
o Unless x is small enough, there is no cache reuse

❑ Continuing the theme, can we recursively process data in a cache-
optimal way?

x

t

Cache Efficient Processing:
Trapezoid Units

❑ Computation in a trapezoid is either:
o Self-contained, does not require anything from outside(), or

o Only uses data that has been computed and ready (, after)

x

t

Recursion #1: Space Cut

❑ If width >= height × 2
o Cut the trapezoid through the center using a line of slope -1

o Process left, then right

t

x

Recursion #2: Time Cut

❑ If width < height × 2
o Cut the trapezoid with a horizontal line through the center

o Process bottom, then top

t

x

Cache Analysis

❑ Intuitively, trapezoids are split until they are of size M (cache size)

❑ Data read = Ɵ(NT/M)
o Cache lines read = Ɵ(NT/MB)

o Good!

Parallelism-Aware Cutting

❑ Vanilla method not good for parallelism
o Three splits have strict dependencies…

❑ Space cuts can be made parallelism-friendly!
o Bottom two first, top one next

❑ Effects on parallel scalability
o Difference in impact of four cores

o Why? DRAM bandwidth bottleneck!

Performance scaling with four cores
Source: 2008-2018 by the MIT 6.172 Lecturers

