CS 297 Report

Improving Chess Program Encoding Schemes

Supriya Basani

(sbasani@yahoo.com)

Advisor: Dr. Chris Pollett
Department of Computer Science
San Jose State University

December 2006

Table of Contents:

INEEOAUCTION. ...ttt ettt st e et e et e e bt e ssbe e saessbeenseesnseenseas 3
DEIIVETADIE 1:..iniiiiee ettt ettt et e sttt eneeas 4
Chess Game Databases and GNU Chess Programccccceeveeriienieniiieniienieeieeiens 4
Book.dat generation algorithm:ccoooiiiiiiiiiiieceeeeee e 5
Database 10okup algorithim:ccoeiiiiiiiiiiiiie e 6
DIEIIVETADIE 2: ...ttt ettt ettt et eaeas 7
GNU Chess program's PVS AlgOrithmcoccivviiiiiiiiiiiiieiecieeeeeeeee e 7
PVS al@Orithm:.. ..ot e et 8
DELIVETADIE 3:...oiiieiiiecii ettt ettt et e ettt e e ab e e b e e snbeenbeesabaens 10
Extension to PVS algorithm and Auto play SEtupccceeeeeeeeiiieeiiieeieecie e 10

1. Extension to PV'S al@orithm...........c.coocuiiiiiiiiiiiiiiiiiec e 10

2. AUOPIAY SCLUP...cuiiieeiiiecie et aee e enns 13
HOW AUtOPIAY WOTKS: ..ottt ettt st 14
DElIVETable 04ottt ettt ettt en 15
Extension to Chess game database 100Kup 10ZiCccceeviiriieniiiiiieieeieeieeeeee 15
FULUIe WOTK ...ttt et 20
B0ard CONVETSIONS:.....ccuiiiiieiiieiieiie ettt ettt ettt et e s e eteesiaeebeeseaeeseesaseenseenens 20
CONCIUSION: ..ttt ettt ettt et e sbt e et e s ae e et e e s bt e eabeesaeeenbeennee 22
RETETEICE: ...ttt sttt ettt 22

Introduction

Chess-playing programs have been one of the most studied areas for Artificial
Intelligence research. Many successful chess programs can beat chess experts, yet their
style of play is incomparable to chess grandmasters. Alpha-Beta pruning algorithm
written in 1963 is one of the most popular search algorithms on game trees. Many
enhancements on top of this algorithm have been implemented to improve the search
efficiency. Apparently this simplistic depth first, brute-force approach does not compile
well with Artificial Intelligence techniques. Unlike the computer logic that examines
every possible position for a fixed number of moves, the grandmasters get their right
moves from constructing the whole board based upon few pieces of information on the

board and from recollections of salient aspects of past games.

This report summarizes modifications to an existing computer chess program, GNU
chess, so that it plays more like a human player. GNU Chess is a free chess-playing
program developed as part of the GNU project of the Free Software Foundation (FSF).
GNU Chess is intended to run under Unix or Unix-compatible systems. It is written in C
and should be portable to other systems. My goal was to fully understand how GNU
chess program worked and then experiment with my notion of human like encoding
schemes. Instead of depending on the complicated search algorithm to find the next best
move, my logic was to use the chess game database as much as possible. I was able to
modify the Principal Variation Search algorithm used in GNU chess to lookup next best

move from the chess game database more efficiently.

During my research and development work performed in CS 297 I presented four
deliverables. This report summarizes all the work done in each of this deliverables. In the
first deliverable I presented my findings on how to use external chess game database with
GNU chess. In the second deliverable I presented detailed description of how Principal
Variation Search (PVS) algorithm works and compared it with regular Alpha-Beta
pruning. In the third deliverable I presented my modification to the PVS algorithm where
it looks up the chess game database for the next best move during each search depth. This
modification helped reduce the number of depths the PVS search algorithm had to search
for the next best move. Along with this deliverable I also presented the auto play setup
for chess programs where two GNU chess programs could play against each other. This
setup is very useful to compare my chess program with the existing chess programs. In
the fourth deliverable I was able to present the modification to chess game database
lookup algorithm such that lookups can be significantly faster and more efficient. Finally
I conclude this report with a detailed description of future work that will be done in CS

298.

Deliverable 1:

Chess Game Databases and GNU Chess Program

My project had started out with my research on how GNU chess worked. I researched
and understood how external chess game databases can be used with GNU chess
program. Chess game databases come in .PGN format. PGN format file is converted into
binary (book.dat) format by running the GNU Chess command. The book.dat is a binary
file written in network byte order. Once the database is converted into binary format,

GNU Chess consults the book for next moves. If it finds an appropriate matching move,

it uses that move otherwise the program calculates the next best move using the PVS
GNU Chess algorithm.

Figure 1: Integrating grandmaster Anand Vishwanathan’s 2106 games:
=Jarmchess exe

G Chess 5.07

Adjusting Hash3ize to 1024 slots

Transposition table: Entnes=1K Size=15K

Pawmn hash table: Entries=0F Size=32K

White (1% : book add Armand pan

Created new boolz hoole. dat!

Got 107 bash collisions

Time =4 seconds

Garmes cormpiled: 2106

Games per second: 526500000

Fositions scanned: 32504

Positions per second: 5126 000000

Mewr & und que added: 12329 positions

Duplicates not added: 20275 positions

In Figure 1 I compiled grandmaster Anand Vishwanathan’s 2106 games and converted it

into book.dat format used by GNU Chess program.

Book.dat generation algorithm:

1. The book program uses lex and yacc to parse the Anand.pgn file.
2. Check if trusted player and decide to add to bookpos[]. bookpos[] array is almost
IMB size (1MB book moves can fit in it).
3. Call MakeMove (bookmove).
4. Calculate HashKey based on board position (collisions for two different board
positions should be very rare with 64bit HashKey and a good hash algorithm).
5. Add the move to bookpos[] if its unique.
Currently bookpos stores the following for each move.
bookpos
bookpos

bookpos
bookpos

i].key = HashKey;
1].wins;

i].losses;

1].draws;

1

6. Reset the board position to initial state. And repeat steps for next entry in the PGN
file.

Figure 2: Example of next move lookup from Chess game database:
= Ivly first mowve =@ White (1% ; 4

BOARD:

rnbgkbnr

PPPPPPPD

ERE.PPEFE
EMBEOKEBME

Cormputer = Thinking,

Looking for opening booloin books dat...

Fead opening hoolk (haolz dath.

Loading book from boolz dat.

3054 hash collisions. .. Opening datatasze: 12229 bools positions.
Ity this position, there are 5 book mowes:

HFCSEE139/140 dACSES S /50 eA(25/001/10 d5(55/38/21/103)
o 504141410

MES(OTY dX73) de(55) £5C33) e 0)
Cornputer’s move =¥ F

Figure 2 shows an example of how GNU chess calculates the next best move from the

chess game database.

Database lookup algorithm:

The GNU Chess program has to do the following anytime it checks if there is a book
move.

1. Based upon current board position generate all legal next moves.

2. For each legal move, calculate the HashKey for the current board.

3. Do a sequential digest search for the HashKey in bookpos[] array. If the HashKey
is found, then there is a book move, if not continue looking for all other legal
moves.

4. If none of the legal moves HashKey matches then the program runs the PVS

search algorithm to generate the next best move.

5. If more than one match is found then the program picks the move based upon
number of games won with that move. It is also configurable how it picks the

move - best, worst, random and so on.

Deliverable 2:

GNU Chess program’'s PVS Algorithm
In this deliverable I presented by findings on how PVS algorithm works in GNU Chess

program. In order to understand the algorithm I had implemented the Alpha-Beta cutoffs
algorithm and Principal Variation Search algorithm and ran it on sample input values. I
also added special print statements into GNU Chess PVS algorithm in order to
demonstrate how PVS algorithm works. The results of the finding are explained via the

program outputs.

Figure 3: Sample game tree showing Alpha-Beta cutoffs and PVS cutoffs.

HO
Alphialdax Llin VW5
Betaldin

H1 H2
DIity W35 Lin W3

Alphaldax
Mz

Ilax W5

M5 Ha
Ilax WO Llax W3

PYE outodff

N7 Nz e HM1io 11 N1z M1z HM14
V5 W Vi w1 e W V3 w2

Figure 3 represents a sample game tree which was used to compare Minimax, Alpha-Beta

cutoffs and PVS cutoffs. Game tree is a recursively defined data structure that consists of

the root node representing the current state and finite set of branches representing the
legal moves. These branches point to the potential next states, each of which, in turn, is a

smaller game tree. The distance of a node from the root is its depth.

PVS algorithm:

PVS algorithm maximizes the portion of game tree that can be cutoff by attempting to
rapidly determine the best value of a and p. These a and 3 values define a window within

which the Minimax value must lie; thus smaller the window the greater the cutoffs.

Once the algorithm finds a move (PV move/node) with score that is between the o and 3
value, the rest of the moves are searched with the goal of proving that they are all bad. If
the algorithm finds out that it was wrong, and that one of the subsequent moves was
better than the first PV move, it has to search again, in the normal Alpha-Beta manner.
Comparing Minimax, Alpha-Beta and PVS output on game tree represented in
Figure 3:

Regular Minimax program visited all nodes in the game tree. Total number of nodes

visited = 15.

With Alpha-Beta program, the number of nodes visited was 14. Cutoff occurred at node

N4 because the alpha value (6) was greater than the beta value (5). Node N10 was cut off.

For the same game tree, the number of nodes visited using the PVS algorithm was 13.
Cutoff occurred at N4 (N10 was cutoff) and also at N5 (N12 was cutof¥).

N10 was cutoff due to basic alpha beta pruning.

N12 was cutoff due to the PVS algorithm. This cutoff occurred since at N5 alpha 9 >=
beta 6. PVNode with a value of 9 was assumed at N5. Since N13 and N14 were also less

than 9, this assumption proved to be right.

Figure 4: PVS output

Pvs.exe

tinitnas at node N7, alpha= 2147483648, beta = 2147483647 score= 5
Found FVMode val =35, alpha= -2147483648, beta= 2147485647
Calling? minimasz AF wath Minirmal Window 5 6

mminimaz at node MNE, alpha= 5, heta= 21474 83647 score= 4

minimax at node M3, alpha= -2147483648, heta = 2147483647 score= 5
tinitas at node N9, alpha=-2147483645, beta=35 score =46

Found FVIode val =6, alpha= -214 7483648, beta=35

CUTOFF For N4 because alpha 6 ==beta 5

Nodes cutoff: N10

timimax at node M4, alpha= -2147483648, heta=15 score =46

minimax at node M1, alpha= -2147483648, heta = 2147483647 score= 5
Found FVIode wal =5, alpha = -214 7483648, beta = 2147485 647
Calling? rminimasz AR wath Minimal Window 5 6

minimasx atnode MN11, alpha= 5 heta=6 score=19

Found F¥Mode val =9, alpha=-214 7483648, beta=6

CUTOFF For NS becanse alpha @ ==heta &

MNodes cutoff: N12

minimax at node M5, alpha= 5, beta=6 score =19

minimax at node MN13, alpha= 5 heta=6 score=3

Found F¥Mode. val =3, alpha=-214 7483648, beta=46

Calling? minimaxz AR wath Mimmal Window 5 6

tinitnas at node M14, dpha= 5 beta=6 score=2

minimaz at node N6, alpha= 5, beta=46 score=3

minimax at node N2, alpha= 5 heta= 21474 83647 score= 3

PVS Alpha Beta Mintmax at root postion N0 is: 5

However, if the following values were put into the tree:
N12=10 NI13=11 and NI14=11
In this case, N12 = 10, would be the final PVS value at NO. N14 would be cutoff since at

N6 alpha 11 >= beta 10.

So, when the PVS algorithm finds that minimax at node N6 = 11, it knows that the
previous assumption of cutting off N12 = 10 was incorrect. So, it has to now search N12

with alpha = 9, beta = 2147483647 score = 10.

The above example illustrates two important things:

1. If move ordering is good, PVS usually does better than Alpha-Beta. More nodes
can be cutoff. (In the example tree, one extra node was cutof¥).

2. If the move ordering is not so good, PVS might have to re-search some of the
subtrees incurring performance penalty. In any case, PVS will not search any
more nodes than alpha beta, but it might have to re-search some of the subtrees

like the example with the changed values mentioned above.

Deliverable 3:
Extension to PVS algorithm and Auto play setup

1. Extension to PVS algorithm

In GNU chess when the current board position is not found in the game database (Book)
then the next move is calculated using the PVS algorithm. As PVS algorithm tries to
refine a (or B) by searching several ply along the game tree, it is possible to reach a board
position with some future moves which can be found in the game database. That is, two
games can reach the same board positions even though they do not have the same
sequence of moves.

Assume two games:

l.ab 2.cd 3.ef

2.cb 2.ad 3.ef

10

At move 3, the board position is same even though the initial sequence of steps is

different. Thus their HashKey derived from current board position should be same.

My extension to PVS algorithm was to compare current board’s HashKey at each search
depth during PVS calculation with board HashKeys in the game database. If a matching
board position was found then the move leading to that board position was returned and

the PV search was terminated.

I implemented a special option called ‘-b’ in GNU chess program which ran the program
with the above extension. In order to test this extension the chess program was run

against a dummy game database that had only one simple game as follows:

l.e4 Nc6 2.Ke2d5 3.Kel Nf6o 4.exd5 QxdS 5.Ke2 Qed#
{computer wins as black} 0-1
During the actual play if the user makes the following moves:
1. e4 Nc6 2. Ke2 d5 3. exd5
Now computer’s next move with the new extension will be:
Next move lookup from game database fails because current board position does not

exists in the game database.

11

PVS algorithm is run:

Foot =54, Plase =1

Time =500, I = 20.00, Left = 0.00,Moves=0
Ply Time Ewal Modes Principal-Waration
I+ 000 1238 Q=dl Jzda

1. 000 29238 BBR3IZ Omdd

2- 000 29720 M504

28 000 1134 0548 (ad5 Kel
20002913 BM5TY Qzds Kel

3& 000 1139 0948 Quds Kel Qei+Bel
3. 0.02 29133 7940 Jzds Kel Qeit
4& 003 1115 9330 Qzad5s Kel N HNe3
4003 115 8930 Qzad5 Kel N HNe3

Time = 0.0 Rate=358017 Modes=[970& 2720050 GenCrit=24347

Ewal 599/3159] EptCrd=0 MNull Cut=3 Fitl Cit=7 558

Fat: Chi=1115 Recap=11 Pawn=364 OneRep=3A Horz=2 Mate=0 K Tirt=03
Ilatenal=[3600/3600 : 4300/4300) Lazy={ 150/249] MaP osnScore 150/3835]
Hash: Success=15% Collision=A4% Fawm=72%:

Explanation:
On Ply 4& above, PVS generates "Qxd5 Kel Nf6 Nc3". After Nf6 move, the board

position is same as

Qxd5 Kel Nf6 (HashKey Match found) Nc3

Game Database has the following sequence:

l.e4Nc6 2.Ke2d5 3.Kel Nf6o 4. exdS5 QxdS

Current board could follow the following sequence after computer makes move Qxd5:

l.e4 Nc6 2.Ke2d5 3.exd5Qxd5 4.Kel Nf6

Thus PVS stopped at Ply 4& and used the PVNode at that point instead of going ahead.

Without the extension the PVS code would have searched until Ply7 and in this case

would have still returned move Qxd5.

12

Figure 5: Snippet of PVS extension code
i

* At everydepth, if VS extensionis specified, consult the book and see ifthere 15 a

* match board position. If a match found, use the EootFV as the nextblack move. Ifnot,
* comtirme with the FVS as usual until the maanmm depths possible.

*)

int SearchFoot (shoit depth, int alpha, int beta)

{

1 flags & BOOEPV I {

found = BookPVS Cuerd HashEey, SANmY),

if [frand == tme] |
If Bock move found with near query. Stop PV 3 now amd use the PYNode imumediately.
SANMove (FoctFV, 17,
fprrtf(zdbz_fp, "wFVE extension: 5 top FVE and use book move. depth = %dn.", Idepth),
SET (flags, TMECOUTY,

¥

¥

1
s

*Called fromeach depth of FWS search fo see if'there 15 a matching book entrr
* hased upon the newboard position at this pyws move
*j
int Book FVE Chaer W HashType hkey, char #mowe)
{
intj;
HThookloaded &dr hook_allocated) |
retum BOOE_ENOBOOE
¥
for (DIGES T_START hkey); IDIGEST _EMPTY(3), DIGEST_NEXT, hkeyl] {
(DIFEST MATCH, hkeyl) {
if (bockpos [] wrizs = 0]
fprntlzdbz_fp, "PVS extension: Mateh faand HashEew= Dk ", hke),
fprimtfl zgdbz_{h, " mowe(¥0d) = Y wrins = %d
Gamelntid + 1, move, bookpos[f]aarins];
fhashizdbz_ 1),
retim e,

rebarn false;

2. Autoplay Setup

With Autoplay setup I was able to make chess engines play against each other. This
feature is very useful since enhancements made to the GNU chess engine and the original

engine can play against each other and their performance can be compared.

13

Autoplay is an open source chess program that connects two xboard/winboard protocol
compliant chess engines and lets them play against each other. GNU chess is an xboard

compliant chess engine and it could be run in the engine mode using the —x option.

The engine displays the information in the Coordinate Notation that uses only the squares

that the pieces were on to denote movements. (such as 1.e2e4 e7¢6)

I was able to modify the Autoplay source code such that it stored all the moves made in a
.PGN format which I could later run it on xboard to view the complete game.
Autoplay can be started like this:

Jautoplay.exe -1 "./White gnuchess.exe -x" -2 "./Black gnuchess.exe -x"

How Autoplay works:

Autoplay creates two new processes for each GNU chess engine.

It does a fork/exec for White gnuchess.exe and then fork/exec for Black gnuchess.exe.

There are two pipes that are created per process:

White gnuchess.exe: fdl rand fd1 w

Black gnuchess.exe: fd2 rand fd2 w

14

Figure 6: Autoplay Design

Autoplay

fdl w fd2 r
fld_wr
fdl

White Elaclk

Autoplay - Reads from fd1 r (reads a move from white chess engine)
Writes to fd2_ w (writes the move to black chess engine)
Reads from fd2 r (reads a move from black chess engine)

Writes to fd1_w (writes the move to white chess engine)

Autoplay process does a select(fd1l r, fd2 r) and reads the data on whichever

filedescriptor the data has arrived on. Then, it writes the data to the other engine.

Deliverable 4:

Extension to Chess game database lookup logic
GNU chess program’s game database (book) lookup logic was enhanced such that the

lookups were made much faster and efficiently.

Anytime GNU chess program tries to lookup moves from the game database (book.dat) if
has to do the following:
1. Based upon current played board position generate all legal next moves.

2. For each move, calculate the hashkey for the current board.

15

3. Do a sequential digest search for the hashkey in bookpos[] array. If the hashkey is
found, then there is a book move, if not then continue looking.
4. If more than one book move is found then select the one with highest wins.

Currently bookpos stores the following:
bookpos(i].key = Hashilew,

bookpos(i]. wins,

bookpos(i].losses,

bookpos(i]. draw s,

Eg (0xE2hd7241, 2,0, 1

As an extension to this book lookup logic I modified the information that is stored in
bookpos such that for each white move read from the game database I store all the
winning next black moves with the total number of wins. GNU chess program when run

with —B option runs the program with the following extension.

Assuming user is playing white and computer is playing black.

We can just store the following in new format:
static strud bashtype {
uintld twins,
uintld tlosses,
uintld t drawe,
HashType key,
stract nmove {
char rmowe] BANSE];
uintlé t mains,
1 nestrnovesDVAK BLACK NEXTMOVES],
1 *bookpos,

Example: (1=83bd7241, 2, 0, 1, €5 4, N6, 8, a6, 2, N5, §)
(with MAY BLACK NEXTMOVES = 4)

With this extension when the game starts, the book lookups will be faster because now
the program has to only generate current board’s HashKey, find the matching HashKey
from the book and then look at the next black winning moves and pick the one with

highest number of moves. Information stored in book.dat will also be similar format.

16

Thus we can skip generating the legal moves and calculating Hash Key and doing a
lookup each time.

Example 1: GNU Chess with original logic:

*fgmichess -& -p

FHTT Chiess 507

Sdfustivg Hadh Size to 1024 slots
Trarepositicntable: Eraries=1K Sz =40
Paambiachtable: Exdrise=0F Size=23K

White monee (17 &4

Comnpatter Thivding. ..

BookQuary: Legal muves generated = 2| Bhumber hash slots searched = 13
Openirz database: Q96148 book positicns . Inthis posidion, there ave 10 hook ruoves:
eA(A00Y cH4TH) b (2067 cO(132) BACL01Y H(WE) A3 9 G T2) Hea(hd) dS062)
CoavpatteT e is: e

White mumee (4): Bad

Comrpnater Thinbdng, ..

BookQuery: Legal oves generated = 32, Hhumbar hash slots seardhed = 18
Cpendhg databace ; 996148 book pociione . In this posidon, there are § ook rvoves
HEG24 1) d6078) bAE34) Hge(33) £5033) BAOM) BeT(0) oo

Coprpnater mgnee ie: MG

M cooom ...

Example 2: GNU Chess with Book Extension:
= Jgmachess -e -p -B

GHTT Chess 507

Sdnsting Hadh Size to 1024 slots

Trarepositiontable: Erniries=1F Sime=40EK

Pawr hash table: Erdries=0F Size=20K

Wit mronee (1) ed

Comgnater Thinddn g, ..

Book Chaery: Folloariigs re st bladk moe ¢ fomd:

Blomre = eff, Wine =41

Dlomre = ef, Wine = 162

Dolomee = o5, Wne = 100

Bolomre = off, Wine =23

HEXTBLACK MOVE CHOSEHN. hlove(l) = ef RortPVW= 3364
CloprEnater Mo i el

White e (4] : Bad

Corrgnater Thinkdn g, ..

Booki Chiery: Folloarings re st bladk moee ¢ fomd:

Do = A6 s =4

Dolomee = £5 Wine =1

Do = M6, Wine =49

HEXTEBLACK MOVE CHOSEN. hove(d) = Bt RootP ¥V = 40132
Cloprgnater s is: HiG

And coon...

Without the extension the GNU chess program had to generate following number of
moves, calculate HashKey for each of those moves and had to search the book for the

number of slots mentioned below for just first five moves.

BookQuery: Legal moves generated = 20, Number hash slots searched = 13

17

BookQuery: Legal moves generated = 29, Number hash slots searched = 13
BookQuery: Legal moves generated = 30, Number hash slots searched = 16
BookQuery: Legal moves generated = 32, Number hash slots searched = 18
BookQuery: Legal moves generated = 30, Number hash slots searched = 16

All these were skipped in the extension where we stored the 4 possible next black
winning moves. As the game progress, the number of legal moves will increase and so

the book search will take more time without the above extension.

Book extension code:

/* Each entry in book.dat is also extended to contain
* upto next 4 winning black moves.
*/
static unsigned char buf[2+2+2+8+((SANSZ+2)*MAX_BLACK_NEXTMOVES)];

/* Offsets */

typedef struct {
int nmove off;
int nwins_off;

} noff_t;
static noff_t nextoffs[MAX_ BLACK NEXTMOVES] = {
14, 22,
24, 32,
34, 42,
44, 52
};

/* Generating the binary game database file.
* Fill up buf to write to disk (book.dat)
*/

book_to buf()

for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
memcpy (&buf[nextoffs[n].nmove off],
bookpos[index].nextmoves[n].-nmove, SANSZ);
for (k=0; k<2; k++) {
buf[nextoffs[n].nwins_off + k] =
((bookpos[index] .nextmoves[n] .nwins) >> ((1-k)*8)) & Oxff;
}

}

/* Read from disk (book.dat) and populate bookpos
*/

buf_to_book()

{

for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
memcpy (bookpos[i]-nextmoves[n].nmove,
&buf[nextoffs[n].nmove_off], SANSZ);

18

bookpos[i].-nextmoves[n].nwins += (buf[nextoffs[n].nwins_off] <<
8) | buf[nextoffs[n].nwins_off+1];

}
}

/* Add the next black move in this white bookpos index
*/
void BookAddNextBlackMove(unsigned long index, char *move)

{

// Check if the move is already there.
for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
if (strcmp(bookpos[index].nextmoves[n].nmove, move) == 0) {
wins = ++(bookpos[index].nextmoves[n].nwins);
found = true;
return;
}
}
// No match. Put in the first available slot.
for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
if (strcmp(bookpos[index].nextmoves[n].nmove, ") == 0 ||
bookpos[index] .nextmoves[n] -nmove[0] == "\0") {
strcpy(bookpos[index].nextmoves[n].-nmove, move);
wins = ++(bookpos[index].nextmoves[n].nwins);
return;
}
¥

return;

}

/*

* For a given white hashkey, find the next black move with the
* highest number of wins.

*/

int BookFindNextBlackMove(HashType hkey)

{

for (DIGEST_START(j.,hkey); IDIGEST _EMPTY(jJ); DIGEST_NEXT(jJ, hkey)) {
it (DIGEST_MATCH(j, hkey)) {
// 1T multiple winning moves are there, pick the
// one with highest wins
printfF('"\n\nFollowing next black moves found:\n\n'");
for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
if (bookpos[j]-nextmoves[n].-nwins > maxwins) {
maxwins = bookpos[j]-nextmoves[n].nwins;
maxindex = n;

if (bookpos[j]-nextmoves[n].-nwins > 0) {
printf(""Move = %s, Wins = %d\n",
bookpos[j]-nextmoves[n].nmove,
bookpos[j]-nextmoves[n].nwins);

}

}
if (maxindex < 0 |] maxindex >= MAX_BLACK_NEXTMOVES) {
return false;

move = bookpos[j].-nextmoves[maxindex].nmove;

19

p = ValidateMove(move);
RootPV = p->move; //set the NEXT Black move chosen
return true;
}
}

return false;

}

{ //Code modification done in lexpgn.c

/* MakeMove increments GameCnt */
MakeMove(side, &p->move);
if (addtobook[side]) {
if (BookBuilder (result, side) == BOOK EFULL) {
printf("'Book full - Failed to add move %s\n",

yytext);
ShowBoard();
return 1;
by
/*

* I book extension is specifed, save the next winning

* black move iIn same index as the current white

* move bookpos index.

*/

if (flags & BOOKEXT) {

if (side == black && white_book _index = 0) {

// Put this black move into that index.
BookAddNextBlackMove(white_book_index, yytext);
white_book _index = 0;

}
Future Work

My research will continue on comparing and converting Chess game board so that next

best move can be calculated based upon games that have been seen before.

Board conversions:

My Goal will be to keep a collection of several board games. Possibly create cluster of
game boards based upon how close they are to each other. At any point when the next

move is being calculated, check if a matching entry can be found in the stored games.

20

If a matching entry cannot be found then generate some number of moves on the current

board position such that it might lead to a stored board position. In some cases, just one

move might lead to a few stored games. Pick the best move that had the maximum

number of wins. In some case, multiple moves might lead to a stored game even though

the current board position might not be present in the stored games list.

"Board Conversion" is required in this case. Following points will be researched and

implemented in CS 298:

1.

How many moves and what moves are required by both players to convert the
current game into a stored game? (in general, given a board, what are moves
required to convert it to another board).

If 2 moves might lead to a stored board game and 4 moves might lead to another
stored board game, which would you choose? 2 moves has higher probability of
getting to the stored game.. but 4 moves might lead to more games which have
more wins?

W hat are all the cases when a board cannot be converted to another board? In all
those cases, this conversion part can be skipped.

How much depth to search (how many plys) when converting so that we don't
spend too much time in an inefficient manner?

Can you always decide that two board games are same? (HashKey)

If you have gone too far into the game without finding any matching entries from
the stored game, how realistic is that you can find some matching entries later?

When should you stop doing such a conversion so that time is not wasted?

21

Conclusion:

The GNU chess is the first open source software that I had to work so closely with. Since
open source software does not come with proper documentation, at times it had been very
challenging to understand the code. I also spent a lot of time learning new chess moves
and about different grandmasters. The best part though was that I got to play chess a lot

during this semester and apparently my family also has got hooked on chess.

Reference:

[1973] Mechanisms for comparing chess programs. T. A. Marsland. P. G. Rushton. ACM
Press. 1973.

[1982] Parallel Search of Strongly Ordered Game Trees. T. A. Marsland. M. Campbell.
ACM Press. 1982.

[1983] Computers, Chess, and Cognition. T. A. MArsland. J. Schaeffer. Springer-Verlag.
1983.

[1989] Control Strategies for Two-Player Games. B. Abramson. ACM Press. 1989.
[1996] New Advances in Alpha-Beta Searching. J. Schaeffer. A. Plaat. 1996.
[1996] Recent advances in computer chess. M. Newborn. T. Marsland. ACM Press. 1996.

[2004] Chess playing machines from natural towards artificial intelligence?. F. Paul.
Technical University of Wroclaw. 2004.

[2006] The Expert Mind. P. Ross. Scientific American. 2006.

[2006] Learning long-term chess strategies from databases. Sadikov. Aleksander. Bratko.
Ivan. Kluwer Academic Publishers. 2006.

http://www.chessgames.com/ Online historical chess games databases.

http://www.gnu.org/software/chess/ GNU chess program web site.

22

