
CS 297 Report

Improving Chess Program Encoding Schemes

Supriya Basani

(sbasani@yahoo.com)

Advisor: Dr. Chris Pollett

Department of Computer Science

San Jose State University

December 2006

2

Table of Contents:

Introduction... 3
Deliverable 1:.. 4

Chess Game Databases and GNU Chess Program ... 4
Book.dat generation algorithm: .. 5
Database lookup algorithm: .. 6

Deliverable 2:.. 7
GNU Chess program's PVS Algorithm .. 7

PVS algorithm:.. 8
Deliverable 3:.. 10

Extension to PVS algorithm and Auto play setup .. 10
1. Extension to PVS algorithm.. 10
2. Autoplay Setup.. 13
How Autoplay works: ... 14

Deliverable 04:.. 15
Extension to Chess game database lookup logic .. 15

Future Work .. 20
Board conversions:.. 20

Conclusion: ... 22
Reference: ... 22

3

Introduction

Chess-playing programs have been one of the most studied areas for Artificial

Intelligence research. Many successful chess programs can beat chess experts, yet their

style of play is incomparable to chess grandmasters. Alpha-Beta pruning algorithm

written in 1963 is one of the most popular search algorithms on game trees. Many

enhancements on top of this algorithm have been implemented to improve the search

efficiency. Apparently this simplistic depth first, brute-force approach does not compile

well with Artificial Intelligence techniques. Unlike the computer logic that examines

every possible position for a fixed number of moves, the grandmasters get their right

moves from constructing the whole board based upon few pieces of information on the

board and from recollections of salient aspects of past games.

This report summarizes modifications to an existing computer chess program, GNU

chess, so that it plays more like a human player. GNU Chess is a free chess-playing

program developed as part of the GNU project of the Free Software Foundation (FSF).

GNU Chess is intended to run under Unix or Unix-compatible systems. It is written in C

and should be portable to other systems. My goal was to fully understand how GNU

chess program worked and then experiment with my notion of human like encoding

schemes. Instead of depending on the complicated search algorithm to find the next best

move, my logic was to use the chess game database as much as possible. I was able to

modify the Principal Variation Search algorithm used in GNU chess to lookup next best

move from the chess game database more efficiently.

4

During my research and development work performed in CS 297 I presented four

deliverables. This report summarizes all the work done in each of this deliverables. In the

first deliverable I presented my findings on how to use external chess game database with

GNU chess. In the second deliverable I presented detailed description of how Principal

Variation Search (PVS) algorithm works and compared it with regular Alpha-Beta

pruning. In the third deliverable I presented my modification to the PVS algorithm where

it looks up the chess game database for the next best move during each search depth. This

modification helped reduce the number of depths the PVS search algorithm had to search

for the next best move. Along with this deliverable I also presented the auto play setup

for chess programs where two GNU chess programs could play against each other. This

setup is very useful to compare my chess program with the existing chess programs. In

the fourth deliverable I was able to present the modification to chess game database

lookup algorithm such that lookups can be significantly faster and more efficient. Finally

I conclude this report with a detailed description of future work that will be done in CS

298.

Deliverable 1:

Chess Game Databases and GNU Chess Program

My project had started out with my research on how GNU chess worked. I researched

and understood how external chess game databases can be used with GNU chess

program. Chess game databases come in .PGN format. PGN format file is converted into

binary (book.dat) format by running the GNU Chess command. The book.dat is a binary

file written in network byte order. Once the database is converted into binary format,

GNU Chess consults the book for next moves. If it finds an appropriate matching move,

5

it uses that move otherwise the program calculates the next best move using the PVS

GNU Chess algorithm.

Figure 1: Integrating grandmaster Anand Vishwanathan’s 2106 games:

In Figure 1 I compiled grandmaster Anand Vishwanathan’s 2106 games and converted it

into book.dat format used by GNU Chess program.

Book.dat generation algorithm:

1. The book program uses lex and yacc to parse the Anand.pgn file.

2. Check if trusted player and decide to add to bookpos[]. bookpos[] array is almost

1MB size (1MB book moves can fit in it).

3. Call MakeMove (bookmove).

4. Calculate HashKey based on board position (collisions for two different board

positions should be very rare with 64bit HashKey and a good hash algorithm).

5. Add the move to bookpos[] if its unique.

Currently bookpos stores the following for each move.

bookpos[i].key = HashKey;
bookpos[i].wins;
bookpos[i].losses;
bookpos[i].draws;

6

6. Reset the board position to initial state. And repeat steps for next entry in the PGN
file.

Figure 2: Example of next move lookup from Chess game database:

Figure 2 shows an example of how GNU chess calculates the next best move from the

chess game database.

Database lookup algorithm:

The GNU Chess program has to do the following anytime it checks if there is a book

move.

1. Based upon current board position generate all legal next moves.

2. For each legal move, calculate the HashKey for the current board.

3. Do a sequential digest search for the HashKey in bookpos[] array. If the HashKey

is found, then there is a book move, if not continue looking for all other legal

moves.

4. If none of the legal moves HashKey matches then the program runs the PVS

search algorithm to generate the next best move.

7

5. If more than one match is found then the program picks the move based upon

number of games won with that move. It is also configurable how it picks the

move - best, worst, random and so on.

Deliverable 2:

GNU Chess program's PVS Algorithm
In this deliverable I presented by findings on how PVS algorithm works in GNU Chess

program. In order to understand the algorithm I had implemented the Alpha-Beta cutoffs

algorithm and Principal Variation Search algorithm and ran it on sample input values. I

also added special print statements into GNU Chess PVS algorithm in order to

demonstrate how PVS algorithm works. The results of the finding are explained via the

program outputs.

Figure 3: Sample game tree showing Alpha-Beta cutoffs and PVS cutoffs.

Figure 3 represents a sample game tree which was used to compare Minimax, Alpha-Beta

cutoffs and PVS cutoffs. Game tree is a recursively defined data structure that consists of

8

the root node representing the current state and finite set of branches representing the

legal moves. These branches point to the potential next states, each of which, in turn, is a

smaller game tree. The distance of a node from the root is its depth.

PVS algorithm:

PVS algorithm maximizes the portion of game tree that can be cutoff by attempting to

rapidly determine the best value of α and β. These α and β values define a window within

which the Minimax value must lie; thus smaller the window the greater the cutoffs.

Once the algorithm finds a move (PV move/node) with score that is between the α and β

value, the rest of the moves are searched with the goal of proving that they are all bad. If

the algorithm finds out that it was wrong, and that one of the subsequent moves was

better than the first PV move, it has to search again, in the normal Alpha-Beta manner.

Comparing Minimax, Alpha-Beta and PVS output on game tree represented in
Figure 3:

Regular Minimax program visited all nodes in the game tree. Total number of nodes

visited = 15.

With Alpha-Beta program, the number of nodes visited was 14. Cutoff occurred at node

N4 because the alpha value (6) was greater than the beta value (5). Node N10 was cut off.

For the same game tree, the number of nodes visited using the PVS algorithm was 13.

Cutoff occurred at N4 (N10 was cutoff) and also at N5 (N12 was cutoff).

N10 was cutoff due to basic alpha beta pruning.

9

N12 was cutoff due to the PVS algorithm. This cutoff occurred since at N5 alpha 9 >=

beta 6. PVNode with a value of 9 was assumed at N5. Since N13 and N14 were also less

than 9, this assumption proved to be right.

Figure 4: PVS output

However, if the following values were put into the tree:

N12 = 10 N13 = 11 and N14 = 11

In this case, N12 = 10, would be the final PVS value at N0. N14 would be cutoff since at

N6 alpha 11 >= beta 10.

10

So, when the PVS algorithm finds that minimax at node N6 = 11, it knows that the

previous assumption of cutting off N12 = 10 was incorrect. So, it has to now search N12

with alpha = 9, beta = 2147483647 score = 10.

The above example illustrates two important things:

1. If move ordering is good, PVS usually does better than Alpha-Beta. More nodes

can be cutoff. (In the example tree, one extra node was cutoff).

2. If the move ordering is not so good, PVS might have to re-search some of the

subtrees incurring performance penalty. In any case, PVS will not search any

more nodes than alpha beta, but it might have to re-search some of the subtrees

like the example with the changed values mentioned above.

Deliverable 3:

Extension to PVS algorithm and Auto play setup

1. Extension to PVS algorithm

In GNU chess when the current board position is not found in the game database (Book)

then the next move is calculated using the PVS algorithm. As PVS algorithm tries to

refine α (or β) by searching several ply along the game tree, it is possible to reach a board

position with some future moves which can be found in the game database. That is, two

games can reach the same board positions even though they do not have the same

sequence of moves.

Assume two games:

1. a b 2. c d 3. e f

2. c b 2. a d 3. e f

11

At move 3, the board position is same even though the initial sequence of steps is

different. Thus their HashKey derived from current board position should be same.

My extension to PVS algorithm was to compare current board’s HashKey at each search

depth during PVS calculation with board HashKeys in the game database. If a matching

board position was found then the move leading to that board position was returned and

the PV search was terminated.

I implemented a special option called ‘-b’ in GNU chess program which ran the program

with the above extension. In order to test this extension the chess program was run

against a dummy game database that had only one simple game as follows:

dumb.pgn

1. e4 Nc6 2. Ke2 d5 3. Ke1 Nf6 4. exd5 Qxd5 5. Ke2 Qe4#

{computer wins as black} 0-1

During the actual play if the user makes the following moves:

1. e4 Nc6 2. Ke2 d5 3. exd5

Now computer’s next move with the new extension will be:

Next move lookup from game database fails because current board position does not

exists in the game database.

12

PVS algorithm is run:

Explanation:
On Ply 4& above, PVS generates "Qxd5 Ke1 Nf6 Nc3". After Nf6 move, the board

position is same as

 Qxd5 Ke1 Nf6 (HashKey Match found) Nc3

Game Database has the following sequence:

1. e4 Nc6 2. Ke2 d5 3. Ke1 Nf6 4. exd5 Qxd5

Current board could follow the following sequence after computer makes move Qxd5:

1. e4 Nc6 2. Ke2 d5 3. exd5 Qxd5 4. Ke1 Nf6

Thus PVS stopped at Ply 4& and used the PVNode at that point instead of going ahead.

Without the extension the PVS code would have searched until Ply7 and in this case

would have still returned move Qxd5.

13

Figure 5: Snippet of PVS extension code

2. Autoplay Setup

With Autoplay setup I was able to make chess engines play against each other. This

feature is very useful since enhancements made to the GNU chess engine and the original

engine can play against each other and their performance can be compared.

14

Autoplay is an open source chess program that connects two xboard/winboard protocol

compliant chess engines and lets them play against each other. GNU chess is an xboard

compliant chess engine and it could be run in the engine mode using the –x option.

The engine displays the information in the Coordinate Notation that uses only the squares

that the pieces were on to denote movements. (such as 1.e2e4 e7e6)

I was able to modify the Autoplay source code such that it stored all the moves made in a

.PGN format which I could later run it on xboard to view the complete game.

Autoplay can be started like this:

./autoplay.exe -1 "./White_gnuchess.exe -x" -2 "./Black_gnuchess.exe -x"

How Autoplay works:

Autoplay creates two new processes for each GNU chess engine.

It does a fork/exec for White_gnuchess.exe and then fork/exec for Black_gnuchess.exe.

There are two pipes that are created per process:

White_gnuchess.exe: fd1_r and fd1_w

Black_gnuchess.exe: fd2_r and fd2_w

15

Figure 6: Autoplay Design

Autoplay - Reads from fd1_r (reads a move from white chess engine)

 Writes to fd2_w (writes the move to black chess engine)

 Reads from fd2_r (reads a move from black chess engine)

 Writes to fd1_w (writes the move to white chess engine)

Autoplay process does a select(fd1_r, fd2_r) and reads the data on whichever

filedescriptor the data has arrived on. Then, it writes the data to the other engine.

Deliverable 4:

Extension to Chess game database lookup logic
GNU chess program’s game database (book) lookup logic was enhanced such that the

lookups were made much faster and efficiently.

Anytime GNU chess program tries to lookup moves from the game database (book.dat) if

has to do the following:

1. Based upon current played board position generate all legal next moves.

2. For each move, calculate the hashkey for the current board.

16

3. Do a sequential digest search for the hashkey in bookpos[] array. If the hashkey is

found, then there is a book move, if not then continue looking.

4. If more than one book move is found then select the one with highest wins.

Currently bookpos stores the following:

As an extension to this book lookup logic I modified the information that is stored in

bookpos such that for each white move read from the game database I store all the

winning next black moves with the total number of wins. GNU chess program when run

with –B option runs the program with the following extension.

Assuming user is playing white and computer is playing black.

We can just store the following in new format:

With this extension when the game starts, the book lookups will be faster because now

the program has to only generate current board’s HashKey, find the matching HashKey

from the book and then look at the next black winning moves and pick the one with

highest number of moves. Information stored in book.dat will also be similar format.

17

Thus we can skip generating the legal moves and calculating Hash Key and doing a

lookup each time.

Example 1: GNU Chess with original logic:

Example 2: GNU Chess with Book Extension:

Without the extension the GNU chess program had to generate following number of

moves, calculate HashKey for each of those moves and had to search the book for the

number of slots mentioned below for just first five moves.

BookQuery: Legal moves generated = 20, Number hash slots searched = 13

18

BookQuery: Legal moves generated = 29, Number hash slots searched = 13
BookQuery: Legal moves generated = 30, Number hash slots searched = 16
BookQuery: Legal moves generated = 32, Number hash slots searched = 18
BookQuery: Legal moves generated = 30, Number hash slots searched = 16

All these were skipped in the extension where we stored the 4 possible next black

winning moves. As the game progress, the number of legal moves will increase and so

the book search will take more time without the above extension.

Book extension code:

/* Each entry in book.dat is also extended to contain
 * upto next 4 winning black moves.
 */
static unsigned char buf[2+2+2+8+((SANSZ+2)*MAX_BLACK_NEXTMOVES)];

/* Offsets */
typedef struct {
 int nmove_off;
 int nwins_off;
} noff_t;
static noff_t nextoffs[MAX_BLACK_NEXTMOVES] = {
 14, 22,
 24, 32,
 34, 42,
 44, 52
};
/* Generating the binary game database file.
 * Fill up buf to write to disk (book.dat)
 */
book_to_buf()
{

...
 for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
 memcpy(&buf[nextoffs[n].nmove_off],
bookpos[index].nextmoves[n].nmove, SANSZ);

for (k=0; k<2; k++) {
buf[nextoffs[n].nwins_off + k] =

((bookpos[index].nextmoves[n].nwins) >> ((1-k)*8)) & 0xff;
}

 }
}
/* Read from disk (book.dat) and populate bookpos
 */
buf_to_book()
{

...
 for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {
 memcpy(bookpos[i].nextmoves[n].nmove,
&buf[nextoffs[n].nmove_off], SANSZ);

19

 bookpos[i].nextmoves[n].nwins += (buf[nextoffs[n].nwins_off] <<
8) | buf[nextoffs[n].nwins_off+1];
 }
}

/* Add the next black move in this white bookpos index
 */
void BookAddNextBlackMove(unsigned long index, char *move)
{
 ...
 // Check if the move is already there.
 for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {

if (strcmp(bookpos[index].nextmoves[n].nmove, move) == 0) {
wins = ++(bookpos[index].nextmoves[n].nwins);
found = true;
return;

}
 }
 // No match. Put in the first available slot.
 for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {

if (strcmp(bookpos[index].nextmoves[n].nmove, "") == 0 ||
bookpos[index].nextmoves[n].nmove[0] == '\0') {
strcpy(bookpos[index].nextmoves[n].nmove, move);
wins = ++(bookpos[index].nextmoves[n].nwins);
return;

}
 }
 return;
}

/*
 * For a given white hashkey, find the next black move with the
 * highest number of wins.
 */
int BookFindNextBlackMove(HashType hkey)
{
 ...
 for (DIGEST_START(j,hkey); !DIGEST_EMPTY(j); DIGEST_NEXT(j, hkey)) {

if (DIGEST_MATCH(j, hkey)) {
 // If multiple winning moves are there, pick the
 // one with highest wins
 printf("\n\nFollowing next black moves found:\n\n");
 for (n = 0; n < MAX_BLACK_NEXTMOVES; n++) {

if (bookpos[j].nextmoves[n].nwins > maxwins) {
maxwins = bookpos[j].nextmoves[n].nwins;
maxindex = n;

}
if (bookpos[j].nextmoves[n].nwins > 0) {

printf("Move = %s, Wins = %d\n",
bookpos[j].nextmoves[n].nmove,
bookpos[j].nextmoves[n].nwins);

}
 }
 if (maxindex < 0 || maxindex >= MAX_BLACK_NEXTMOVES) {

return false;
 }
 move = bookpos[j].nextmoves[maxindex].nmove;

20

 p = ValidateMove(move);
 RootPV = p->move; //set the NEXT Black move chosen
 return true;
}

 }
 return false;
}

{ //Code modification done in lexpgn.c
 ...
 /* MakeMove increments GameCnt */
 MakeMove(side, &p->move);
 if (addtobook[side]) {

if (BookBuilder (result, side) == BOOK_EFULL) {
printf("Book full - Failed to add move %s\n",
 yytext);
ShowBoard();
return 1;

}
/*
 * If book extension is specifed, save the next winning
 * black move in same index as the current white
 * move bookpos index.
 */
if (flags & BOOKEXT) {

if (side == black && white_book_index != 0) {
// Put this black move into that index.
BookAddNextBlackMove(white_book_index, yytext);
white_book_index = 0;

}
}

 }
 ...
}

Future Work

My research will continue on comparing and converting Chess game board so that next

best move can be calculated based upon games that have been seen before.

Board conversions:

My Goal will be to keep a collection of several board games. Possibly create cluster of

game boards based upon how close they are to each other. At any point when the next

move is being calculated, check if a matching entry can be found in the stored games.

21

If a matching entry cannot be found then generate some number of moves on the current

board position such that it might lead to a stored board position. In some cases, just one

move might lead to a few stored games. Pick the best move that had the maximum

number of wins. In some case, multiple moves might lead to a stored game even though

the current board position might not be present in the stored games list.

"Board Conversion" is required in this case. Following points will be researched and

implemented in CS 298:

1. How many moves and what moves are required by both players to convert the

current game into a stored game? (in general, given a board, what are moves

required to convert it to another board).

2. If 2 moves might lead to a stored board game and 4 moves might lead to another

stored board game, which would you choose? 2 moves has higher probability of

getting to the stored game.. but 4 moves might lead to more games which have

more wins?

3. W hat are all the cases when a board cannot be converted to another board? In all

those cases, this conversion part can be skipped.

4. How much depth to search (how many plys) when converting so that we don't

spend too much time in an inefficient manner?

5. Can you always decide that two board games are same? (HashKey)

6. If you have gone too far into the game without finding any matching entries from

the stored game, how realistic is that you can find some matching entries later?

When should you stop doing such a conversion so that time is not wasted?

22

Conclusion:

The GNU chess is the first open source software that I had to work so closely with. Since

open source software does not come with proper documentation, at times it had been very

challenging to understand the code. I also spent a lot of time learning new chess moves

and about different grandmasters. The best part though was that I got to play chess a lot

during this semester and apparently my family also has got hooked on chess.

Reference:

[1973] Mechanisms for comparing chess programs. T. A. Marsland. P. G. Rushton. ACM
Press. 1973.

[1982] Parallel Search of Strongly Ordered Game Trees. T. A. Marsland. M. Campbell.
ACM Press. 1982.

[1983] Computers, Chess, and Cognition. T. A. MArsland. J. Schaeffer. Springer-Verlag.
1983.

[1989] Control Strategies for Two-Player Games. B. Abramson. ACM Press. 1989.

[1996] New Advances in Alpha-Beta Searching. J. Schaeffer. A. Plaat. 1996.

[1996] Recent advances in computer chess. M. Newborn. T. Marsland. ACM Press. 1996.

[2004] Chess playing machines from natural towards artificial intelligence?. F. Paul.
Technical University of Wroclaw. 2004.

[2006] The Expert Mind. P. Ross. Scientific American. 2006.

[2006] Learning long-term chess strategies from databases. Sadikov. Aleksander. Bratko.
Ivan. Kluwer Academic Publishers. 2006.

http://www.chessgames.com/ Online historical chess games databases.

http://www.gnu.org/software/chess/ GNU chess program web site.

