
CS 310: Doubly Linked Lists and Iterators

Chris Kauffman

Week 5-1



Career Fair

Logistics

I October Wed 7 (Sci/Eng) and Thu 8 (Humanities)
I 11 a.m. to 4 p.m. Dewberry Hall, JC
I Info for students here

Workshops

I Interview skills, resume prep, etc
I Info and list is here

http://careers.gmu.edu/students/events/fairs/
http://careers.gmu.edu/events/?dateObj=10/01/2015


Logistics

HW 2: Upcoming

I Interesting design issues, want to spare you too much trouble
I Posted Mon/Tue, 2 week turn around

Reading

I Weiss Chapter 17: Linked Lists
I Weiss Chapter 20: Hash Tables



The Deque: Double Ended Queue

I Add and remove at both ends
I interface Deque in java.util.Deque
I Several implementations in Java like ArrayDequeue and

LinkedList

Source

http://codersmaze.com/data-structure-explanations/queues-data-structure/double-ended-queue-in-data-structure/


Work It

Print elements front to back

class ArrayList/LinkedList{
public void printAll(){...}

}

I ArrayList implementation
I SinglyLinkedList

implementation
I Make both O(N)

Print elements back to front

class ArrayList/LinkedList{
public void printAllReverse(){...}

}

I ArrayList implementation
I SinglyLinkedList

implementation (!)
I Can both be O(N)?



Double Your Fun

I Singly linked nodes: only next
I Node n = new Node(data,next);

I Doubly linked also has previous
I Node n = new Node(data, previous, next);

1

How about printAllReverse() now

1Source: David H. Hovemeyer’s notes

http://goose.ycp.edu/~dhovemey/fall2011/cs201/lecture/lecture16.html


To Header or Not to Header
I May be able to simplify using extra space
I Auxiliary ’header’ and ’tailer’ nodes
I Draw pictures to understand these
I Weiss uses header/tailer nodes
I Consider code below for add(x) to the back of a linked list

No Header

public void add(T x){
if(empty()){

head =
new Node(x,null,null);

tail = head;
}
else{

tail.next =
new Node(x,tail,null);

tail = tail.next;
}

}

With Header/Tailer

public void add(T x){
Node n =

new Node(x,tail.prev,
tail);

tail.prev.next = n;
tail.prev = n;

}

I Always have head/tail nodes
I No special cases for empty
I Requires changes to get(i)



Relevance Note

Part of HW 2 will involve implementing a basic doubly linked list
I Constraint: no use of java.util.LinkedList
I Some functionality will require more control than standard

class
I Will provide version of Weiss’s doubly-linked list as a starting

point; you must modify and complete it
I His implementation is two-headed: special node for front and

rear, always there



A Problem

Recall
I ArrayList.get(i) : O(1)
I LinkedList.get(i) : O(n)

Trouble

List<Integers> l = ...;
int sum = 0;
for(int i=0; i<l.size(); i++){

sum += l.get(i);
}

What is the complexity of the loop?



Peeking Inside with Iterators

Arrays are simple
I get/set anything
I add/remove is obvious
I Very clear how data is laid out

Just about every other data structure is less so
I Getting/setting nontrivial
I Must preserve some internal structure - control access
I Element-by-element needs to be done carefully

These qualities give rise to iterators
I A view of a data structure
I Allows sequential access and modification



Iterators

Give access to a position in a list (or other data structure)

public interface ListIterator<T>{
// Can the iterator be moved?
public boolean hasNext( );
public boolean hasPrevious( );

// Move the iterator
public T next( );
public T previous( );

// Modify the container
public void add(x);
public void remove( );

}



Warning: In Between
List Iterators have slightly complex semantics: between list elements

Removing

LL l = new LL([A, B, C, D])
itr = l.iterator()

[ A B C D]
^

itr.next() [ A B C D ]
A ^
itr.remove() [ B C D ]

^
itr.next() [ B C D ]
B ^
itr.next() [ B C D ]
C ^
itr.remove() [ B D ]

^
itr.remove() [ B D ] //Error

^

Next/Previous

LL l = new LL([A, B, C, D])
itr = l.iterator()

[ A B C D ]
^

itr.next() [ A B C D ]
A ^
itr.next() [ A B C D ]
B ^
itr.previous() [ A B C D ]
B ^
itr.previous() [ A B C D ]
A ^
itr.next() [ A B C D ]
A ^
itr.remove() [ B C D ]

^



Iterator Semantics

I Use next()/previous() to move
I next()/previous() returns element "moved over"
I remove() removes element that was returned from last

next()/previous()
I Illegal to w/o first calling next/previous
I add(x) puts x before whatever next() would return

Once you wrap your head around it, not too bad
I Weiss’s implementation in LinkedList is slightly complex
I JGrasp has a tough time drawing iterators



Exercise: Draw the Final List

LL l = new LL([A, B, C, D])
iter = l.iterator()
iter.next()
iter.next()
iter.add("X")
iter.previous()
iter.add("Y")
iter.next()
iter.next()
iter.remove()
iter.next()
iter.add("W")
iter.previous()
iter.remove()



What would you do?

// l = [A, B, C, D];
it1 = l.iterator().next().next();
it2 = l.iterator().next();
// l = [ A B C D ]
// 1
// 2
it1.remove();
it2.next(); // ??

Where should it2 be now?


