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What are robots best suited for?

• Environments that are dangerous.

• Environments that are inaccessible.

• Environments that are taxing.

• Environments are are expensive to access.

• Environments that are inhospitable.

• Mars exploration, radiation cleanup, military 
surveillance,  hazardous waste assessment, ....

Undersea:   inaccessible, dangerous, costly, demanding.
As we all know, most of the world is undersea, yet it’s the 
environment on earth we understand the least well!
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Coral Reefs

• Oceans: 70% of earth’s surface.

• Reefs:  Greatest diversity / area of any marine 
ecosystem

– 4-5% of all species (91 000) found on coral reefs

• Significant to the health of the planet: 
– 1/2 of the calcium that enters the world’s oceans 

/year is taken up and bound into Coral Reefs as 
Calcium Bicarbonate 
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World Distribution

• Coral reefs are found in polar, temperate and tropical 
waters

• Highest diversity of species in tropics
• Found in 20 degree C surface isotherm 
• Optimal temperature for coral is 23-25 degrees C.  
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Atlantic

Dominant coral types:
-Branching coral (3 sp)
-Fire Coral

More common in Atlantic: 

Sea fan

Sea Whip
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Why Study Coral Reefs?

• Most biologically diverse and sensitive 
marine ecosystem

• Dramatically altered by humans

• By 1998, 27% of reefs were destroyed

– 16% was from coral 

bleaching event 

(El Nino)
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Coral Reefs

• Reefs are regions of exceptional biodiversity.

• 20% of the world’s reefs have been destroyed.

• 24% of reefs are under imminent threat of collapse due to 
human pressure,  26% under longer term threat of collapse!

– Dec. 2005 there was a terrible coral bleaching (and 
destruction) in the Caribbean.

– 95% of Jamaica’s reefs are dead or dying.

• If we want to make things better, we need to be able to 
measure the changes!

• This is taxing, error-prone, tiring and dangerous.
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Underwater vehicles

UT-1 Ultra Trencher 7.8 x 7.8 x 5.6 meters
Argo

Autonomous Benthic Explorer (ABE)

1200 pounds and a little over 2 meters long.
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Turtle like Robot
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Lobster like Robot
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Glider UW Robot
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Glider UW Robot
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Enabling Autonomous Capabilities in 
Underwater Robotics

• This work was presented at the International 
Conference on Intelligent Robots and Systems (IROS), 
2008, at Nice, France
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Overview
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Technologies to increase the level of autonomy

• AQUA description

• Guidance and Control

– Hovering

• Terrain Classification

• HRI

• Underwater Sensor Nodes

– Video Mosaics
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• Legged swimming vehicle
– Hexapod with flippers, descendant of 

RHex

– High mobility (can also walk, hover, etc)

• On-board cameras, IMU, computers

• Power autonomous for ~5+ hours

• Application: surveillance and 
monitoring of coral reefs, working in 
conjunction with marine biologists(s).

About Aqua
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AQUA Components
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(AQUA version 1)
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AQUA objectives

AQUA is about developing a portable robot that can walk and
swim, and which exhibits the ability to use vision and/or 
sound to know where it is and what is near it.

The robot could be used, for example, to survey and monitor 
the conditions on a coral reef.  By being able to land on the 
bottom and move around, the robot can make regular 
observations without disturbing the natural organisms.

The ability to walk, swim and use vision underwater is 
unique to AQUA (derived from RHex [Buehler et al.])

Allows for efficient station-keeping and 
surveillance.
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Project objectives
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• Survey and monitor the conditions on coral reefs

• Ability to walk on land, swim, and use vision underwater

• Ability to land on the sea floor



Autonomy

Operation Methods

• Tele-operation

• Partial Autonomy-HRI

• Full Autonomy
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Guidance
• Small, light, moderate-cost robot

• Learn  trajectories by (initially) following a diver

• Diver specifies specific actions as desired

• Diver specifies where and how data is collected
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Alternative Entry Technique
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Hovering illustration

•Hovering combines two distinct leg motions.  

•Can also selectively tune thrust direction to minimize 
disturbances

•Combining hovering with motion
can lead to interesting planning 
issues
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Controllers: Objectives

• Provide trajectory tracking capabilities to the 
vehicle

– Determine the required paddle force

– Determine the appropriate paddle motion 

• Stabilize the vehicle in the presence of 
disturbances
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Linear Model

• State vector

• Force vector

( , )x f x τ

 Tzyxrqpwvu x

 Tzzxx ffff 6161 τ

 x Ax Bτ

• Nonlinear model is linearized to allow use of linear 
systems theory
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Model Based Control

• PID controllers used 

• Both Linear and Non-Linear models used to 
augment the PID controller
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Stability Augmentation System

 xBKAx 

CS-417 Introduction to Robotics and Intelligent Systems 26

• Linear system is weakly unstable in yaw

• SAS aims to return state perturbations to zero

-K

Augmented System

x

τSAS

+

+

x = Ax+Bτ
τP



Experimental Validation

• Forward velocity of approximately 0.5m/s

• Roll and pitch impulse disturbances introduced 
by a swimmer

• Inertial Measurement Unit (IMU) data logged

Stability Augmentation and Model Based 
Control improved performance
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Results – Roll and Pitch Disturbance

Kp =0, Kφ=4, 

Kq=1, Kθ=8, 

Kr=0, Kψ=0
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Terrain identification
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• Vehicle is capable of using contact 
forces to identify terrains

• This allows gaits to be selected or 
adapted as a function of terrain type
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Vision-Based HRI 
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• Easier than 
conventional 
methods (e.g. type, 
touch screens)

• Requires no extra input 
mechanisms or sensors 
other than a camera

• Advantages of machine 
vision
– Problems lie in 

interpreting 'gestures'
– Fiducials as tokens 
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Visual Language
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•Gestural robot programming language

•Real-time interpreter

•Low-level constructs: robot action commands (e.g. 
MOVE_FORWARD)

•High-level constructs: loops, iterators, functions

•Commands coded in scripting language (Lua)
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Features
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4 REPEAT

9 0 ANGLE

2 DURATION

TURN_LEFT

MOVE_FORWARD

END

EXECUTE

for (i = 0; i < 4; i++) {

angle = 90;

duration = 2;

Turn_Left(angle, duration);

Move_Forward(duration);

}

(11 input tokens)(38 input tokens)
RoboChat snippetC-like Pseudocode

•Use of Reverse Polish notation to minimize unnecessary 
syntax artefacts (e.g. then, {...} etc)



Vehicle/Sessile Multirobot network
• Sessile sensor nodes

– Some close to one another (metric relations)

– Some well separated (metric or topological relations)

• Moving vehicle(s)
– Vehicle-carried odometry (VCO: topological -> metric)
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Sensor nodes
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Corrected Image Content

Noisy data collected from an underwater node
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Conclusions

• Autonomy in underwater scenarios is challenging

• Model based control increases the operational capabilities of our 
vehicle

• AQUA-Diver communication increased the autonomy capabilities of 
the vehicle

Future Work
• Cooperation between AQUA and the Sensor Nodes

• Develop Image based Localization

• HRI employing the Microsoft Robotics Studio

AQUA ROBOT is available to other labs

http://www.aquarobot.net 
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Questions
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Controllers: Inputs

• The inputs to the controller are actual and 
desired trajectory:

 Tdddddd rqpwvudv

 Tdddddd zyx ds

 Trqpwvuv

 Tzyx s

Desired velocity:

Desired position:

Actual velocity:

Actual position:

vve dv 

sse ds 

Velocity error:

Position error:
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Controllers: PID

Controller form:  dtsIspvd eKeKeKf

Kd, Kp and KI are diagonal matrices with positives entries

       

0

22





 dt

nn

sIspvd eKeKeK

bgvvDvvCvM

Equation of motion:
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Controllers: Model-based Linearizing

Controller form:

Equation of motion:

       





dt

nn

sIspvd

d

eKeKeK

bgvvDvvCvMf 22


0  dtsIspvda eKeKeKMe

•The objective of this controller is to remove every nonlinear 

term in the equation of motion of the robot

•This gives a linear system with decoupled degrees of 

freedom
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Controllers: Model-based Linearizing

Controller form:
       





dt

nn

sIspvd

d

eKeKeK

bgvvDvvCvMf 22


Equation of motion: 0  dtsIspvda eKeKeKMe

•The objective of this controller is to remove every nonlinear 

term in the equation of motion of the robot

•This gives a linear system with decoupled degrees of 

freedom

Also a more complex Non-Linear controller is used
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Controllers: Model-based Nonlinear

Controller form:

Equation of motion:

       





dt

nn

sIspvd

ddddd

eKeKeK

bgvvDvvCvMf 22


    

     0



 dtsIspvddd

dda

eKeKeKvvDvvD

vvCvvCMe

•The objective of this controller is to input the ideal force that 

would be required to achieve trajectory tracking

•The proportional, integral and derivative gains were added to 

account for uncertainties in the model
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Simulation results: Maneuvers

s

m

3
sin

6

1

120

3
cos1

2

1

1003

200
5.1

tt
u

tt
x

d

d






















s

radt
p

rad
t

d

d

4
sin

8

1

4
cos1

2

1













Surge maneuver:

Roll maneuver:
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SAS Results – Roll Only Disturbance
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SAS Results – Pitch Only Disturbance
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