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Functional Dependencies 



Today’s Topics

• Functional dependencies (FD)
– Definition
– Armstrong’s “axioms”
– FD closure and cover 
– Attribute closure
– (Super)key and candidate key



Steps in Database Design
• Requirements Analysis

– user needs; what must database do?
• Conceptual Design

– high level description (often done w/ER model)
– ORM encourages you to program here

• Logical Design
– translate ER into DBMS data model
– ORMs often require you to help here too

• Schema Refinement 
– consistency, normalization

• Physical Design - indexes, disk layout
• Security Design - who accesses what, and how

Today

Completed

Completed



Bad Relation Converted from E/R Diagram

• Hard to use (CRUD)
• Mental effort (Treat others are mind readers)
• Arbitrarily (No rules followed)
• Redundancy (Space, Inconsistencies, etc.)



Relational Schema Design 

Name SSN PhoneNumber City 
Fred 123-45-6789 510-555-1234 Berkeley 
Fred 123-45-6789 510-555-6543 Berkeley 
Joe 987-65-4321 908-555-2121 San Jose 

• One person may have multiple phones, but lives in only one city

• Primary key is what?

• What is the problem with this schema? 



Relational Schema Design 

Name SSN PhoneNumber City 
Fred 123-45-6789 510-555-1234 Berkeley 
Fred 123-45-6789 510-555-6543 Berkeley 
Joe 987-65-4321 908-555-2121 San Jose 

Anomalies: 
• Redundancy = repeat data

• Update anomalies = what if Fred moves to “Oakland”?

• Deletion anomalies = what if Joe deletes his phone number? 



Relational Schema Design 

Name SSN PhoneNumber City 
Fred 123-45-6789 510-555-1234 Berkeley 
Fred 123-45-6789 510-555-6543 Berkeley 
Joe 987-65-4321 908-555-2121 San Jose 

Break the relation into two: 

SSN PhoneNumber 
123-45-6789 510-555-1234 
123-45-6789 510-555-6543 
987-65-4321 908-555-2121 

Name SSN City 
Fred 123-45-6789 Berkeley 
Joe 987-65-4321 San Jose 

Anomalies have gone: 
• No more repeated data
• Easy to move Fred to “Oakland”
• Easy to delete all Joe’s phone numbers



Relational Schema Design (or Logical Design) 

• How do we do this systematically?
– Start with some relational schema

– Find out its functional dependencies (FDs)

– Use FDs to normalize the relational schema 



Functional Dependencies (FDs) 

• X → Y: ‘X’ functionally determines ‘Y’
• Informally: ‘if you know ‘X’, there is only one ‘Y’ to match’
• If t is a tuple in a relation R and A is an attribute of R, then 

t[A] is the value of attribute A in tuple t  

EmpID Name Phone Position 
E0045 Smith 1234 Clerk 
E3542 Mike 9876 Salesrep 
E1111 Smith 9876 Salesrep 
E9999 Mary 1234 Lawyer 



Functional Dependencies (FDs) 
Formally: X → Y ➔ (t1[X] = t2[X] ➔ t1[Y] = t2[Y]) 

if two tuples agree on the ‘X’ attribute, they *must* agree on the ‘Y’ 
attribute, too (eg., if ids are the same, so should be names)

EmpID Name Phone Position 
E0045 Smith 1234 Clerk 
E3542 Mike 9876 Salesrep 
E1111 Smith 9876 Salesrep 
E9999 Mary 1234 Lawyer 



Functional Dependencies (FDs) 

X and Y can be sets of attributes

A FD on a relation R is a statement: 
– If two tuples in R agree on attributes A1, A2, …, An then they must 

also agree on the attribute B1, B2, …., Bm
– Notation: A1,A2,… An → B1, B2, …, Bm



Functional Dependencies (FDs) 

• A FD is a constraint on a single relational 
schema 
– It must hold on every instance of the relation
– You can not deduce an FD from a relation instance!
– But you can deduce if an FD does NOT hold using an 

instance



FD Example

EmpID Name Phone Position 
E0045 Smith 1234 Clerk 
E3542 Mike 9876 Salesrep 
E1111 Smith 9876 Salesrep 
E9999 Mary 1234 Lawyer 

An FD holds, or does not hold on an instance: 

EmpID à Name, Phone, Position 
Position à Phone
but not Phone à Position 1234 à Clerk

1234 à Lawyer



FD Example - 2

X Y
1 6

1 7

2 8

X → Y

X Y
1 3

1 3

1 3

2 3

3 4

X → Y

X Y
1 3

1 3

1 3

2 3

3 4

1 4

X → Y



FD Summary

• FD holds or does not hold on an instance
• If we can be sure that every instance of R will be 

one in which a given FD is true, then we say that 
R satisfies the FD

• If we say that R satisfies an FD, we are stating a 
constraint on R



Why We Need FDs?

Name SSN PhoneNumber City 
Fred 123-45-6789 510-555-1234 Berkeley 
Fred 123-45-6789 510-555-6543 Berkeley 
Joe 987-65-4321 908-555-2121 San Jose 

Anomalies: 
• Redundancy = repeat data

• Update anomalies = what if Fred moves to “Oakland”?

• Deletion anomalies = what if Joe deletes his phone number? 



An Interesting Observation 
• Workers(ssn, name, lot, did, since)
• If these FDs are true: 

– ssn à did
– did à lot 

• Then this FD also holds:
– ssn à lot 



An Interesting Observation - 2 
• If all these FDs are true: 

– name à color
– category à department 
– color, category à price

• Then this FD also holds:
– name, category à price 

If we find out from application domain that a relation satisfies some FDs, 
it doesn’t mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have. 



Finding New FDs: Armstrong’s Axioms (AA)

• Suppose X, Y, Z are sets of attributes, then:
– Reflexivity: If X⊇Y, then X→Y
– Augmentation: If X→Y, then XZ→YZ for any Z 
– Transitivity: If X→Y and Y→Z, then X→Z 

• Sound and complete inference rules for FDs! 
• Some additional rules (that follow from AA): 

– Union: If X→Y and X→Z, then X→YZ 
– Decomposition: If X→YZ, then X→Y and X→Z 
– Pseudo-transitivity: If X à Y and YW à Z, then XW à Z



Armstrong’s Axioms

Prove ‘Union’ from three axioms:



Armstrong’s Axioms

Prove Decomposition:

X à Y, So does X à Z



Armstrong’s Axioms

Prove Pseudo-transitivity:

XW à YW

XW à Z

Augmentation

Transitivity



Example 

• Relation R: { A, B, C } 
• F = { A à B and B à C }
• FDs

– A à C
– AC à BC
– AB à AC
– AB à CB
– AC à B
– …



Closure of a set of FDs 

• Given a set F of FDs, the set of all FDs is called 
the closure of F, denoted as F+

• Use Armstrong’s Axioms to find F+

• Trivial FD: using reflexivity to generate all trivial 
dependencies

• Non-trivial FD: 
– Using transitivity and augmentation



Examples of Computing Closures of FDs

• Let us include only completely non-trivial FDs in these 
examples, with a single attribute on the right

• F = {A→B, B→C}
– {F}+ = {A→B, B→C, A→C, AC→B, AB→C}

• F = {AB→C, BC→A, AC→B}
– {F}+ = {AB→C, BC→A, AC→B}

• F = {A→B, B→C, C→D}
– {F}+ = {A→B, B→C, C→D, A→C, A→D, B→D, …}



FDs - ‘canonical cover’ Fc

Given a set F of FD (on a schema)
Fc is a minimal set of equivalent FDs. Eg.,
takes(ssn, c-id, grade, name, address)

ssn, c-id -> grade
ssn-> name, address
ssn,name-> name, address
ssn, c-id-> grade, name

F



FDs - ‘canonical cover’ Fc

ssn, c-id -> grade
ssn-> name, address
ssn,name-> name, address
ssn, c-id-> grade, name

F

Fc



FDs - ‘canonical cover’ Fc

why do we need it?
– easier to compute candidate keys
define it properly
compute it efficiently



FDs - ‘minimal cover’ Fc

define it properly - three properties
– 1) the RHS of every FD is a single attribute
– 2) the closure of  Fc is identical to the closure of F  

(ie., Fc and F are equivalent)
– 3) Fc is minimal (ie., if we eliminate any attribute 

from the LHS or RHS of a FD, property #2 is 
violated



FDs - ‘minimal cover’ Fc

#3: we need to eliminate ‘extraneous’ 
attributes. An attribute is ‘extraneous if
– the closure is the same, before and after its 

elimination
– or if F-before implies F-after and vice-versa



FDs - ‘minimal cover’ Fc

ssn, c-id -> grade
ssn-> name, address
ssn,name-> name, address
ssn, c-id-> grade, name

F



FDs - ‘minimal cover’ Fc

Algorithm:
examine each FD; drop extraneous LHS or RHS 
attributes; or redundant FDs
make sure that FDs have a single attribute in 
their RHS
repeat until no change



FDs - ‘minimal cover’ Fc

Trace algo for
AB->C  (1)
A->BC  (2)
B->C     (3)
A->B     (4)



FDs - ‘minimal cover’ Fc

Trace algo for
AB->C  (1)
A->BC  (2)
B->C     (3)
A->B     (4)
split (2):

AB->C  (1)
A->B     (2’)
A->C     (2’’)
B->C     (3)
A->B     (4)



FDs - ‘minimal cover’ Fc

AB->C  (1)
A->B     (2’)
A->C     (2’’)
B->C     (3)
A->B     (4)

AB->C  (1)

A->C     (2’’)
B->C     (3)
A->B     (4)



FDs - ‘minimal cover’ Fc

AB->C  (1)

A->C     (2’’)
B->C     (3)
A->B     (4)

(2’’): redundant (implied by (4), (3) 
and transitivity

AB->C  (1)

B->C     (3)
A->B     (4)



FDs - ‘minimal cover’ Fc

B->C     (1’)

B->C     (3)
A->B     (4)

AB->C  (1)

B->C     (3)
A->B     (4)

in (1), ‘A’ is extraneous:
(1),(3),(4) imply
(1’),(3),(4), and vice versa



FDs - ‘minimal cover’ Fc

B->C     (3)
A->B     (4)

B->C     (1’)

B->C     (3)
A->B     (4)

• nothing is extraneous
• all RHS are single attributes
• final and original set of FDs 
are equivalent (same closure)



FDs - ‘minimal cover’ Fc

AFTER

B->C     (3)
A->B     (4)

BEFORE

AB->C  (1)
A->BC  (2)
B->C     (3)
A->B     (4)



Attributes Closure

• If we just want to check whether a given 
dependency X à Y is in the closure of a set F 
of FDs
– We can just compute the attribute closure X+ without 

computing F+

• Compute attribute closure X+ with respect to F
– X+ is the set of attributes A such that X à A is in F+



Closure of Attributes

Given  (INPUT) :
– Attributes {A1, A2, .. An}
– Set of FDs S 

Find (OUTPUT) :
– X = {A1, A2, … , An} +



Closure Algorithm 



Closure of a set of Attributes



Example

• Relation R: { A, B, C, D, E } 
• F = { B à CD, D à E, B à A, E à C, AD 
à B }

• Is B à E in F+?
– evaluate the closure of B
– B à CD, D à E
– B+ = {B, C, D, E, ….}
– Thus B à E



Definition of Keys

• FDs allow us to formally define keys
• A set of attributes {A1, A2, ..., An} is a key for 

relation R if:
– Uniqueness: {A1, A2, ..., An} functionally determine 

all the other attributes of R 
– Minimality: no proper set of {A1, A2, ..., An} 

functionally determines all other attributes of R



Definition of Keys

• A superkey is a set of attributes that has the uniqueness 
property but is not necessarily minimal
– A1, ..., An à B 

• A candidate key(or sometimes just key) is a minimal
superkey 

• If a relation has multiple keys, specify one to be primary 
key 

• If a key has only one attribute A, say A rather than {A} 



Computing (Super) Keys 

• For all sets X, compute X+ 
• If X+ = [all attributes], then X is a superkey 
• Try reducing to the minimal X’s to get the 

candidate key



Example

• Product(name, price, category, color) 
• FDs

– name, category à price 
– category à color

• Candidate key:
– (name, category)+ = { name, category, price, color }
– Hence (name, category) is a candidate key



Closures of Attributes vs Closure of FDs

Both algorithms take as input a relation R and a set of 
FDs F
Closure of FDs:
– Computes {F}+, the set of all FDs that follow from F
– Output is a set of FDs
– Output may contain an exponential number of FDs

Closure of attributes:
– In addition, takes a set {A1, A2…, An} of attributes as input
– Computes {A1, A2, …, An}+, the set of all attributes B, such that 

A1 A2 … An → B follows from F
– Output is set of all attributes
– Output may contain at most the number of attributes in R



Example
• Relation R: { A, B, C, D, E } 
• F = { B à CD, D à E, B à A, E à C, AD à B }
• Is D a superkey? 

– evaluate the closure of D
– B à CD, D à E
– D+ = {D, E, C}

• Is AD a superkey?
– evaluate the closure of AD
– AD à B, 
– AD+ = {A, D, E, C, B}

• Is AD a candidate key?
• Is ADE a candidate key?



Example 2

• Relation R: { C, S, J, D, P, Q, V } 
• F = { JP à C, SD à P, C à CSJDPQV }
• Is SDJ is a key?

– JP à C, C à CSJDPQV, so JP is a key
– SD à P, so SDJ à JP
– So SDJ à CSJDPQV

• Is SD à CSDPQV ?



Reading and Next Class

• Functional Dependencies: Ch 19.1-19.3
• Next: BCNF, 3NF and Normalization: Ch 19.4-

19.9


