CS 563 Advanced Topics In
Computer Graphics
Culling and Acceleration Technigques Part 1

by Mark Vessella

= Acceleration Technigues
= Spatial Data Structures
= Culling

Bounding Volume Hierarchies (BVH’s)
Binary Space Partitioning (BSP) trees
Octrees

Scene Graphs

Culling

= Backface

= Clustered Backface

= Hierarchal View Frustum
= Portal

= Occlusion

Artificial Intelligence
Computer Graphics
Geometry
Visualization Skills

= The faster we can do computer graphics the
more realistic we can make it look

= Throughout computer history there has

always been applications for increased
performance

= Today’s computer graphics will (hopefully)
look primitive 10 years from now

= Just like 1995’s graphics look to us now

= “A spatial data structure is one that
organizes geometry in some n-dimensional
space.”’[1]

Courtesy of Tomas Akenine-Moller and Eric Haines, Real-Time Rendering

= Usually organized in a hierarchy
* The top level node encloses the one below it

= A volume that encloses a set of objects
= Simpler geometric shape than the object it encloses
* Root, internal nodes, leaves:

=l

= The root contains the whole scene
* The leaves contain to the objects in the scene

= k-ary - Each internal node has k children
= k=2 4, and 8 are common

= Balanced — All leafs are at the height h or h —

1
= Full tree - All leafs are at the same height h
kh+l_ 1
nodes = k° + k' +0k™* + k" =
k-1
leaves = k"
k'-1

Internal nodes = nodes- leaves = 1

Spheres
Axis-aligned bounding boxes (AABB)
Oriented bounding boxes (OBB)

k-DOPs (Discrete Oriented Polytope)
= Uses k/2 vectors to surround an object
= AABB is the case of a k-DOP with k =4

Example BVH — k-DOP

Sample image

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

Example BVH —
k-DOP(cont.)

k=6, 14, 18, 26
Level O

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

Example BVH —
k-DOP(cont.)

k=6, 14, 18, 26
Level 1

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

Example BVH —
k-DOP(cont.)

k=6, 14, 18, 26
Level 2

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

Example BVH —
k-DOP(cont.)

k=6, 14, 18, 26
Level 5

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

Example BVH —
k-DOP(cont.)

k=6, 14, 18, 26
Level 8

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

= They come in two main forms:
= Axis-aligned
= Polygon-aligned
* The geometrical contents (objects in the

scene) of the trees can be sorted while Iin
BVH’s they can't

= General Procedure

» Enclose the scene in an Axis-aligned Bounding
Box (AABB)

= Recursively subdivide the box into smaller and
smaller pieces

= Different techniques for dividing the boxes

= Split each axis in order, i.e. first x, then y, and
then z. Repeat.

= Split the longest edge

8

A 1N

E

Courtesy of Spatial Data Structures and Culling Techniques, Han-Wei Shen

= A polygon is chosen as the divider
= Many strategies for finding the polygons

» Results in a back-to-front (or front-to-back)
order

= The “Painters Algorithm” can be used
» No Z-buffer required

\“\\ I: /’
B / \ PERN

/
/
/
’ C B C
2 /
’ /
’ \ v/
7/ v
\
e Q \ \ /
\
D e \
7’ \
\
\
\
\
\

f D E F
/

result of split Courtesy of Spatial Data Structures and Culling Technigues, Han-Wei Shen

= Similar to axis aligned bounding box except
all 3 axis of the bounding box are split
simultaneously down the middle

* This uniform splitting is known as “regular” which
can make it more efficient in some situations

= Start with the entire scene in an axis-aligned
0]0)¢
= Recursively split the box until a criteria Is met

= Maximum recursion level
* Threshold reached for the number of primitives

» http://njord.umiacs.umd.edu:1601/users/bra
bec/quadtree/rectangles/cifquad.html

= Some objects will be in more than 1 leaf
node

= Solutions

» Use the smallest box that the object will be
contained in
= A small object at the center will be in a large box
= Split the object up
= Results in more objects => more computations

* |Increase the size of each bounding box
= The centroid of the box remains the same

= Add other characteristics to the tree

» Textures, transforms, levels-of-detail, light
sources

= The nodes will hold these other characteristics
= The leaves will still hold the geometric objects

= Example
= You want to have a wheel of a car turn
= Put a transform to rotate into an internal node
= The leaf will contain the wheel

= When several nodes point to the same child
node
= Can’t have loops of cycles
* Directional — Parent to child only

» Update the nodes on the way from the root
to the leaves

= Update the bounding volume on the way
from the leaves to the root

* In general DAG’s complicate matters and are
avoided

The removal of objects that don’t contribute
to the final scene

It can take place anywhere Iin the pipeline
* The earlier in the pipeline the better

Ideally only the Exact Visible Set (EVS) will
be sent down the pipeline
= Not practical

Typical algorithms Potentially Visible Set
(PVS)

= Conservative — Fully includes the EVS

= Approximate — May have errors but is faster

= Removal of the backfacing portion of an

opaque object _loix]

e
Rendered Culled

eye

Basic diagram
Back portion of

sphere is removed
Sample image courtesy of http://gpwiki.org/index. php/3D:Backface_ Culling

= You are given the orientation of the vertices

= Compute the normal of the projected
polygon

N=KN1-Vo) (V2-Vo)
* |f the z-component is negative then it is
backfacing
* Implemented immediately after screen-
mapping
» Decreases the load on the rasterizer
* |Increases the load on the geometry stage

Create a vector from an arbitrary point on
the plane in which the polygon lies to the
viewers position

Compute the dot product of this vector and
the normal of the polygon

The sign of the dot product determines how
It is facing (if it iIs negative it is backfacing
and vice-versa)

Can be done after the model transform or
after both the model and view transforms

It Is done earlier in the geometric stage

* The tests are essentially the same — just that
they are done at different places in the
pipeline

= The first test is safer because edge-on
polygons will be back-facing in eye-space
and front-facing in screen-space
* This Is caused by round-off

= The removal of a whole set of polygons with
just one test

eye Culled

Rendered

»= Create a cone containing all of a set of
polygons normals and points

= Wil leave you with N and a(half-angle of

the cone)
= |f - ae -
© H—3 sin(a), front facing
— &e_

—3 sm(a) back facing

= ¢ |s the location of the viewer

= f and b are the apexes of the front and
backfacing cones

= Can also be used to avoid lighting
calculations on surfaces away from light
source

= There are other techniques (p. 362 of RT
Rendering)

= Only objects totally or partially inside the
view frustum need to be rendered

= The BV’s outside the view frustum do not
need to be sent down the pipeline

\

Courtesy of Spatial Data Structures and Culling Techniques, Han-Wei Shen

Create a BV Hierarchy
Start at the root

If the BV Is outside the frustum don’t recurse any
further

Else if it Intersects a node test its children

When you get to a leaf send it down the pipeline
= [t is still not guaranteed to be in the frustum
» Clipping takes care of that
Else the BV is fully inside the frustum then all its
contents must be inside the frustum
» Frustum testing is not needed for the rest of the tree

= Operates in the application stage(CPU)
= Geometry and rasterizer stages can benefit

= For a large scene only a small portion of it
will be seen

= BSP trees — Used mainly for static scenes
because It takes too long to update the
corresponding data structure

= Polygon aligned, axis aligned, and octrees
can be used

= Can exploit frame-to-frame coherency

= Used in architectural models and 3D games

= Can also create mirror reflections or one-way
portals used in games

= Do view frustum culling through each portal,
(window, door, ...) In a scene

= Render the geometry of the room you are in
using the view frustum culling

= Go through each portal and render the
additional geometry using the frustum
created by the portal

= Continue until there are no more portals to
go through

Image Courtesy of http://www.cs.virginia.edu/~luebke/publications/images/portals.plate2.gif

Image Courtesy of http://www.xbox.com/media/games/

tomclancysplintercell/sim-tomclancysplintercell-0005.jpg

Main Idea: Cull items based on depth to avoid the
processing of objects that are eventually occluded by
objects closer to the viewer.

Techniques:
=Point Based

=Cell Based

="Image Space

» Occlusion Query
» Hierarchical Z-Buffer
» The Hierarchical Occlusion Map

Main idea: Intuitive techniques that employs a
Ifferent viewer reference points for occlusion culling

*These techniques are easy to implement, but could be
more effective

View Point View Cell

&
YA

Main ldea: “Visibility testing in 2D after some projection*”

General Algorithm

OcclusionCulling (G)

. lusion r Or = empty
H?rdwar_e Occlusion Query For each object g in G

= Hierarchical Z-Buffer if (isOccluded(g, Or))

= HO.M. skip ¢

else
Note: All of these techniques can use render (g)

the benefit of hardware acceleration update (Or)

end
End

G: input graphics data
Or: occlusion hint

Technigues:

*Definition from Real-Time Rendering, Akenine-Moller, Haines

- Main Idea: Query hardware to find out if a set of

~ bounding polygons is visible based on the current
~contents of the Z-Buffer. Returns O if occluded, Else 1.

Technique:

1. Scan convert bounding polygons
2. Compare depths to Z-Buffer

3. Decision:
= |f completely hidden, object can be safely
culled

= Else render object

Note: This feature Is available in both ATI and nVidia

Main idea: Maintain the scene model in an Octree and
the Z-Buffer as an Image Pyramid.

Technique:

=Scene Is arranged into an Octree which is traversed
top-to-bottom and front-to-back

*A Z-pyramid is incrementally built during rendering
*Compare Octree nodes and Z-pyramid for occlusion

Note: RT Rending states that this technique

not in hardware yet, but ATl has had this
¥ Implemented in their RADEON cards for some
3 time now using a 3 level Z-Pyramid.

[image courtesy of Gamasutra.com]

Technigue:
=| owest level constructed from Z-
Buffer (finest detail) Scene
sSuccessive levels are formed
from groups of 4, and furthest ‘
wins
*Highest level is furthest Z value :
\
pd
L1
Z Val ‘
alue ; § = ’
[]= furthest g gl
[]=closer -
o
B = closest ’H’ p
’ [image modified from slides on occlusion, University College London]

Main idea: Hierarchical Occlusion Map is built
from a set of occluders rendered to occlussion
maps in the form of an image pyramid

Pvramid Build Technique:

1. Clear buffer to black

2. Pick Occluders

3. Render Occluders in white to buffer

4. Recursively create higher levels using a Low Pass Filter

))]

OM 0 2565256 OO0 12 F28x128 OO0 2: Gt

]]]

] CIbg 3: 32232 OM 4: 16216 M 5: 8x§
[image courtesy of Gamasutra.com]

Image: Y36X936

H.O.M Overlap Test

Steps:

1. Find level where pixel cover
polygons bounding rectangle

2. Project Bounded Polygon
against HOM for overlap test

Decision, For Each Pixel in BR:

= |f fully covered and
opague then goto next
object

* Else go down to a fine
level of detail until it is
decided.

[image courtesy of Zhangh, PhD defense slides]

mage . Either: a single plane at
plane e plane _
OccludersO. furthest point of occluders

The point
—) with near est
Viewing depth
RO

direction N< Thisobject

passesthe
depth test

Transformed view-frustum

Or: uniform subdivision i o Bounding rectangle
of image with separate Ol/atfarthest depth
Bounding

depth at each partition _>Viewmg Q |©‘ rectangle at
direction OCCIUdi ggp?:r?g

Or even: just the Z-buffer
content 1 .

[image courtesy from slides on occlusion, University College London]

= There is a ton of stuff on the web describing
each technique

= Not the most difficult subject

= What techniques you use will depend on your
application

= Books
= Tomas Akenine-Moller and Eric Haines, Real-Time
Rendering, A.K Peters Ltd., pp. 346, 2002
= Papers
» Hybrid Scene Structuring with Application to Ray
Tracing, Gordon Miuller and Dieter W. Fellner
= Web pages
» http://www.cosy.sbg.ac.at/~held/projects/collisio
n/bvt.html

= http://www.cs.umd.edu/~brabec/quadtree/

= This web page gives Java applets to run various spatial
data structures

http://www.cs.wpi.edu/—matt/courses/cs563/talk
s/bsp/bsp.html

http://www.cse.ohio-
state.edu/—hwshen/781/newCulling.ppt

http://pfportals.cs.virginia.edu/

http://www.xbox.com/media/games/tomclancyspl
Intercell/sim-tomclancysplintercell-0005.jpg

= Greene, Ned, Michael Kass, and Gavin Miller, "Hierarchical Z-Buffer
Visibility", Computer Graphics (SIGGRAPH 93 Proceedings), pp. 231-238,
August 1993.

= Scott, N., D. Olsen, and E. Gannett, "An Overview of the VISUALIZE fx
Graphics Accelerator Hardware", Hewlett-Packard Journal, pp. 28-34, May
1998. http://www.hp.com/hpj/98may/ma98a4.htm

» Eric haines, Thomas Moller, Gamasutra Article on Occlusion Culling, Nov. 9, 1999,
http://www.gamasutra.com/features/19991109/moller_haines_01.htm

= Slides on Occlusion Talk, University College London,
http://www.cs.ucl.ac.uk/staff/A.Steed/ book_tmp/CGVE/slides/occlusion.ppt

» Zhang, H., D. Manocha, T. Hudson, and K.E. Hoff 111, "Visibility Culling
using Hierarchical Occlusion Maps", Computer Graphics (SIGGRAPH 97
Proceedings), pp. 77-88, August 1997.
http://www.cs.unc.edu/~—zhangh/hom.html

» Zhang, Hansong, Effective Occlusion Culling for the Interactive Display of
Arbitrary Models, Ph.D. Thesis, Department of Computer Science,
University of North Carolina at Chapel Hill, July 1998.

» Real-Time Rendering, Tomas Moller, Eric Haines, A K Peters, 2002

