
CS 563 Advanced Topics in
Computer Graphics

Culling and Acceleration Techniques Part 1
by Mark Vessella

Introduction

§ Acceleration Techniques
§ Spatial Data Structures
§ Culling

Outline for the Night

§ Bounding Volume Hierarchies (BVH’s)
§ Binary Space Partitioning (BSP) trees
§ Octrees
§ Scene Graphs
§ Culling
§ Backface
§ Clustered Backface
§ Hierarchal View Frustum
§ Portal
§ Occlusion

Background

§ Artificial Intelligence
§ Computer Graphics
§ Geometry
§ Visualization Skills

Why?

§ The faster we can do computer graphics the
more realistic we can make it look

§ Throughout computer history there has
always been applications for increased
performance

§ Today’s computer graphics will (hopefully)
look primitive 10 years from now
§ Just like 1995’s graphics look to us now

Spatial Data Structures

§ “A spatial data structure is one that
organizes geometry in some n-dimensional
space.”[1]

Courtesy of Tomas Akenine-Moller and Eric Haines, Real-Time Rendering

§ Usually organized in a hierarchy
§ The top level node encloses the one below it

Bounding Volume
Hierarchies (BVH’s)

§ A volume that encloses a set of objects
§ Simpler geometric shape than the object it encloses
§ Root, internal nodes, leaves:

§ The root contains the whole scene
§ The leaves contain to the objects in the scene

Leaf 1 Leaf 2

Internal Node 1

Leaf 3

Internal Node 2

Leaf 4 Leaf 5

Internal Node 3

Root

Properties of BVH’s

§ k-ary - Each internal node has k children
§ k=2, 4, and 8 are common

§ Balanced – All leafs are at the height h or h –
1

§ Full tree - All leafs are at the same height h

1
1

leavesnodesnodes internal

leaves
1
1

nodes
1

110

−
−

=−=

=
−
−

=+⋅⋅⋅++=
+

−

k
k

k
k

k
kkkk

h

h

h
hh

Types of BVH’s

§ Spheres
§ Axis-aligned bounding boxes (AABB)
§ Oriented bounding boxes (OBB)
§ k-DOPs (Discrete Oriented Polytope)
§ Uses k/2 vectors to surround an object
§ AABB is the case of a k-DOP with k = 4

Example BVH – k-DOP

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

Sample image

Example BVH –
k-DOP(cont.)

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

k=6, 14, 18, 26
Level 0

Example BVH –
k-DOP(cont.)

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

k=6, 14, 18, 26
Level 1

Example BVH –
k-DOP(cont.)

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

k=6, 14, 18, 26
Level 2

Example BVH –
k-DOP(cont.)

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

k=6, 14, 18, 26
Level 5

Example BVH –
k-DOP(cont.)

Image courtesy of http://www.cosy.sbg.ac.at/~held/projects/collision/bvt.html

k=6, 14, 18, 26
Level 8

Binary Space Partitioning
(BSP) trees

§ They come in two main forms:
§ Axis-aligned
§ Polygon-aligned

§ The geometrical contents (objects in the
scene) of the trees can be sorted while in
BVH’s they can’t

Axis-Aligned BSP Trees

§ General Procedure
§ Enclose the scene in an Axis-aligned Bounding

Box (AABB)
§ Recursively subdivide the box into smaller and

smaller pieces

§ Different techniques for dividing the boxes
§ Split each axis in order, i.e. first x, then y, and

then z. Repeat.
§ Split the longest edge

Example Axis-Aligned
BSP Trees

0

1a 1b

A B C 2

D E

Courtesy of Spatial Data Structures and Culling Techniques, Han-Wei Shen

B
D E

CA
1a

1b

0

2

Polygon-Aligned BSP
Trees

§ A polygon is chosen as the divider
§ Many strategies for finding the polygons

§ Results in a back-to-front (or front-to-back)
order
§ The “Painters Algorithm” can be used
§ No Z-buffer required

A

B

D E

C

F
D

B

F

E

A
C

result of split Courtesy of Spatial Data Structures and Culling Techniques, Han-Wei Shen

Octrees

§ Similar to axis aligned bounding box except
all 3 axis of the bounding box are split
simultaneously down the middle
§ This uniform splitting is known as “regular” which

can make it more efficient in some situations

Procedure

§ Start with the entire scene in an axis-aligned
box

§ Recursively split the box until a criteria is met
§ Maximum recursion level
§ Threshold reached for the number of primitives

Octrees Demo

§ http://njord.umiacs.umd.edu:1601/users/bra
bec/quadtree/rectangles/cifquad.html

Problem with Octrees

§ Some objects will be in more than 1 leaf
node

§ Solutions
§ Use the smallest box that the object will be

contained in
§ A small object at the center will be in a large box

§ Split the object up
§ Results in more objects => more computations

Solution – Loose Octrees

§ Increase the size of each bounding box
§ The centroid of the box remains the same

Scene Graphs

§ Add other characteristics to the tree
§ Textures, transforms, levels-of-detail, light

sources
§ The nodes will hold these other characteristics
§ The leaves will still hold the geometric objects

§ Example
§ You want to have a wheel of a car turn
§ Put a transform to rotate into an internal node
§ The leaf will contain the wheel

Directed Acyclic
Graph(DAG)

§ When several nodes point to the same child
node
§ Can’t have loops of cycles
§ Directional – Parent to child only

§ Update the nodes on the way from the root
to the leaves

§ Update the bounding volume on the way
from the leaves to the root

§ In general DAG’s complicate matters and are
avoided

Culling

§ The removal of objects that don’t contribute
to the final scene

§ It can take place anywhere in the pipeline
§ The earlier in the pipeline the better

§ Ideally only the Exact Visible Set (EVS) will
be sent down the pipeline
§ Not practical

§ Typical algorithms Potentially Visible Set
(PVS)
§ Conservative – Fully includes the EVS
§ Approximate – May have errors but is faster

Backface Culling

§ Removal of the backfacing portion of an
opaque object

Rendered Culled
eye

Basic diagram
Back portion of

sphere is removed
Sample image courtesy of http://gpwiki.org/index.php/3D:Backface_Culling

Backface Culling -
Procedure 1

§ You are given the orientation of the vertices
§ Compute the normal of the projected

polygon

§ If the z-component is negative then it is
backfacing

§ Implemented immediately after screen-
mapping

§ Decreases the load on the rasterizer
§ Increases the load on the geometry stage

)()(0201 VVVVn −×−=

Backface Culling -
Procedure 2

§ Create a vector from an arbitrary point on
the plane in which the polygon lies to the
viewers position

§ Compute the dot product of this vector and
the normal of the polygon

§ The sign of the dot product determines how
it is facing (if it is negative it is backfacing
and vice-versa)

§ Can be done after the model transform or
after both the model and view transforms

§ It is done earlier in the geometric stage

Backface Culling
Conclusion

§ The tests are essentially the same – just that
they are done at different places in the
pipeline

§ The first test is safer because edge-on
polygons will be back-facing in eye-space
and front-facing in screen-space
§ This is caused by round-off

Clustered Backface
Culling

§ The removal of a whole set of polygons with
just one test

Rendered

Culledeye

Clustered Backface
Culling - Procedure

§ Create a cone containing all of a set of
polygons normals and points

§ Will leave you with and a(half-angle of
the cone)

§ If

§ e is the location of the viewer
§ f and b are the apexes of the front and

backfacing cones

facingback),sin(n-

facingfront),sin(n

α

α

≥










−
−

⋅

≥










−
−

⋅

be
be

fe
fe

n

Clustered Backface
Culling cont.

§ Can also be used to avoid lighting
calculations on surfaces away from light
source

§ There are other techniques (p. 362 of RT
Rendering)

Hierarchical View
Frustum Culling

§ Only objects totally or partially inside the
view frustum need to be rendered

§ The BV’s outside the view frustum do not
need to be sent down the pipeline

Courtesy of Spatial Data Structures and Culling Techniques, Han-Wei Shen

eye

Procedure

§ Create a BV Hierarchy
§ Start at the root
§ If the BV is outside the frustum don’t recurse any

further
§ Else if it intersects a node test its children
§ When you get to a leaf send it down the pipeline
§ It is still not guaranteed to be in the frustum

§ Clipping takes care of that

§ Else the BV is fully inside the frustum then all its
contents must be inside the frustum
§ Frustum testing is not needed for the rest of the tree

Hierarchical View
Frustum Culling cont.

§ Operates in the application stage(CPU)
§ Geometry and rasterizer stages can benefit

§ For a large scene only a small portion of it
will be seen

§ BSP trees – Used mainly for static scenes
because it takes too long to update the
corresponding data structure

§ Polygon aligned, axis aligned, and octrees
can be used

§ Can exploit frame-to-frame coherency

Portal Culling

§ Used in architectural models and 3D games
§ Can also create mirror reflections or one-way

portals used in games

§ Do view frustum culling through each portal,
(window, door, …) in a scene

Portal Culling -
Procedure

§ Render the geometry of the room you are in
using the view frustum culling

§ Go through each portal and render the
additional geometry using the frustum
created by the portal

§ Continue until there are no more portals to
go through

Portal Culling Diagram

Image Courtesy of http://www.cs.virginia.edu/~luebke/publications/images/portals.plate2.gif

Scene from Splinter Cell

Image Courtesy of http://www.xbox.com/media/games/
tomclancysplintercell/sim-tomclancysplintercell-0005.jpg

Occlusion Culling

Main Idea: Cull items based on depth to avoid the
processing of objects that are eventually occluded by
objects closer to the viewer.

Techniques:
§Point Based

§Cell Based

§Image Space

ØOcclusion Query
ØHierarchical Z-Buffer
ØThe Hierarchical Occlusion Map

Cell & Point Based
Main idea: Intuitive techniques that employs a

different viewer reference points for occlusion culling

View Point

Objects occlude are
invisible to all points on cell.

View Cell

Objects occluded are
invisible to a single view
point.

§These techniques are easy to implement, but could be
more effective

Image Space Based

Main Idea: “Visibility testing in 2D after some projection*”

Techniques:

*Definition from Real-Time Rendering, Akenine-Moller, Haines

Note: All of these techniques can use
the benefit of hardware acceleration

OcclusionCulling (G)
Or = empty
For each object g in G

if (isOccluded(g, Or))
skip g

else
render (g)

update (Or)
end

End
G: input graphics data
Or: occlusion hint

General Algorithm

§ Hardware Occlusion Query
§ Hierarchical Z-Buffer
§ H.O.M.

Hardware Occlusion
Query

Main Idea: Query hardware to find out if a set of
bounding polygons is visible based on the current
contents of the Z-Buffer. Returns 0 if occluded, Else 1.

Technique:

1. Scan convert bounding polygons
2. Compare depths to Z-Buffer
3. Decision:
§ If completely hidden, object can be safely

culled
§ Else render object

Note: This feature is available in both ATI and nVidia

Hierarchical Z-Buffer

Main idea: Maintain the scene model in an Octree and
the Z-Buffer as an Image Pyramid.

§Scene is arranged into an Octree which is traversed
top-to-bottom and front-to-back
§A Z-pyramid is incrementally built during rendering
§Compare Octree nodes and Z-pyramid for occlusion

Technique:

Note: RT Rending states that this technique
not in hardware yet, but ATI has had this
implemented in their RADEON cards for some
time now using a 3 level Z-Pyramid.

[image courtesy of Gamasutra.com]

Z-Pyramid

= furthest
= closer
= closest

Scene

Technique:
§Lowest level constructed from Z-
Buffer (finest detail)
§Successive levels are formed
from groups of 4, and furthest
wins
§Highest level is furthest Z value

[image modified from slides on occlusion, University College London]

Z Value

H.O.M
Main idea: Hierarchical Occlusion Map is built

from a set of occluders rendered to occlussion
maps in the form of an image pyramid

Pyramid Build Technique:

1. Clear buffer to black
2. Pick Occluders
3. Render Occluders in white to buffer
4. Recursively create higher levels using a Low Pass Filter

[image courtesy of Gamasutra.com]

H.O.M Overlap Test

Steps:

1. Find level where pixel cover
polygons bounding rectangle

2. Project Bounded Polygon
against HOM for overlap test

Decision, For Each Pixel in BR:
§ If fully covered and

opaque then goto next
object
§ Else go down to a fine

level of detail until it is
decided.

[image courtesy of Zhangh, PhD defense slides]

H.O.M Depth Test

The point
with nearest
depth

Occluders

Viewing
direction This object

passes the
depth test

The plane

A

Image
plane

Bounding Bounding
rectangle at rectangle at
nearest nearest
depthdepth

D. E. D. E.
B.B.

OccludersOccluders

AA

Viewing Viewing
directiondirection

Transformed viewTransformed view--frustumfrustum

Bounding rectangle Bounding rectangle
at farthest depthat farthest depth

BB

ImageImage
plane plane

Either: a single plane at
furthest point of occluders

Or: uniform subdivision
of image with separate
depth at each partition

Or even: just the Z-buffer
content

[image courtesy from slides on occlusion, University College London]

Choose A Depth Test!

Conclusion

§ There is a ton of stuff on the web describing
each technique

§ Not the most difficult subject
§ What techniques you use will depend on your

application

References

§ Books
§ Tomas Akenine-Moller and Eric Haines, Real-Time

Rendering, A.K Peters Ltd., pp. 346, 2002

§ Papers
§ Hybrid Scene Structuring with Application to Ray

Tracing, Gordon Müller and Dieter W. Fellner

§ Web pages
§ http://www.cosy.sbg.ac.at/~held/projects/collisio

n/bvt.html
§ http://www.cs.umd.edu/~brabec/quadtree/
§ This web page gives Java applets to run various spatial

data structures

References

§ http://www.cs.wpi.edu/~matt/courses/cs563/talk
s/bsp/bsp.html

§ http://www.cse.ohio-
state.edu/~hwshen/781/newCulling.ppt

§ http://pfportals.cs.virginia.edu/
§ http://www.xbox.com/media/games/tomclancyspl

intercell/sim-tomclancysplintercell-0005.jpg

References
§ Greene, Ned, Michael Kass, and Gavin Miller, "Hierarchical Z-Buffer

Visibility", Computer Graphics (SIGGRAPH 93 Proceedings), pp. 231-238,
August 1993.

§ Scott, N., D. Olsen, and E. Gannett, "An Overview of the VISUALIZE fx
Graphics Accelerator Hardware", Hewlett-Packard Journal, pp. 28-34, May
1998. http://www.hp.com/hpj/98may/ma98a4.htm

§ Eric haines, Thomas Moller, Gamasutra Article on Occlusion Culling, Nov. 9, 1999,
http://www.gamasutra.com/features/19991109/moller_haines_01.htm

§ Slides on Occlusion Talk, University College London,
http://www.cs.ucl.ac.uk/staff/A.Steed/ book_tmp/CGVE/slides/occlusion.ppt

§ Zhang, H., D. Manocha, T. Hudson, and K.E. Hoff III, "Visibility Culling
using Hierarchical Occlusion Maps", Computer Graphics (SIGGRAPH 97
Proceedings), pp. 77-88, August 1997.
http://www.cs.unc.edu/~zhangh/hom.html

§ Zhang, Hansong, Effective Occlusion Culling for the Interactive Display of
Arbitrary Models, Ph.D. Thesis, Department of Computer Science,
University of North Carolina at Chapel Hill, July 1998.

§ Real-Time Rendering, Tomas Moller, Eric Haines, A K Peters, 2002

