
CS 5984 Big Data Text Summarization
Electric Thesis and Dissertation Summarization

Ashish Baghudana, Stephen Lasky, Guangchen Li, Beichen Liu

{ashishb, slasky, guang15, bcliu430}@vt.edu

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Instructor: Dr. Edward A. Fox

December 15, 2018



Contents

List of Figures i

List of Tables ii

1 Introduction 1

2 Literature Review 3

2.1 Extractive and Abstractive Summarization . . . . . . . . . . . . . . . . . . 3

2.2 Seq2Seq Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Enhancements to the Seq2Seq Model . . . . . . . . . . . . . . . . . 5

2.3 Summarization with Pointer-Generator Networks and Coverage . . . . . . 7

2.4 Fast Abstractive Summarization using Reinforce-Selected Sentence Rewriting 8

2.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 DUC 2003 and DUC 2004 . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.2 English Gigaword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.3 Large Scale Chinese Short Text Summarization Dataset (LCSTS) . 9

2.5.4 CNN-Dailymail Dataset . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.5 Cornell Newsroom Summarization Dataset . . . . . . . . . . . . . . 10

3 Challenges 11

3.1 PDF Parsing of ETDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Grobid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 ScienceParse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Dataset Collection and Preprocessing . . . . . . . . . . . . . . . . . . . . . 12

3.3 Pointer-Generator Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Fast Abstractive Summarization using Reinforce-Selected Sentence Rewriting 14



CONTENTS

4 Experiments 16

4.1 seq2seq Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Pointer-Generator Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Evaluation 18

5.1 ROUGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 Recall and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.2 ROUGE-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3 ROUGE-L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 METEOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Gold Standard ETD Summaries . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Results and Discussion 21

6.1 Baseline seq2seq Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Pointer Generator Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Without Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.2 With Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.3 Quantitative Results on Gold Standard Data . . . . . . . . . . . . . 23

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 User’s Manual 25

7.1 How to Pre-Process Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1.1 arXiv Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1.2 Electronic Theses and Dissertations . . . . . . . . . . . . . . . . . . 26

7.1.3 Pre-process Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2 Grobid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.3 ScienceParse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.4 Pointer Generator Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.4.1 Pre-process Data for PGNs . . . . . . . . . . . . . . . . . . . . . . 27

7.4.2 Training PGNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.4.3 Testing PGNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.4.4 Interactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Developer’s Manual 31

8.1 How to pre-process data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



CONTENTS

8.1.1 arXiv Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8.1.2 Electronic Theses and Dissertations . . . . . . . . . . . . . . . . . . 32

8.1.3 Pre-process Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.2 Grobid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.3 ScienceParse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.4 Pointer Generator Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Lessons Learned 36

10 Acknowledgements 38

Appendix A Gold Standard Summary 39

References 48



List of Figures

2.1 Sequence-to-Sequence Architecture for Machine Translation Tasks . . . . . 4
2.2 Sequence-to-Sequence Architecture with Attention Mechanism . . . . . . . 6
2.3 Sample datapoints from CNN/Dailymail Dataset . . . . . . . . . . . . . . 10

i



List of Tables

4.1 Hyperparameters for the Baseline Seq2Seq Model . . . . . . . . . . . . . . 16

5.1 ETDs and Corresponding Team Members . . . . . . . . . . . . . . . . . . . 20

6.1 ROUGE Scores for Baseline seq2seq model . . . . . . . . . . . . . . . . . . 22
6.2 ROUGE Scores for Pointer Generator Networks without Coverage . . . . . 22
6.3 ROUGE Scores for Pointer Generator Networks with Coverage . . . . . . . 23
6.4 ROUGE (Paragraph) Scores for Gold Standard Data . . . . . . . . . . . . 23
6.5 ROUGE (Sentence) Scores for Gold Standard Data . . . . . . . . . . . . . 23

ii



Abstract

Automatic text summarization is the task of creating accurate and succinct summaries

of text documents. These documents can vary from newspaper articles to more academic

content such as theses and dissertations. The two domains differ significantly in sentence

structure and vocabulary, as well as in the length of the documents, with theses and

dissertations being more verbose and using a very specialized vocabulary.

Summarization techniques are broadly classified into extractive and abstractive styles

- the former where salient sentences are extracted from the text without any modifica-

tion and the latter where sentences are modified and paraphrased. Recent developments

in neural networks, language modeling, and machine translation have spurred research

into abstractive text summarization. Models developed recently are generally trained on

news articles, specifically CNN and DailyMail, both of which have more readily available

summaries available through public datasets.

In this project, we apply recent deep-learning techniques of text summarization to pro-

duce summaries of electronic theses and dissertations from VTechWorks, Virginia Tech’s

online repository of scholarly work. We overcome the challenge posed by different vocab-

ularies by creating a dataset of pre-print articles from ArXiv and training summarization

models on these documents. The ArXiv collection consists of approximately 4500 articles,

each of which has an abstract and the corresponding full text. For the purposes of training

summarization models, we consider the abstract as the summary of the document. We

split this dataset into a train, test, and validation set of 3155, 707, and 680 documents

respectively. We also prepare gold standard summaries from chapters of electronic the-

sis and dissertations. Subsequently, we train pointer generator networks on the ArXiv

dataset and evaluate the trained models using ROUGE scores. The ROUGE scores are

reported on both the test split of the ArXiv dataset, as well as for the gold standard

summaries. While the ROUGE scores do not indicate state-of-the-art performance, we do

not find any equivalent work in summarization of academic content to compare against.



Chapter 1

Introduction

Summarization is the task of creating a succinct and accurate summary of a large docu-
ment or a set of documents. Manual text summarization is regularly used in the field of
journalism where reporters need to create headlines, paraphrase interviews, and condense
a large amount of information into a few sentences. However, summarization is not re-
stricted to journalism and books. Even in the academic world, we often create summaries
of journal and conference papers, theses, and dissertations to highlight the key contribu-
tions of research. To aid and substitute for manual summarization, computer scientists
and linguists have worked on automatic text summarization since late 1950s [17, 2, 5, 7]
with varying degrees of success.

The two main approaches to automatic text summarization are extractive and ab-
stractive. Extractive summarization is a technique that extracts or selects salient sen-
tences from the document. This generally involves ranking each sentence according to
how important it is in the document [20, 9]. Abstractive summarization, on the other
hand, paraphrases sentences from the document to create a summary as a human would.
State-of-the-art implementations of abstractive summarization are neural network-based
techniques [21, 26, 6].

In this project, we explore abstractive text summarization for electronic theses and
dissertations (ETDs) from VTechWorks1, Virginia Tech’s online repository of research and
scholarly works from students, faculty, and staff. Due to a lacuna of appropriate datasets
in summarization for academic content, we create our own dataset of conference articles
from ArXiv, an online repository of preprints. We use existing abstractive text summa-
rization methods, and retrain them on our datasets to produce summaries of chapters
from ETDs. We evaluate the summaries qualitatively by inspection, and quantitatively
using the ROUGE metric. To the best of our knowledge, we have not seen any published
work on summarization of such long documents.

The report is divided into multiple chapters. Chapter 2 is a Literature Survey, ex-
plaining basic architectures for abstractive text summarization and reviewing important
research papers listed therein. Chapter 3 highlights the challenges with summarization,

1https://vtechworks.lib.vt.edu/

1



CHAPTER 1. INTRODUCTION

especially with respect to PDF parsing, dataset creation, and training the summarization
methods. Chapter 4 talks about the different experiments we ran with each of the models,
and discusses the hyperparameters used so as to enable replication of our results. Chap-
ter 5 explains quantitative metrics used in the summarization domain. This chapter also
includes gold standard summaries for our theses and dissertations. Chapter 6 includes
ROUGE precision, recall, and F1-scores for all our models, as well as the evaluation done
on our own gold standard summaries. Chapters 7 and 8 include the user’s manual and
developer’s manual, respectively.

2



Chapter 2

Literature Review

As part of our implementation of this project, we have studied existing works including
abstractive, extractive, and hybrid summarization approaches. In this chapter, we pro-
vide an overview of existing machine summarization techniques and their corresponding
datasets. Section 2.1 provides a brief introduction to extractive and abstractive summa-
rization, two major categories of automatic summarization. We focus primarily on ab-
stractive summarization. The first technique we cover is a sequence-to-sequence (seq2seq)
model, in Section 2.2. We subsequently focus our attention on two state-of-the-art mod-
els, one that uses pointer generator networks (Section 2.3), and another that rewrites
reinforce-selected sentences. Section 2.5 will talk about public datasets that are widely
used in this field.

2.1 Extractive and Abstractive Summarization

Methods of automatic summarization can loosely fit into two major categories: extractive
and abstractive. An extractive summarization system directly selects content from the
source collection without applying any modification. It can either create a “tag collection”
of an article by extracting keywords or generate a short paragraph summary by selecting
complete sentences. Unlike extractive summarization systems, abstractive summarization
systems can paraphrase the original content. In this sense, abstractive summarization is
more similar to how human perform summarization tasks in the real world. For this
reason, our project focuses on the abstractive method of summarization.

Implementing abstractive summarization requires sophisticated natural language pro-
cessing technology. Early works include parsing and summarizing simple messages by
using expert systems based on symbolic rules [19]. This type of approach does not scale
very well on larger problems due to the complexity and ambiguity of natural languages.

With the polynomial increase of computing power [23], mid-1980s interest in neural
networks saw a dramatic revival in the 21st century. Most cutting-edge approaches are
based on artificial neural networks and deep learning.

3



CHAPTER 2. LITERATURE REVIEW

2.2 Seq2Seq Models

In the recent past, deep learning techniques that map one input sequence to another
have become popular. Such models, called sequence-to-sequence (or seq2seq) have found
success in machine translation tasks and been implemented for commercial applications
like Google Translate [30].

Summarization tasks draw several parallels from machine translation tasks wherein
they map a full text document to a summary. However, summarization introduces two
additional levels of complexity. Firstly, the length of sequences in the input and output
can be vastly different. Secondly, the output is expected to be lossy. Some information
from the input sequence is likely to be lost. These two properties contrast strongly with
machine translation tasks where one generally expects a one-to-one word level alignment
in the two sequences [3].

Figure 2.1: The image shows a cartoon representation of a sequence-to-sequence archi-
tecture. The encoder is generally a long-short term memory (LSTM) unit or a gated-
recurrent unit (GRU). The encoder produces a single vector, commonly called a sentence
vector. This vector is fed to the decoder, which produces tokens using a softmax layer up
till a fixed length or a special end of document (<EOD>) token. The figure is taken from
https://medium.com/@Aj.Cheng/seq2seq-18a0730d1d77.

A baseline model that is regularly used in abstractive summarization is an RNN-
based (Recurrent Neural Network) seq2seq model with an attention mechanism [21]. The
encoder consists of a bidirectional gated recurrent unit (GRU) RNN while the decoder
consists of a unidirectional GRU-RNN. The hidden state size is consistent across the
encoder and decoder. The attention mechanism acts over the source hidden states. On

4

https://medium.com/@Aj.Cheng/seq2seq-18a0730d1d77


CHAPTER 2. LITERATURE REVIEW

the output side, a softmax layer is used to select words from the target vocabulary.
This model is largely the same as the one for a Neural Machine Translation (NMT)
task. However, the authors in [21] make modifications on vocabulary generation to help
the model converge faster. They use a large-vocabulary trick (LVT) [12] to restrict the
vocabulary of each mini-batch to the vocabulary of the source documents in that batch
and concatenate this with the most frequent words across the corpus up till a certain
count.

2.2.1 Attention Mechanism

Discussion of the encoder-decoder model is incomplete without an explanation of the
attention mechanism used for the decoder. Attention mechanisms are loosely based on
the visual attention mechanism in humans. These help us focus on important parts of an
image instead of scanning it pixel by pixel. The idea was first introduced in computer
vision [8, 14], but has found applications in natural language processing [31, 29].

As shown in Figure 2.1, the encoder produces a single sentence vector that must be
decoded to produce the output sequence. For long sequences, both LSTMs and GRUs fail
to capture long-range dependencies between the beginning and the end of the sequence.
Attention mechanisms alleviate this by considering not only the last hidden state, but
instead a weighted combination of all the hidden states of the encoder. This forms the
context vector for each token that the decoder decodes. This is illustrated in Figure 2.2.

2.2.2 Enhancements to the Seq2Seq Model

Nallapati et al. [21] enhanced the vanilla neural machine translation model in several
orthogonal ways to test their applicability to summarization tasks. Some of these are
detailed in this section.

Capturing Keywords using Feature-rich Encoder

As an additional input to the encoder, the authors create look-up embedding matrices for
linguistic features such as part-of-speech tags, named entities, and TF-IDF statistics of the
words. Continuous variables such as TF-IDF are binned to create categorical variables.
The target side decoder is left unmodified.

Modeling Unseen Words using Switching Generator-Pointer

Documents in the test set may often have words that are not present in the source vocab-
ulary. Since the vocabulary is fixed during decoding, the most common technique used is
to emit a placeholder word <UNK>. Instead of emitting <UNK>, a possible modification is
to point to a location in the source document. The model uses a switching mechanism to
either generate a word from the vocabulary or to point to a word in the original document.
Such a model is further explored in [26].

5



CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Attention mechanisms help the decoder of the recurrent neural network “at-
tend” to different parts of the input sequence selectively. They achieve this by scanning
through the entire encoded sequence and creating context vectors that help weight differ-
ent parts of the input sequence. These context vectors are used while generating tokens
in the decoding state. The image is sourced from [1].

Hierarchical Document Structure with Hierarchical Attention

Even with an attention mechanism, encoder-decoder models do not generate good sum-
maries when the source documents are very long. This can be tackled by using a hierar-
chical attention model using two RNNs on the source sequence. The first RNN operates
at the sentence level, while the second RNN operates at the word level. The weights of
the context vector at the word levels are modified based on the first RNN’s attention.

6



CHAPTER 2. LITERATURE REVIEW

Beam Search Decoding

Another technique to improve the generated summaries is to enhance the decoder using
a heuristic search technique called beam search[13]. In beam search, we keep track of
the best k hypotheses while generating each token. The number k is called the beam
size. Each hypothesis is scored by an external function that decides on the quality of
the summary. After generating the <EOD> token, the hypothesis with the best token is
returned.

2.3 Summarization with Pointer-Generator Networ-

ks and Coverage

See et al. build on the seq2seq model discussed in [21] and enhance it in two orthogonal
ways[26]. These two methods are pointer-generator networks and coverage.

Pointer-Generator Networks

Firstly, they use a probabilistic pointer-generator network that can both copy words from
the source document via pointing, and generate words from a fixed vocabulary. The
pointing mechanism involves calculating three parameters. The first, called attention
distribution (denoted by at) is a probability distribution over the source words that tells
the decoder where to look to produce the next token. The second, called the context
vector (denoted by h∗t , is the weighted sum of the encoder hidden states with the attention
vector. The context vector is concatenated with the decoder hidden state to produce a
probability distribution over the vocabulary, denoted by Pvocab. The third, called the
generation probability (denoted by Pgen) is calculated by applying the sigmoid function
over the attention distribution (at), the context vector (h∗t ), and the decoder input at the
given timestep t (denoted by xt). For each document, the extended vocabulary includes
all words in the fixed vocabulary and the words in the source document. With the pointer-
generator network, the decoder is able to produce out-of-vocabulary (OOV) words that a
baseline seq2seq will be incapable of.

Coverage

See et al. incorporate findings from neural machine translation and include the concept
of coverage to avoid repetitions of text in seq2seq models. The coverage mechanisms used
is adapted from [28] and introduces a coverage vector ct. Intuitively, the coverage vector
measures the degree to which a given word has received attention so far. The vector is
updated at each timestep t such that the coverage of the document is maximized.

The authors found it necessary to add a coverage loss to prevent the model from
learning to attend to only one part of the document that maximizes the coverage vector.

7



CHAPTER 2. LITERATURE REVIEW

2.4 Fast Abstractive Summarization using Reinforce-

Selected Sentence Rewriting

Fast Abstractive Summarization with Reinforce-Selected Rewriting (FastAbsRL) is an
abstractive-extractive hybrid model that achieves state-of-the-art results on the CNN/DailyMail
dataset on all ROUGE and METEOR metrics. At a high level, the model runs by ex-
tractively selecting salient sentences, and then abstractively rewriting (compressing) them
in what the authors call a ”human-inspired coarse-to-fine” approach. More specifically,
the extractor uses a Convolutional Neural Network (CNN) for sentence representation,
which is then fed into a bidirectional LSTM-RNN which captures long-range semantic
dependency between sentences. Finally, a Pointer Network is trained to extract sentences
recurrently on the above output. The abstractor then compresses and paraphrases the
extractor output using the standard encoder-aligner-decoder with a copy mechanism to
utilize out-of-vocabulary words.

Random initialization for end-to-end training resulted in the extractor pulling irrele-
vant sentences, so the extractor and abstractor were trained separately using maximum-
likelihood objectives. The extractor is trained as a classification problem, with the ab-
stractor being trained as a usual sequence-to-sequence model. The full model is trained by
encouraging good sentence selection from the extractor via a good ROUGE match from
the abstracted sentence, and then discouraged whenever the extractor selects an irrele-
vant sentence. The model learns how many sentences to extract, by extracting while there
are still remaining ground-truth summary sentences, and then stopping by optimizing a
global ROUGE.

2.5 Datasets

Deep learning based abstractive text summarization is a very new research area with
limited approaches and datasets. Of the published work that we have read, we find
several commonly used datasets. The following subsections will provide a quick review of
these datasets.

2.5.1 DUC 2003 and DUC 2004

DUC stands for “Document Understanding Conferences”. DUC 2003 and DUC 2004
are two datasets used in the DUC workshops of 2003 and 2004. According to the DUC
website[22], each dataset consists of the following parts:

1. Original Documents

2. Summaries, results, etc.

(a) manually created summaries

8



CHAPTER 2. LITERATURE REVIEW

(b) automatically created baseline summaries

(c) submitted summaries created by the participating groups’ systems

(d) tables with the evaluation results

(e) additional supporting data and software

The most useful parts for our project are original documents, manually created summaries,
and automatically created baseline summaries. We could utilize original documents and
manually created summaries as our training dataset. Automatically created baseline
summaries can help us during the model evaluation phase.

2.5.2 English Gigaword

The English Gigaword dataset is a comprehensive archive of newswire text data in English
that has been acquired by the LDC (Linguistic Data Consortium) from 1994 to 2002.
Unlike DUC 2003 and DUC 2004, this dataset does not directly contain summaries of
original documents. Therefore, it creates challenge for researchers hoping to utilize it in
machine summarization.

One solution of this problem includes using the first paragraph as source and the
headline as target. This strategy is intuitive for this dataset—journalists are expected to
provide as much information as possible in the beginning of an article, and the headline
of an article generally includes the same piece of information in a shorter form. Here is
an example of source-target pair:

• Source: Tributes pour in for late British Labour Party leader

• Target: Tributes poured in from around the world Thursday to the late Labour
Party leader John Smith, who died earlier from a massive heart attack aged 55.

2.5.3 Large Scale Chinese Short Text Summarization Dataset
(LCSTS)

LCSTS is a large corpus of Chinese short text summarization data constructed from
the Chinese microblogging website Sina Weibo [11]. It consists of more than 2 million
Chinese short texts along with summaries provided by their author. Additionally, it
contains 10,666 entries with manually tagged relevance score, which make it extremely
useful in model evaluation. A typical entry in this corpus looks like the following example
(all texts are translated from Chinese):

• Short Text: Mingzhong Chen, the Chief Secretary of the Water Devision of the
Ministry of Water Resources, revealed today at a press conference, according to the
just completed assessment of water resources management system, some provinces
are closed to the red line indicator, some provinces are over the red line indicator. In

9



CHAPTER 2. LITERATURE REVIEW

some places over the red line. It will enforce regional approval restrictions on some
water projects, implement strictly water resources assessment and the approval of
water licensing.

• Summary: Some provinces exceeds the red line indicator of annual water using,
some water project will be limited approved.

• Human Score: 4

2.5.4 CNN-Dailymail Dataset

The CNN-Dailymail dataset contains over 93,000 different CNN news articles where each
article is stored in a separate .story file. The general structure of a .story file is the
story itself followed by several “highlights” summarizing the main points of the story.

One important characteristic of this dataset is that its summaries have high compres-
sion ratio as compared to the datasets mentioned before. Unlike the previous datasets,
where the summaries are created out of a few sentences of original content, highlights in
this dataset are summarized from long stories consisting of multiple paragraphs.

Figure 2.3: Example of a piece of CNN News with Highlights [27]

2.5.5 Cornell Newsroom Summarization Dataset

The Cornell Newsroom summarization dataset is a large scale dataset for training as well
as evaluating machine summarization systems. It consists of over 1.3 million articles and
summaries created by authors and editors from 38 different major publications.

This dataset is widely adopted by recent state-of-the-art researches, including the
famous pointer generator paper [26] and text rank paper [20].

10



Chapter 3

Challenges

Abstractive Text Summarization is a relatively new research area with limited tried and
tested approaches. This was exacerbated by the lack of appropriate datasets. Further-
more, our group focused on electronic theses and dissertations (ETDs) which are primarily
in a PDF format. Extraction of text from PDF can be challenging as PDF is human-
friendly but not machine-friendly. In this chapter, we briefly describe each challenge and
our approaches to solve them.

3.1 PDF Parsing of ETDs

Since the goal of the project was to generate summaries for each chapter of an ETD, our
first task was to parse each PDF document and generate a corresponding full text doc-
ument. Our dataset consisted of approxmimately 30,000 ETDs with 13,071 disserations
and 17,890 thesis. This occupied over 335GB on disk. The scale of data that we were
handling made even a copy operation several hours long.

PDF parsing is an inexact method of obtaining raw text from a PDF document.
We tried several PDF to text conversion tools1,2, however we found them ineffective for
academic content (equations, captions, and figures), headers and footers, and references.

We instead turned our attention to PDF-parsing tools that were designed specifically
for parsing academic content. Two promising tools are Grobid3 [24] and ScienceParse4.
Both these tools use an underlying machine learning model that helps them parse data in
more structured formats than simpler PDF2text tools. However, Grobid and ScienceParse
are trained on academic papers in the double-column IEEE/ACM format, which makes
them unsuitable for ETDs, which tend to be single column. We used both tools to convert
ETDs to raw text.

1https://github.com/jalan/pdftotext
2https://github.com/pdfminer/pdfminer.six
3https://github.com/kermitt2/grobid
4https://github.com/allenai/science-parse

11

https://github.com/jalan/pdftotext
https://github.com/pdfminer/pdfminer.six
https://github.com/kermitt2/grobid
https://github.com/allenai/science-parse


CHAPTER 3. CHALLENGES

3.1.1 Grobid

Grobid is easy to set up, available as both a Java server or a Docker container. It returns
structured XML for each document. It can be configured to accept either single or batches
of documents as an input. However, parsing using a machine learning model is slow; it
took over three days to convert all ETDs to text. Moreover, Grobid’s text extraction
algorithm consistently failed on ETDs, with over 70% of the documents returned with
either an error or an empty text body.

3.1.2 ScienceParse

ScienceParse is built on the open source library allennlp5 from AllenAI. Similar to Gro-
bid, ScienceParse uses a machine learning model to extract text from each document.
While there is no research paper associated with this library, however, the Github docu-
mentation suggests that it uses the same labeled data to train its machine learning model
as Grobid. The method returns a JSON file for each document. We find that ScienceParse
works better than Grobid for ETDs and can grab raw text from PDFs more accurately.
However, ScienceParse is difficult to set up, and the model has difficulty differentiating
between different sections of a paper. The model often considers the heading of each page
(from the header) as a section title. Finally, We post-process the JSON file and extract
the relevant values from the key-value representation. This forms the the raw text input
for summarization tasks.

3.2 Dataset Collection and Preprocessing

After reviewing several models in the published literature, we found that the CNN-
Dailymail dataset is most regularly used for training. As described before, the CNN-
Dailymail dataset consists of approximately 270,000 articles with a mean sentence length
of 37. However, the models we trained do not take in an input of plain text files. The
dataset is converted into a binary format and a vocab file that differs for each method.

For the method described in See et al. [26], we processed the data using code available
online on Github6. This obtains the CNN-Dailymail dataset from the links present in
the url lists directory in the root folder and uses Stanford CoreNLP [18] to tokenize
the text. However, the code is specific only to the CNN-Dailymail dataset and cannot be
easily extended to custom datasets or formats. Each “story” in the dataset is specified
in the format given below. The first part of the document is the full text of the article.
This is followed by @highlight annotations, which mark each sentence of the summary.
The sentences are concatenated together to form the full summary.

5https://github.com/allenai/allennlp
6https://github.com/becxer/cnn-dailymail/

12

https://github.com/allenai/allennlp
https://github.com/becxer/cnn-dailymail/


CHAPTER 3. CHALLENGES

Format of the CNN-Dailymail Dataset

By

Emma Glanfield

Eric Craggs, 68, of Stockton, County Durham, pictured arriving at

court, is accused of asking for the 'Laserstar' device to be

fitted to his car in 2009

...

@highlight

Eric Craggs, 68, accused of asking for 'Laserstar' device to be

fitted to car

@highlight

Device interferes with lasers in speed guns and stops reading

being taken

The method described by Chen et al. [6] is trained on the same dataset. However, it
preprocesses the dataset differently and converts each document to a JSON object. The
preprocessing scripts for this are available on Github7 as well.

Given the paucity of datasets with academic content in the summarization domain, we
resorted to collecting our own dataset. A good first-degree approximation to electronic
theses and dissertations involves papers from academic journals and conferences. There-
fore, we collected 4,542 articles from the electronic pre-print repository called ArXiv8.
ArXiv hosts papers from various domains including physics, mathematics, biology, com-
puter science, and economics. We used a dataset9 from Kaggle of nearly 42,000 ArXiv
links and abstracts to seed our collection. We downloaded a 10% subsample of the Kag-
gle dataset to parse from ScienceParse and train our own models. As described above,
the preprocessing scripts for training summarization models do not work with custom
datasets. Therefore, we developed our own scripts that process custom datasets. Our work
is publicly available at https://github.com/ashishbaghudana/pointer_generator_

data. The format for the dataset in specified in Chapter 7.

7https://github.com/ChenRocks/cnn-dailymail
8https://arxiv.org/
9https://www.kaggle.com/neelshah18/arxivdataset

13

https://github.com/ashishbaghudana/pointer_generator_data
https://github.com/ashishbaghudana/pointer_generator_data
https://github.com/ChenRocks/cnn-dailymail
https://arxiv.org/
https://www.kaggle.com/neelshah18/arxivdataset


CHAPTER 3. CHALLENGES

3.3 Pointer-Generator Networks

One of the primary models we wished to train was the Summarization using Pointer-
Generator Networks described in [26]. The code for this model is publicly available on
Github10 from the original author. The code is written in TensorFlow and Python 2.
However, the repository is no longer maintained and users have complained of version in-
compatibilities. Furthermore, none of the team members were familiar with TensorFlow’s
APIs. Therefore, we decided to employ a re-implementation of this model by another user
in PyTorch11. We further adapted this code to make it more streamlined. The result is
available publicly at https://github.com/ashishbaghudana/pointer_summarizer.

A significant problem with the original implementation is that it can only be used
statically and requires a lot of preprocessing to create a binary file. We add our own
scripts that make the process of testing more interactive.

We provide more details of the training methods in Chapter 7, interactive scripts in
Chapter 8, and the experiments with this model in Chapter 4.

3.4 Fast Abstractive Summarization using Reinforce-

Selected Sentence Rewriting

There were several challenges associated with utilizing the Fast Abstractive Summariza-
tion using Reinforce-Selected Sentence Rewriting model (FastAbsRL), both theoretically
and practically. The challenges can be summarized more concisely as follows:

1. FastAbsRL builds a vocabulary from the training dataset which it then draws
from during the abstraction phase to create original sentences. The size of the
Arxiv dataset is substantially smaller (more than one order of magnitude) than the
CNN/DailyMail dataset, on which the paper is based. As such, training FastAb-
sRL on only the Arxiv dataset would give the abstractor a substantially smaller
vocabulary pool, and would intuitively lead to poor results. Additionally, the im-
mense loss in data points from the substantially smaller set would cause a significant
loss in learned sentence structure.

2. The Arxiv dataset includes academic papers which regularly introduce new, unfore-
seen terms. Although the abstractor can handle unforeseen terms by attempting to
add them using the ”copy mechanism”, the heterogenous vocabulary of academic
papers might degrade the quality of the summarization. In fact, the robustness of
the abstractor demotivates training on anything smaller than the CNN/DailyMail
dataset.

10https://github.com/abisee/pointer-generator
11https://github.com/atulkum/pointer_summarizer

14

https://github.com/ashishbaghudana/pointer_summarizer
https://github.com/abisee/pointer-generator
https://github.com/atulkum/pointer_summarizer


CHAPTER 3. CHALLENGES

3. ETDs and ETD chapters can be substantially longer than news articles for which the
FastAbsRL is tailored. FastAbsRL was specifically designed to handle varying-
lengths, but there also remains a significant domain dependency problem.

4. FastAbsRL has a very complex pipeline for training and testing. FastAbsRL also
appears to be highly fault intolerant as numerous bugs were encountered during
training and testing. These ended up posing serious, time-consuming challenges
throughout the project.

15



Chapter 4

Experiments

Our team ran experiments with two different summarization models with two datasets
and a baseline seq2seq model. We describe the hyperparameters we chose for each run in
order to allow others to replicate our results as closely as possible.

We ran all of our experiments on Cascades1. Each node on Cascades has an nVidia
V100 GPU with 12GB of RAM.

4.1 seq2seq Baseline Model

PGNs when run without pointing and coverage default to baseline seq2seq models. The
settings used are given in Table 4.1.

Parameter Setting
Optimizer Adagrad
Adagrad Initial Accumulation 0.1
Learning Rate 0.15
Vocabulary Size 50,000
Hidden State Dimensions 256
Word Embedding Dimensions 200
Encoding Steps 400
Decoding Steps 100
Training Steps 500,000

Table 4.1: Settings used to train a baseline seq2seq model.

As expected, we observed that the default seq2seq model performs poorly on both
the CNN-Dailymail and the ArXiv dataset. We consistently found repeated words in the
generated summary. While the experiments themselves were instructive in understanding

1https://www.arc.vt.edu/computing/cascades/

16

https://www.arc.vt.edu/computing/cascades/


CHAPTER 4. EXPERIMENTS

how encoder-decoder models work, we chose not to pursue this approach because of its
flaws with summarization tasks.

4.2 Pointer-Generator Networks

PGNs come in two flavors – one with only the pointing mechanism switched on, and
another with both the pointing mechanism and coverage. It is easier to train with only the
pointing mechanism, as convergence is simpler. We copy over settings from the baseline
seq2seq model. We saved the model at every 5000th step and monitored the loss function
to ensure the model was converging.

CNN-Dailymail Dataset

We repeated the experiments from the original paper [21] as there was no pre-trained
model available on PyTorch. There was no change to the settings from the paper, except
to reduce the number of steps from 600,000 to 500,000. Additionally, we were successfully
able to use both pointing and coverage for this dataset. Training took 3 days and 7 hours.
While we did not calculate ROUGE scores on the CNN/DailyMail dataset, we found the
model to work quite well with news articles.

ArXiv Dataset

We replaced the original dataset with the ArXiv collection mentioned previously in 3.
While this is a smaller dataset in terms of the number of articles, the length of each article
and summary makes the training process longer. We increased the number of encoding
steps to 8,000 to account for the increased length of the source document. Similarly, we
increased the number of decoding steps to 200 for the summary. We were successfully
able to train a model with just the pointing mechanism. However, when we trained with
coverage switched on, we noticed the losses turned to NaN (not a number). This is likely
because the coverage mechanism also uses a learning rate. We have yet to run a parameter
sweep to find the optimal value for the coverage LR. Training took 3 days and 8 hours.

17



Chapter 5

Evaluation

Evaluation has long been of interest to researchers of automatic summarization systems.
This task could be challenging and expensive to the extent that humans may be in-
volved in the evaluation process. A widely accepted method is to utilize manually created
summaries as gold standard summaries. Subsequent evaluations are done by machine,
following certain metric(s). This chapter will introduce commonly used metrics and how
they are applied in the evaluation of our summarization systems.

5.1 ROUGE

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It was developed
by Chin-Yew Lin of the University of Southern California in 2004. ROUGE includes
four different measurements: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. They
work by comparing an automatically produced summary (called system summary)
against reference summaries (typically manually created gold standard summaries).
The following subsections will cover ROUGE-N and ROUGE-L, the two most commonly
used measurements in ROUGE, as well as the definition of several basic concepts.

5.1.1 Recall and Precision

Recall in the context of ROUGE means how much of the words in the system summary
and reference summary are overlapping. Let Wo denote the number of overlapping words,
Wr denote the total number of words in the reference summary and R denote the recall
score. Recall can be calculated by:

R =
Wo

Wr

However, recall is not a good measurement of the quality of a summary, since machine
generated summaries can be extremely long and thus cover every word in the reference
summary. Therefore, we need another measurement, precision, to calculate how much of
the system summary is relevant. Let Ws denote the total number of words in the system

18



CHAPTER 5. EVALUATION

summary, and P denote the precision score, where precision can be calculated by the
following formula:

P =
Wo

Ws

5.1.2 ROUGE-N

ROUGE-N is essentially n-gram recall between reference and system summary. ROUGE-
N is calculated as follows [16]:

ROUGE-N =

∑
S∈ReferenceSummaries

∑
gramn∈S

Countmatch(gramn)∑
S∈ReferenceSummaries

∑
gramn∈S

Count(gramn)

where n is the order of the n-gram, gramn, and Countmatch(gramn) is the maximum
number of n-grams occurring both in a system summary and a set of reference summaries.

In practice, ROUGE-1 is often used in conjunction with ROUGE-2. Unlike ROUGE-
1, ROUGE-2 can show the fluency of summary in the sense that system summary with
higher ROUGE-2 score follows the word ordering of the reference summary more precisely.

5.1.3 ROUGE-L

ROUGE-L take the longest common subsequence (LCS) into account. ROUGE-L use
LCS-based F-measure to estimate the similarity of two summaries [16]. Assume we have
two summaries, reference summary X of length m and system summary Y of length n.
The ROUGE-L score (denoted Flcs in the following formulas) can be calculated as follows
[16]:

Rlcs =
LCS(X, Y )

m

Plcs =
LCS(X, Y )

n

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

Here Rlcs is LCS recall score, Plcs is LCS precision score, LCS(X, Y ) is the length of
the LCS between X and Y , and β is Plcs/Rlcs.

5.2 METEOR

METEOR stands for Metric for Evaluation of Translation with Explicit ORdering. This
metric is generally used in machine translation systems. However, due to the similar-

19



CHAPTER 5. EVALUATION

ity between translation and summarization tasks, it can also be adapted to automatic
summarization systems.

Like ROUGE, METEOR also utilize precision P and recall R in evaluation (see section
5.1.1 for details). Precision and recall are combined to calculate the harmonic mean Fmean:

Fmean =
10PR

R + 9P

where P is weighted 9 times of R in the original paper [4]. To take longer matches
into account, METEOR also introduces a penalty factor Penalty. In order to calculate
Penalty, we need to group unigrams in system summary and reference summary into the
fewest number of chunks, where unigrams in each chunk are adjacent in both system
summary and reference summary. Penalty is calculated as follows:

Penalty = 0.5(
#chunks

#unigrams matched
)

Finally, the METEOR score Score can be computed by the following formula:

Score = Fmean ∗ (1− Penalty)

5.3 Gold Standard ETD Summaries

To evaluate models using the metrics we introduced before, we must write our own golden
standard summaries for the ETD dataset. Due to the length and complexity of a common
academic thesis, even for an experienced human it is very hard to generate a concise sum-
mary of the whole thesis. Common summary models also do not have large compression
ratio to support extremely long articles. Therefore, we decide to divide and conquer, that
is, create chapterwise summaries instead. We include our gold standard summaries at the
end of this report; see appendix A.

ETD number Team Member
17355 Baghudana
17355 Liu
17347 Lasky
17405 Baghudana
17772 Li

Table 5.1: ETDs and Corresponding Team Members

20



Chapter 6

Results and Discussion

In this section, we present the results of three models – the baseline seq2seq model, PGNs
(with and without coverage), and FastAbsRl. For our qualitative results, we generate
summaries of a chapter from a gold standard master’s thesis and compare these against
the gold standard summaries. Through this Section, we compare our results against a
gold standard summary of Chapter 1 of the master’s thesis 17355 (Appendix A). This
chapter was summarized by Ashish Baghudana and is reproduced verbatim below. For
quantitative evaluation, we use the ROUGE metrics. We report ROUGE-1, ROUGE-2,
and ROUGE-L (described in Section 5.1) values on our ArXiv dataset on a test split of
407 documents.

Gold Standard Summary

The last fifty years have seen a change in how and where Americans live and shop. Fewer
people shop at Big Box stores such as Wal-Mart. As a result, several large sites and
buildings have been left unoccupied. Communities have looked at bringing in new retailers
and businesses into these buildings, as well as new types of development. However, new
development often comes at the cost razing and reconstructing these sites. Instead of
demolishing these buildings, they can be repurposed efficiently to avoid loss of investment.

6.1 Baseline seq2seq Model

Qualitative Results

The summary generated for the gold standard chapter is:
last fifty years Americans have evolved in both how and where we live , and in how we

shop for the things we need . Today we look at the things we need . Today we look at the
things we need . Today we look at the things we need . Today we look at the things we
need . Today we look at the things we need . Today we look at the

21



CHAPTER 6. RESULTS AND DISCUSSION

Quantitative Results (ArXiv)

The baseline seq2seq had the lowest ROUGE scores amongst the three models that we
trained. The summaries were poor, with several repetitions of words in the summary.
The ROUGE scores on the ArXiv test dataset are given in Table 6.1.

Table 6.1: ROUGE Scores for Baseline seq2seq model

Metric Precision Recall F1-Score
ROUGE-1 0.2476 0.1178 0.1518
ROUGE-2 0.0214 0.0083 0.0112
ROUGE-L 0.2235 0.1041 0.1112

6.2 Pointer Generator Networks

We trained two models of Pointer Generator Networks (PGNs) – one with disabling
coverage and the other after enabling coverage. Results from both these models are
presented in the sections below.

6.2.1 Without Coverage

Qualitative Results

The summary generated for the gold standard summary is reproduced below.
last fifty years Americans have evolved in both how and where we live , and in how we

shop for the things we need . Today we look at the ubiquitous “ Big Box ” store from the
past and see a way of shopping that fewer and fewer of us use regularly the While Realty
division currently offers some 490 buildings and pieces of land for sale the

Quantitative Results (ArXiv)

Table 6.2: ROUGE Scores for Pointer Generator Networks without Coverage

Metric Precision Recall F1-Score
ROUGE-1 0.2325 0.2152 0.2150
ROUGE-2 0.0423 0.0380 0.0379
ROUGE-L 0.2087 0.1932 0.1827

6.2.2 With Coverage

Qualitative Results

The summary generated for the gold standard summary is reproduced below.

22



CHAPTER 6. RESULTS AND DISCUSSION

Past few years and leaving communities wondering what to do with these large , impos-
ing buildings the Wal-Mart Realty division currently offers some 490 buildings and pieces
of land for sale the embodied energy these buildings already have invested into them from
their construction . If we look for a new use without having to demolish.

Quantitative Results (ArXiv)

Table 6.3: ROUGE Scores for Pointer Generator Networks with Coverage

Metric Precision Recall F1-Score
ROUGE-1 0.2452 0.2216 0.2237
ROUGE-2 0.0431 0.0380 0.0382
ROUGE-L 0.2184 0.1979 0.1886

6.2.3 Quantitative Results on Gold Standard Data

Aside from evaluating our models on the test split of the ArXiv dataset, we also evaluate
our best performing model against the gold standard ETD dataset that was manually
summarized by our team members. This consists of 8 ETDs divided into overall 28
chapters. We use the script provided by the GTA for the course to calculate ROUGE-1,
ROUGE-2, ROUGE-L, and ROUGE-SU4 scores. These results are presented in Table 6.4
and Table 6.5.

Table 6.4: ROUGE (Paragraph) Scores for Gold Standard Data

Metric Score
ROUGE-1 0.2308
ROUGE-2 0.0400
ROUGE-L 0.1538

ROUGE-SU4 0.0643

Table 6.5: ROUGE (Sentence) Scores for Gold Standard Data

Metric Score
Max ROUGE-1 0.3333
Max ROUGE-2 0.1428

6.3 Discussion

The performance of summarization models improves from the baseline seq2seq to PGNs.
In the baseline seq2seq model, we saw several repeated words and sentences. This is

23



CHAPTER 6. RESULTS AND DISCUSSION

possibly due to the model getting stuck in a local minimum. Additionally, we see sev-
eral unknown tokens in this model because of the model’s inability to deal with out-of-
vocabulary words. PGNs with coverage performs marginally better than that without
coverage. However, none of the models produce good sentence structure. We hypothesize
that complicated sentence structures in theses and dissertations poses a challenge to the
summarization model in understanding the linguistics of a sentence. CNN-Dailymail, due
to its simpler content and style, generates better sentences. Quantitatively, we notice
that performance on the ArXiv dataset falls below the numbers reported by See, Liu, and
Manning [26]. They report ROUGE-1, ROUGE-2, and ROUGE-L F1-scores of 0.3953,
0.1728, and 0.3638 respectively. Our best performing model trained on the ArXiv dataset
has F1-Scores of 0.2237, 0.0382, and 0.1886 for ROUGE-1, ROUGE-2, and ROUGE-L
respectively, when evaluated on the test split in the ArXiv dataset. This compares with
the results we generated on the gold standard data (i.e. ETDs that were summarized by
our team) with roughly the same F1-Scores.

24



Chapter 7

User’s Manual

For this project, we have used various tools and development kits to assist us to set
up a baseline, and to implement our own design. In this section, we briefly talk about
the setups we have used, and how to run our implementations. The following sections
describe: 1) how to gather ETDs and other papers from arXiv and pre-process data; 2)
how to set up and run Grobid; 3) how to set up and run ScienceParse; 4) how to run
summarization with PGNs; 5) how to run FastAbsRL. The first three are running and
tested on Ubuntu 16.04.5 LTS. The last two are run and tested on the ARC clusters
(Cascades and Huckleberry) from Virginia Tech.

7.1 How to Pre-Process Data

Our team is mainly working with Theses, Dissertations, and arXiv papers for training
models.

7.1.1 arXiv Papers

arXiv papers work well with Grobid. We developed a script named
arxiv_fetching.py to download all the academic papers. The data and metadata can
be found online1.

Usage:

python3 arxiv_fetching.py -s 0 -e 9 -t ~/arxiv_pdfs/ \

-m arxivData.json

Here, we have 4 arguments needed to parse with the program.

• -s starting index, default value is 0.

1https://www.kaggle.com/neelshah18/arxivdataset

25

https://www.kaggle.com/neelshah18/arxivdataset


CHAPTER 7. USER’S MANUAL

• -e ending index, default value is 41000.

• -t target directory to store PDFs, default value is ./arxiv pdfs/

• -m metadata location, default value is ../resources/arxivData.json

With this program, you can download all the arXiv papers in a JSON file.

7.1.2 Electronic Theses and Dissertations

We provide a tar file containing all the ETDs for training purposes, and to get familiar
with our systems. To use the tar ball, just simply type tar xf ETD_text.tar

7.1.3 Pre-process Text

7.2 Grobid

GROBID (or Grobid) means GeneRation Of BIbliographic Data [10]. We grabbed the
most important part that is used in our design, and provides instructions to get it work.
Here we provide an installation guide for a server installation. To install Grobid, follow
the procedure:

git clone https://github.com/kermitt2/grobid.git

./gradlew clean install

After this you can simply run ./gradlew clean install test to test the installa-
tion. To run the server, use command ./gradlew run. This will launch the server on
localhost with port 8070.

Note: the Gradle process will hang at 88%; this is normal because the web service
is run sharing the same JVM as Gradle.

On the client side, we provide a full text extract.py script that can convert the PDFs
to XML format and .txt formats. This is running with pipenv.
To install dependencies, follow the steps provided below:

26



CHAPTER 7. USER’S MANUAL

## This is tested on Python 3.6.6. Any Python 3.6.y should work

## without problems.

## But Python 3.7.y will not work with the Grobid client!

## install pipenv

pip3 install pipenv

## install dependency

pipenv install lxml bs4 requests

After this you should be able to use our script to pre-process the PDFs. Our script us-
age is pipenv run python full_text_extract.py --pdf-file $input --output $output.
Another easy approach is to put your PDF’s directories into a text file, and use our
pdf_to_xml.sh to process all the files you want to process.

7.3 ScienceParse

The science parser is another approach we use to pre-process the ETDs, which works
pretty well. Simpler than Grobid, we can just use an HTTP request to get a JSON
response of a processed file.

curl -v -H "Content-type: application/pdf" --data-binary @paper.pdf \

"http://scienceparse.allenai.org/v1"

# here paper.pdf is your pdf path with name 'paper'

You will then get a response with a json format response. You can easily use python3’s
json module to load the json file and process it.

7.4 Pointer Generator Networks

The original implementation of PGNs is in Tensorflow 1.2.1 and is available at https:

//github.com/abisee/pointer-generator. However, our team was more familiar with
PyTorch and chose to fork off of a PyTorch implementation available at https://github.
com/atulkum/pointer_summarizer. Our own fork resides at https://github.com/

ashishbaghudana/pointer_summarizer.
The subsections below provide a walkthrough on 1) how to pre-process data for PGNs;

2) how to train a model; 3) how to test a model; and 4) how to run the model interactively.

7.4.1 Pre-process Data for PGNs

Training PGNs requires the input of the dataset as a binary file, which has already
been lowercased and tokenized, and a vocabulary file. We create these as part of a

27

https://github.com/abisee/pointer-generator
https://github.com/abisee/pointer-generator
https://github.com/atulkum/pointer_summarizer
https://github.com/atulkum/pointer_summarizer
https://github.com/ashishbaghudana/pointer_summarizer
https://github.com/ashishbaghudana/pointer_summarizer


CHAPTER 7. USER’S MANUAL

pre-processing step. The code for pre-processing is available at https://github.com/

ashishbaghudana/pointer_generator_data. The main file in this repository is make -

datafiles.py. This file expects two inputs – path to a directory containing full text files
and a path to a directory containing summary files. We specify our datasets in the format
specified below.

dataset/

fulltext/

0.text

1.text

...

summary/

0.summary

1.summary

...

The pre-processing script depends on Stanford’s CoreNLP PTBTokenizer. CoreNLP
is distributed as a jar file and can be downloaded from https://stanfordnlp.github.

io/CoreNLP/. The jar file also has to exported to the CLASSPATH variable. We provide a
script setup stanford corenlp.sh that can automatically set this up. The pre-requisites
can be set up using the scripts given below.

source ./setup_stanford_corenlp.sh

echo $CLASSPATH

After installing the prerequisites, run python make datafiles.py -f [fulltext]

-s [summary] -o [output].

28

https://github.com/ashishbaghudana/pointer_generator_data
https://github.com/ashishbaghudana/pointer_generator_data
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/


CHAPTER 7. USER’S MANUAL

$ python make_datafiles.py -h

usage: Preprocess dataset for Pointer Generator Networks [-h]

-f FULLTEXT

-s SUMMARY

-o OUTPUT

optional arguments:

-h, --help show this help message and exit

-f FULLTEXT, --fulltext FULLTEXT

Path to directory containing full text

documents

-s SUMMARY, --summary SUMMARY

Path to directory containing summaries

-o OUTPUT, --output OUTPUT

Path to directory to contain the .bin files

7.4.2 Training PGNs

Once the data has been pre-processed, we can train models using the repository https://

github.com/ashishbaghudana/pointer_summarizer. This codebase is compatible only
with Python 2. The main file for training is training ptr gen/train.py. The path
to the dataset is provided in training ptr gen/data util/config.py. These can be
modified to point to the output directory of the pre-processing scripts.

1 root_dir = os.path.expanduser("../dataset/news")

2

3 train_data_path = os.path.join(root_dir, "finished_files/chunked/train_*")

4 eval_data_path = os.path.join(root_dir, "finished_files/val.bin")

5 decode_data_path = os.path.join(root_dir, "finished_files/test.bin")

6 vocab_path = os.path.join(root_dir, "finished_files/vocab")

7 log_root = os.path.join(root_dir, "log")

We performed all of our training on Cascades (ARC Cluster). Running jobs on the
ARC cluster is done via the PBS Job Scheduler. The job scheduler needs information
about the resources requested, the queue ID, and the allocation name. We specify these
in start train.sh.

The job can be run on Cascades with the command qsub start train.sh. If not us-
ing the PBS job scheduler, a model can be trained simply by invoking python training -

ptr gen/train.py from the command line.

29

https://github.com/ashishbaghudana/pointer_summarizer
https://github.com/ashishbaghudana/pointer_summarizer


CHAPTER 7. USER’S MANUAL

7.4.3 Testing PGNs

Similar to the training scripts, we have written a script start test.sh that can be invoked
to test the model trained in the previous step. The start test.sh script is compatible
with Cascades and already has the PBS declaratives. To test on a machine without the
PBS job scheduler, invoke python training ptr gen/test.py from the command line.

7.4.4 Interactive Mode

Finally, we also provide a way to use a trained model interactively such that the user can
feed in a paragraph of text in the command line and get an abstractive summary from
the model. This can be run as follows:

python training_ptr_gen/interactive.py [path/to/model]

30



Chapter 8

Developer’s Manual

For this project, we have used various tools and development kits to assist us to set up
a baseline, and to implement our own design. In this section, we briefly talk about the
setups we have used, and how to run our implementations. The following sections are
including 1) how to gather ETDs and other papers from arXiv and pre-process data; 2)
how to set up and run grobid; 3) how to set up and run ScienceParse; 4) how to run
fast abs rl[6]. The first three are running and tested on Ubuntu 16.04.5 LTS. The last
one is run and tested on the ARC cluster from Virginia Tech.

8.1 How to pre-process data

Our team are mainly working with Dissertations, arXiv papers for training model.

8.1.1 arXiv Papers

arXiv papers are pretty good for Grobid. we developed a script named arxiv_fetching.py

to download all the academic papers. This work and meta data can be found online1.

Usage:

python3 arxiv_fetching.py -s 0 -e 9 -t ~/arxiv_pdfs/ -m arxivData.json

Here, we have 4 arguments needs to parse to the program.

• -s starting index, default value is 0.

• -e ending index, default value is 41000.

• -t target directory to store PDFs, default value is ./arxiv pdfs/

1https://www.kaggle.com/neelshah18/arxivdataset

31

https://www.kaggle.com/neelshah18/arxivdataset


CHAPTER 8. DEVELOPER’S MANUAL

• -m metadata location, default value is ../resources/arxivData.json

With this program, you can download all the arxiv papers in the json file.

8.1.2 Electronic Theses and Dissertations

We will provide a tar file contains all the ETDs for training purposes and get familiar
with our systems. To use the tar ball, just simply type tar xf ETD_text.tar. This can
also be found on hadoop server at path
/home/public/cs4984_cs5984_f18/unlabeled/data/ETD

8.1.3 Pre-process Text

8.2 Grobid

GROBID (or Grobid) means GeneRation Of BIbliographic Data[10]. We grabbed the
most important part that are used in our design, and provided manuals for that part.
Here we provide installation guide for a server installation.

To install Grobid, follow the procedure:

$ git clone https://github.com/kermitt2/grobid.git

$ ./gradlew clean install

After this you can simply run ./gradlew clean install test to test the installa-
tion. To run the server, use command ./gradlew run. This will launch the server on
localhost with port 8070.

Note: the Gradle process will hang at 88%, this is normal because the web service
is ran sharing the same JVM as Gradle.

On the client side, we provide a full text extract.py script that can convert the PDFs
to xml format and txt format. This is running with pipenv.
To install dependencies, follow the steps provided below:

## This is tested on Python 3.6.6. Any Python 3.6.y should work

## without problems. But Python 3.7.y will not work with Grobid client!

## install pipenv

$ pip3 install pipenv

## install dependency

$ pipenv install lxml bs4 requests

32



CHAPTER 8. DEVELOPER’S MANUAL

After this you should be able to use our script to pre-process the PDFs. Our script Us-
age is pipenv run python full_text_extract.py --pdf-file $input --output $output.
Another easy approach is to put your PDF’s directories into a text file, and use our
pdf\_to\_xml.sh to process all the files you want to process.

8.3 ScienceParse

The ScienceParse is another approach we use to pre-process the ETDs, which works
pretty well. Simpler than Grobid, we can just use HTTP request to get a json response
of processed file.

$ curl -v -H "Content-type: application/pdf" --data-binary @paper.pdf \

"http://scienceparse.allenai.org/v1"

# here paper.pdf is your pdf path with name 'paper'

You will then get a response with a json format response. You can easily use python3’s
json module to load the json file and process it.

8.4 Pointer Generator Networks

The main developer settings for training PGNs resides in the configuration file training -

ptr gen/data util/config.py. We provide a snippet of these configuration parameters
below and explain the important ones.

1 # Hyperparameters

2 hidden_dim = 256

3 emb_dim = 200

4 batch_size = 8

5 max_enc_steps = 400

6 max_dec_steps = 100

7 beam_size = 4

8 min_dec_steps = 35

9 vocab_size = 100000

10

11 lr = 0.15

12 adagrad_init_acc = 0.1

13 rand_unif_init_mag = 0.02

14 trunc_norm_init_std = 1e-4

15 max_grad_norm = 2.0

16

33



CHAPTER 8. DEVELOPER’S MANUAL

17 pointer_gen = True

18 is_coverage = False

19 cov_loss_wt = 1.0

20

21 eps = 1e-12

22 max_iterations = 100000

23

24 use_gpu = True

25

26 lr_coverage = 0.15

27

28 # Logging

29 log_level = 'DEBUG'

30 log_file = os.path.join(log_root, '{}_{}.log')

1. hidden dim: The number of hidden units for both the encoder and decoder of the
model. A general rule-of-thumb is that as we increase the number of hidden units,
we also increase accuracy. However, increasing the hidden units also increases the
training and testing time.

2. emb dim: Dimensions for the word embeddings. Typically, this value is set no larger
than 300.

3. batch size: Number of datapoints per batch.

4. max enc steps: The number of words that will be encoded from each input data
point. This will vary based on the average length of the full text document. We set
this to 8000 for the arXiv dataset and 400 for the CNN/Dailymail dataset.

5. max dec steps: The number of words that will be decoded for each summary. This
will vary based on the average length of the summary document. We set this to
200 for the arXiv dataset and 100 for the CNN/Dailymail dataset. The ratio of the
max enc steps and max dec steps defines the compression ratio.

6. beam size: Number of possible hypotheses to explore when decoding.

7. vocab size: Trim the vocabulary if it exceeds this value.

8. lr: Learning rate for the Adagrad optimizer.

9. adagrad init acc: Initial accummulation value for the Adagrad optimizer.

10. pointer gen: Enable or disable the pointing mechanism in the model.

34



CHAPTER 8. DEVELOPER’S MANUAL

11. coverage: Enable or disable the coverage mechanism in the model. If the model is
run with pointer gen = False and coverage = False, it is equivalent to running
a basic Seq2Seq with Attention model.

As a developer, it becomes important to perform several experiments by changing these
values to obtain the best model. We find that by setting coverage = True, the training
sometimes does not converge, and the loss becomes NaN. Solutions to this are discussed
more at https://github.com/abisee/pointer-generator#help-ive-got-nans.

35

https://github.com/abisee/pointer-generator#help-ive-got-nans


Chapter 9

Lessons Learned

Automatic text summarization is still a very nascent research area with several problems
and challenges. The field began as an extension of machine translation and therefore,
most architectures extend seq2seq models. We find that these models produce mediocre
results. One of the primary issues with seq2seq models is the repetition of words that
occurs because the model fails to converge. Pointer generator networks (PGNs) and Fast
Abstractive Summarization using Reinforce-Selected Sentences (FastAbsRL) are im-
provements over seq2seq models, especially since they use pointing mechanisms, coverage,
and a hybrid extractive-abstractive approach to improve summarization. These models
however take a long time to train and are very resource intensive.

In the training process, we find that cross-entropy or negative log likelihood loss are
ineffective metrics for measuring how well the model is learning. While the loss decreases
substantially over the course of the training period, we still do not see effective sentence
formation in the summaries. This is a potential area of improvement in text summa-
rization using deep learning. We also notice that the number of encoding and decoding
steps need to be tweaked according to the dataset being used. In the CNN-Dailymail
dataset, the articles were roughly 400 words long and the summaries were approximately
100 words long. In contrast, the articles in the ArXiv dataset were on an average 6000
words long and abstracts were about 200 words long. This required the number of en-
coding steps to be increased so as to capture the essence of the full article. However,
even with the increase in encoding steps, training is not very effective, as it is difficult to
condense information from large texts into relatively small vectors. Finally, we also find
that the ROUGE metric is not indicative of real world performance, especially because
summaries can be expressed in several different ways, with different sentence phrasing
and words. A different way of evaluating summaries might be through the use of Para-
graph2Vec [15] and calculating the cosine similarity between the gold standard summary
and the generated text.

At last, in order to process the ETDs and find proper dataset, we tried different tools,
including using Grobid[10] and Science Parse[25], as well as various sets of data, such as
arXiv papers. We have learned how to set up the models and to use proper tools for

36



CHAPTER 9. LESSONS LEARNED

pre-processing the text.

37



Chapter 10

Acknowledgements

We would like to thank Dr. Edward A. Fox for giving us the opportunity to work on
exciting and challenging problems in automatic text summarization. We greatly benefited
from his advice, comments, and guidance in framing the problem of summarizing ETDs
using a dataset from ArXiv. We used the ARC clusters provided for the course to their full
extent for training multiple models. This was an integral part of our trial and error-based
learning. We also want to thank the GTA, Mr. Liquing Li, for his support and patience
throughout the course. We used his assistance several times while running our scripts on
the cluster. We also acknowledge the NSF grant IIS-1619028 that made datasets and
resources accessible to us.

38



Appendix A

Gold Standard Summary

ETD 17355 Baghudana

Chapter 1
With increasing pressure on freshwater resources, seawater desalination is becoming

an important research area to meet the water needs of the world. Membrane distillation is
a promising process which could be extensively used for desalination in the future because
of its versatility and resistance to fouling. Of many membrane distillation techniques, air
gap membrane distillation is shown to be the most energy efficient. Air-cooled systems
for AGMD are compared against water-cooled systems. To make the desalination process
sustainable, solar energy, concentrated with optical waveguides, can be used to meet the
thermal needs of the cooling system, thus reducing cost.

Chapter 2
Experimental setups for optimization and parametric studies include the AGMD mod-

ule and superhydrophobic surface. An air-cooled air gap membrane distillation system
works well, with lower energy requirements, due to its modular design. The conductivity
of the support mesh is an important factor in flux values, with copper mesh giving good
yield. Furthermore, increasing the air gap reduces the flux value. A hydrophobic surface
with small air gap in series configuration, which reduces the temperature drop of the
saline water, works best and results in about three times more yield when compared to a
single pass water-cooled system.

Chapter 3
There is an analytical closed form solution for radial waveguides that can be used

for solar thermal desalination. Also discussed are simulation for ray trace analysis, loss
mechanisms associated with waveguides, and a cost model for waveguide economics. A
parametric study considered net thermal power from the waveguide to the receiver, col-
lection efficiency, and aperture area requirements for the system. Feasible design and
operational envelopes of the radial planar waveguide concentrator-receiver system are

39



APPENDIX A. GOLD STANDARD SUMMARY

reported based on the structural and thermal constraints, like grating size, waveguide
thickness and radius, and receiver radius. The results from this analytical model are
backed up by TracePro simulations.

Chapter 4
Air-cooled AGMD systems with modular design have lower energy requirements than

water-cooled counterparts while still giving comparable performance. Conductivity of the
support mesh had a significant effect on the yield of freshwater. Copper meshes performed
the best followed by aluminum and steel. Desalination can be made more sustainable by
using a solar energy concentration system. An analytical model for radial waveguide
based solar concentration, to make the process sustainable, was developed. A parametric
study considered net thermal power delivered to the receiver from the waveguide, collec-
tion efficiency, and aperture area requirement. A cost model was developed to minimize
levelized cost of power (LCOP). Future studies, including of manufacturing, could further
improve yields and validate use in natural environments.

ETD 17355 Liu

Chapter 1
The landscape of hardware and software has changed in the last decades: the hard disk

drives and DRAM has been supplanted by SSDs, and the cloud-based storage services and
application workloads expand a lot. This thesis argues that storage tiering is an effec-
tive technique for balancing operational or deployment costs and performance in modern
storage systems. In order to solve the draw back of PCM which is low write-endurance,
a tired cache design named THMCACHE has beed designed and implemented. On the
other side, to solve the software side issue, a Cloud Analytics Storage Tiering solution
that enables cloud tenants can use to reduce monetary cost and improve performance of
analytics workloads is also designed and implemented.

Chapter 2
thmCache is a tiered cache design that combines low-endurance persistent memory

devices with hish-endurance PMEM devices. thmCache caches write-intensive blocks in
the high-endurance rite to write as much as possible to reduce the write operation in the
low-endurance tier. The AccuSim cache simulater has been extended to support a hybrid
PMEM architecture and it includes an implemntation of thmCache. Results show that
write-intensive workloads has a 75% reduction in PCM write using DRAM with only 15%
of the PCM size. This will overcome the drawbacks of persistent memory devices.

Chapter 3
Cloud Analytics Storage Tiering is a solution that cloud tenants can use to reduce

maintaince cost while having a good performance. This idea provides storage tiering sup-
port for data analytics tools in the cloud. It can perform offline workload profiling to

40



APPENDIX A. GOLD STANDARD SUMMARY

predict job performance model for different tasks, and combine the models with work-
load specifications. CAST also has a optimization model called CAST++ in which reuse
pattrns and across-jobs interdependencies common in realistic analytics workloads. Tests
show that CAST++ has a 1.21x performance gain and reduce the cost by 51%.

Chapter 4
Big Data analytics platforms becomes more popular with Cloud object stores due to

the simplicity of management of large blocks of data at a large scale. Hard disk drives
is the most popular way because of the cost. But some big data applications need to
have strict performance, HDDs are not a good choice. Faster storages such as SSDs are
desirable but expensive. So A tired object store contains fast and slow storage devices is
a desiable choice. This approach allows both a service provider and its tenants to engage
in a pricing game. This is a result of win-win situation.

ETD 17347 Lasky

Chapter 1
With the automotive industry rapidly pushing towards fully autonomous vehicles, an

Autonomous Vehicle Research Platform (AVRP) would be very useful for carrying out
research on self-driving cars. A multitude of successful AVRPs have been deployed with
varying degrees of success utilizing a variety of sensors (including ultrasonics), driving
mechanisms, and computer hardware. In 2007, 35 teams competed in the DARPA au-
tonomous driving challenges, with CMU, the winning team, using HDR cameras, LIDAR,
and radar on the competition vehicle. Virginia Tech also competed, and used LIDAR and
cameras for perception with the vehicle completing the 60-mile course in about 6 hours.
Faculty at Virginia tech were interviewed to get a better understanding of what features
researches would like to see in an AVRP, which is the foundation of this thesis. The goal of
this thesis is to provide operational specifications for the development of a level 4 capable
AVRP, which are capable of being fully autonomous within a specified operational design
domain (ODD), but are not expected to be fully autonomous outside of ODD.

Chapter 2
The interdisciplinary design needs for an Autonomous Vehicle Research Platform

(AVRP) include vehicle communication, perception, and vehicle adapting to different en-
vironments. Vehicle communication will require a radio transmitter and transceiver; path
following and object recognition will require cameras and sufficient processing hardware.
Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) also
will require the use of radar and communication. Additionally, monitoring and collect-
ing data will require access to the AVRP communication buses. The basic autonomous
platform will require sensing hardware (LIDAR, radar, ultrasonic, cameras), GPS/INS
(inertial navigation system), inertial measurement unit (IMU), computers for perception
processing, computers for route planning and obstacle avoidance, data storage, drive by

41



APPENDIX A. GOLD STANDARD SUMMARY

wire (DBW) system for vehicle input, and power and communication bus(es). A research
platform will use a two-layer setup, hooks to connect additional computers, hooks to ac-
cess communication buses, universal mounting racks, and appropriate power outlets.

Chapter 3
The design of the Autonomous Vehicle Research Platform (AVRP) includes about

drive by wire (DBW), as it allows the AVRP to be fully functional in autonomous mode
without any external manual controlling. For navigation, the highest accuracies can be
achieved by using a combination of GPS and dead reckoning. Sensing is critical in an
AVRP, including cameras, radar, LIDAR, acoustic (ultrasonic), wheel speed, and steering
angle sensors. From a systems perspective, the AVRP needs to be a two-layer system
(admin, user) such that custom software may be mounted and unmounted on the user
side without compromising the integrity of the AVRP. An electric or hybrid vehicle is
preferable such that there is sufficient electrical power (through the power bus) to run the
base AVRP and all attached hardware. Finally, universal mounting racks on the front,
top, and rear of the vehicle are essential to allow researchers to easily install and uninstall
hardware.

Chapter 4
The base sensor suite allows for the Autonomous Vehicle Research Platform (AVRP)

to perform the following capabilities without any user added sensors or hardware: text,
sign, and signal recognition, Adaptive Cruise Control (ACC), blind spot detection, lane
following, path following, obstacle detection, obstacle avoidance, emergency braking and
stop-and-go-traffic. AVRPs require validation and testing, and can be broken up into
three pieces: software, hardware and overall system validation. Additional validation
should include point-to-point testing, unprivileged admin access and running simulations.

Chapter 5
An Autonomous Vehicle Research Platform (AVRP) must be developed on a need-

driven basis which can be ascertained by interviewing potential future users. The base
specs for an AVRP include a multilayer user system, ports to connect additional comput-
ers and devices, separate communication buses, universal mounting racks, an adequate
sensor suite and an appropriate power source. The operational specifications are not lim-
ited simply to automobiles, which demonstrates the scalability and applicability of the
AVRP. To extend the focus on hardware, future work on software specifications is desir-
able. For hardware, the testing of various models and brands of sensors should be carried
out.

ETD 17405 Baghudana

Chapter 1
The last fifty years have seen a change in how and where Americans live and shop.

42



APPENDIX A. GOLD STANDARD SUMMARY

Fewer people shop at Big Box stores such as Wal-Mart. As a result, several large sites
and buildings have been left unoccupied. Communities have looked at bringing in new re-
tailers and businesses into these buildings, as well as new types of development. However,
new development often comes at the cost razing and reconstructing these sites. Instead of
demolishing these buildings, they can be repurposed efficiently to avoid loss of investment.

Chapter 2
Several unused Big Box stores have been successfully converted to public facilities

such as libraries and health clinics. However, architects often have difficulty designing
around existing column grids and structures, increasing time and cost of construction.
This can be simplified by using repetitive construction techniques, such as modulated
and pre-fabircated construction. This technique has been applied to create single fam-
ily homes, multi-story hotels, and commercial buildings. The Potomac Yard Center in
norther Alexandria, Virginia provides an ideal setting for exploring reconstruction with-
out demolition. The area houses retail space and three to four-story townhouses well
connected by the Washington Metro. However, the architectural designs and materials
are mostly conventional, and create a sense of cost-cutting in the neighborhood. Though
the community has asked for reforms to the construction plans, the new plans will not
come into force until 2019. Is it possible to deliver the same square footage with shorter
wait times by using the existing built environment?

Chapter 3
Word diagramming, sketching, 3D computer and hand modeling, and phasing dia-

grams helped understand how to use existing infrastructure to speed up reconstruction.
Big box stores, with large parking spaces, are generally car-centric. This was changed
to pedestrian-friendly spaces by introducing on-street parking, street-facing retail, and
street trees. New buildings built in the out lots and parking lots can utilize a modified
slab on grade foundation built on top of existing asphalt, thereby saving large amounts of
asphalt and concrete. Residential townhouse type units in different sizes also add depth
to the site. Residential construction can be pre-fabricated off-site in different colors to
differentiate types of units, as well as add color and life to the streets. Addition of street
lights also creates a welcoming street environment. All these modifications can be done
without changing the existing beam structure.

Chapter 4
The ease of assembly of pre-manufactured components makes it suitable for construc-

tions at abandoned sites such as Big Box retail stores, as well as, the Potomac Yard Center.
Pre-fabricated components also allow for further planned development while at the same
time re-use existing construction. It will help to strengthen and build up the commu-
nity along with phase one and foster the neighborhoods desire to undertake phase two
in the projected twenty to twenty five years it may take to reach that point of construction.

43



APPENDIX A. GOLD STANDARD SUMMARY

ETD 17772 Li

Chapter 1
It will be nice to be able to prove that a program is bug free in critical systems.

USIMPL, the theorem-proving aspect of Orca, which is being developed within Virginia
Tech’s Systems Software Research Group, builds upon Isabelle/UTP (from Unifying The-
ories of Programming by Hoare and He) and the Simpl language (by Schirmer). The
result is a theorem-based language including additional features such as algebraic laws of
programming and a forward verification condition generator.

Chapter 2
USIMPL builds upon formal methods, Isabelle, UTP, Isabelle/UTP, and the Simpl

language, as well as some other related works. Formal methods can be generalized as the
usage of logical inference rules to derive well-formed conclusions in sound mathematical
frameworks, applied to the domains of hardware and software development. Isabelle is
designed as a successor to the HOL series of ITPS. Types, functions, syntax translations,
proofs, and locales of Isabelle involved. The book Unifying Theories of Programming
(UTP) was written to provide denotational semantics for a generalized nondeterministic
imperative programming language expressed in a common setting. Simpl is essentially an
extension of the IMP language presented by Winskel. Many design decisions were made
when implementing UTP in Isabelle.

Chapter 3
The basic Isabelle/UTP system is extended by adding program state features, new

algebraic laws, and scoping rules. The USIMPL VCG (verification condition generator)
can generate the Strongest Postcondition (SP). Hoare rules are used to generate the ver-
ification conditions (VCs).

Chapter 4
Real world applications of the USIMPL VCG include using the USIMPL VCG to

prove the correctness of insertion sort, which is a relatively simple sorting algorithm, and
quicksort, which is more complex.

Chapter 5
USIMPL’s contributions include extension to the Isabelle/UTP implementation of

Hoare and He’s UTP in the proof assistant Isabelle with features of the Simpl language,
as well as development of additional algebraic laws for Isabelle/UTP language constructs.
A helper-library is needed for beyond auxiliary lemmas. For loops and other control flow
structures with complex behavior, and development of invariants and assertions to con-
tinue the flow of proving, can be difficult and tedious. To connect USIMPL to the wider
world, more automated methods are required. Another possible approach is to directly
integrate pre-/postconditions and invariants into the language with which programs are

44



APPENDIX A. GOLD STANDARD SUMMARY

written. Future work will include scoping support, recursive function calls, a heap-style
memory model, and more testing features.

ETD 14603 Lasky

Chapter 1
Computer vision is a branch of artificial intelligence (AI) that is concerned with vi-

sual recognition. This thesis is concerned with Object proposals, which aid in locating
and classifying objects in images. The primary contributions of this thesis include a new
data-driven approach for generating object proposals, a MATLAB library for simplifying
interfacing with object proposal algorithms and identifying and correcting biases in object
proposal evaluation protocols. Chapter 2 reviews related works, chapter 3 discusses the
novel data-driven object proposal approach, chapter 4 introduces and demonstrates the
object proposal library, and chapter 5 discusses and empirically demonstrates the “game-
ability” of modern evaluation metrics.

Chapter 2
Object detection is concerned with detecting the location and type of objects that are

contained in a n image (if any). The process is two-fold: a set of regions which likely
contain objects are proposed (using either sliding window or region proposal) and then
the set of regions are classified. The sliding window method for region proposal is a brute-
force solution for selecting regions in an image, but is typically no longer used as of 2015
due to it’s computational infeasability with O(n4) complexity. A new class of techniques
called object proposal techniques aim to remedy the computational infeasibility of sliding
window. Object proposals are broadly categorized into two categories: window scoring in-
volves selecting a subset from the set of all windows within a frame based on some scoring
metric, and segment-based that involves over-segmenting an image and then converting
the segments into bounding boxes. The dataset typically evaluated on is the PASCAL
VOC detection test set, with the most popular metrics being Recall @ IOU Threshold,
Area under the recall Curve (AUC), Volume Under Surface (VUS), Average Best Overlap
(ABO), and Average Recall (AR).

Chapter 3
This chapter introduces a novel non-parametric, data-driven approach for generating

object proposals. This new approach is neither window-scoring nor segmentation based,
but instead being data-driven. The system generates object proposals by first finding the
k-nearest neighbors via the DeCAF and GIST feature spaces from a database annotated
with bounding boxes. The bounding boxes of the retrieved images are then transferred
over to the query image by either establishing dense pixel-wise correspondence using
SIFT-flow or by warping the neighbors and their annotations to be mapped onto the
query image. The authors experiment using label transfer with and without sift, using
DeCAF or Gist features among varying values of k between 5 and 100. While the results

45



APPENDIX A. GOLD STANDARD SUMMARY

are not the best-performing among the most popular algorithms (like selective search),
they are also not the worst. This chapter introduced a novel approach for regional propos-
als, with the Label Transfer DeCAF with no Sift flow (LT DeCAF no SF) being the best.
Compared to other popular region proposal algorithms, the author’s algorithm performed
average at best, but was conducive to a segway into new ideas.

Chapter 4
This chapter provides an overview of the object proposals library which is a GitHub

repository for object proposal algorithms. It is common in the vision research community
for authors to make their algorithms open-source, which is a great service but leads to
disparate implementations of the algorithms that are absent of a common formatting.
More specifically, the proposals may specify different coordinate systems. This thesis pro-
poses an easy-to-use Object Proposal Library which generates proposals using all existing
object proposal algorithms, standardizes the formatting and evaluates the proposals on
the following metrics: recall at specific threshold, recall at specific number of proposals.,
area under recall curves and average best overlap. See batra-mlp-lab/object-proposals.

Chapter 5
Object proposals can have two different interpretations, one which only detects the

existence of objects, without classification, and the other improving object detection
pipelines such as 20 PASCAL categories. The idea of this chapter is that current eval-
uation protocols are only suitable for detection proposals and is a biased protocol for
category-indecent object proposals. Given datasets like PASCAL emit certain object cat-
egories, these evaluation metrics fail to measure the objects being detected that weren’t
originally annotated in the ground truth. This raises cause for concern because it allows
the metrics to be “gameable” or susceptible to both intentional and unintentional manip-
ulation. One glaring flaw is that PASCAL is only partially annotated allows models to
be tuned (intentionally or unintentionally) to only 20 categories. None of the currently
proposal methods seem to be biased, but we should still be wary of overfitting as a com-
munity to a specific set of object classes.

Chapter 6
Object proposal algorithms have become standard in object detection pipelines, specif-

ically due to their computational efficiency gain over the sliding-window approach. Chap-
ter 2 summarized various object proposal algorithms, chapter 3 proposed a new approach
for generating object proposals, chapter 4 provided an overview of the Object Proposals
Library introduced in the thesis. Chapter 5 did several things, including: reporting the
bias and “gameability” of evaluation protocols, emphasized the different interpretations of
object proposals, demonstrated gameability via a simple experiment, conducted thorough
evaluation of existing object proposal methods, and introduced densely-annotated the
PASCAL VOC 2010 to remedy evaluation protocol concerns. Future work might include
better distance metrics for Chapter 3, and if the analysis in this thesis can be extended

46



APPENDIX A. GOLD STANDARD SUMMARY

to other kinds of proposals, such as patio-temporal, RGBD, etc.

47



References

[1] Zafarali Ahmed. How to Visualize Your Recurrent Neural Network with Attention
in Keras. https://medium.com/datalogue/attention-in-keras-1892773a4f22.
(Accessed on 11/18/2018).

[2] Richard Alterman and Lawrence A. Bookman. “Some computational experiments
in summarization”. In: Discourse Processes 13.2 (1990), pp. 143–174.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Transla-
tion by Jointly Learning to Align and Translate”. In: arXiv preprint arXiv:1409.0473
(2014).

[4] Satanjeev Banerjee and Alon Lavie. “METEOR: An automatic metric for MT eval-
uation with improved correlation with human judgments”. In: Proceedings of the
ACL workshop on intrinsic and extrinsic evaluation measures for machine transla-
tion and/or summarization. 2005, pp. 65–72.

[5] John B. Black and Robert Wilensky. “An evaluation of story grammars”. In: Cog-
nitive science 3.3 (1979), pp. 213–229.

[6] Y.-C. Chen and M. Bansal. “Fast Abstractive Summarization with Reinforce-Selected
Sentence Rewriting”. In: ArXiv e-prints (May 2018). arXiv: 1805.11080 [cs.CL].

[7] Richard Edward Cullingford. Script application: computer understanding of newspa-
per stories. Tech. rep. Yale University, New Haven, Connecticut, Dept. of Computer
Science, 1978.

[8] Misha Denil et al. “Learning Where to Attend with Deep Architectures for Image
Tracking”. In: Neural Computation 24.8 (2012), pp. 2151–2184.

[9] Günes Erkan and Dragomir R Radev. “Lexrank: Graph-based lexical centrality as
salience in text summarization”. In: Journal of artificial intelligence research 22
(2004), pp. 457–479.

[10] Grobid. https://github.com/kermitt2/grobid. [Online; accessed 29-October-
2018]. 2008 — 2018.

[11] Baotian Hu, Qingcai Chen, and Fangze Zhu. “LCSTS: A Large Scale Chinese Short
Text Summarization Dataset”. In: CoRR abs/1506.05865 (2015). arXiv: 1506 .

05865. url: http://arxiv.org/abs/1506.05865.

48

https://medium.com/datalogue/attention-in-keras-1892773a4f22
http://arxiv.org/abs/1805.11080
https://github.com/kermitt2/grobid
http://arxiv.org/abs/1506.05865
http://arxiv.org/abs/1506.05865
http://arxiv.org/abs/1506.05865


REFERENCES

[12] Sébastien Jean et al. “On Using Very Large Target Vocabulary for Neural Machine
Translation”. In: arXiv preprint arXiv:1412.2007 (2014).

[13] Philipp Koehn. “Pharaoh: a beam search decoder for phrase-based statistical ma-
chine translation models”. In: Conference of the Association for Machine Transla-
tion in the Americas. Springer. 2004, pp. 115–124.

[14] Hugo Larochelle and Geoffrey E Hinton. “Learning to Combine Foveal Glimpses
with a Third-order Boltzmann Machine”. In: Advances in Neural Information Pro-
cessing Systems. 2010, pp. 1243–1251.

[15] Quoc Le and Tomas Mikolov. “Distributed representations of sentences and docu-
ments”. In: International Conference on Machine Learning. 2014, pp. 1188–1196.

[16] Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries”. In: Text
Summarization Branches Out (2004).

[17] Hans Peter Luhn. “The automatic creation of literature abstracts”. In: IBM Journal
of research and development 2.2 (1958), pp. 159–165.

[18] Christopher Manning et al. “The Stanford CoreNLP natural language processing
toolkit”. In: Proceedings of 52nd annual meeting of the Association for Computa-
tional Linguistics: system demonstrations. 2014, pp. 55–60.

[19] Elaine Marsh, Henry Hamburger, and Ralph Grishman. “A Production Rule System
for Message Summarization.” In: AAAI. 1984, pp. 243–246.

[20] Rada Mihalcea and Paul Tarau. “Textrank: Bringing order into text”. In: Proceed-
ings of the 2004 conference on empirical methods in natural language processing.
2004.

[21] Ramesh Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence
RNNs and Beyond”. In: arXiv preprint arXiv:1602.06023 (2016).

[22] NIST. Past Data. https://www-nlpir.nist.gov/projects/duc/data.html.
[Online; accessed 24-November-2018]. 2014.

[23] I Present. “Cramming More Components onto Integrated Circuits”. In: Readings in
computer architecture 56 (2000).

[24] Laurent Romary and Patrice Lopez. “Grobid - information extraction from scientific
publications”. In: ERCIM News 100 (2015).

[25] Science Parse. https://github.com/allenai/science-parse. [Online; accessed
29-October-2018].

[26] A. See, P. J. Liu, and C. D. Manning. “Get To The Point: Summarization with
Pointer-Generator Networks”. In: ArXiv e-prints (Apr. 2017). arXiv: 1704.04368
[cs.CL].

49

https://www-nlpir.nist.gov/projects/duc/data.html
https://github.com/allenai/science-parse
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368


REFERENCES

[27] CNN Sport. Abu Dhabi GP: Fernando Alonso farewell as Lewis Hamilton caps
triumphant season with 11th win. https://edition.cnn.com/2018/11/25/

motorsport/abu-dhabi-gp-alonso-hamilton/index.html. [Online; accessed
24-November-2018]. 2018.

[28] Zhaopeng Tu et al. “Modeling coverage for neural machine translation”. In: arXiv
preprint arXiv:1601.04811 (2016).

[29] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural Informa-
tion Processing Systems. 2017, pp. 5998–6008.

[30] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation”. In: CoRR abs/1609.08144 (2016). url:
http://arxiv.org/abs/1609.08144.

[31] Kelvin Xu et al. “Show, Attend and Tell: Neural Image Caption Generation with Vi-
sual Attention”. In: International Conference on Machine Learning. 2015, pp. 2048–
2057.

50

https://edition.cnn.com/2018/11/25/motorsport/abu-dhabi-gp-alonso-hamilton/index.html
https://edition.cnn.com/2018/11/25/motorsport/abu-dhabi-gp-alonso-hamilton/index.html
http://arxiv.org/abs/1609.08144

	List of Figures
	List of Tables
	Introduction
	Literature Review
	Extractive and Abstractive Summarization
	Seq2Seq Models
	Attention Mechanism
	Enhancements to the Seq2Seq Model

	Summarization with Pointer-Generator Networks and Coverage
	Fast Abstractive Summarization using Reinforce-Selected Sentence Rewriting
	Datasets
	DUC 2003 and DUC 2004
	English Gigaword
	Large Scale Chinese Short Text Summarization Dataset (LCSTS)
	CNN-Dailymail Dataset
	Cornell Newsroom Summarization Dataset


	Challenges
	PDF Parsing of ETDs
	Grobid
	ScienceParse

	Dataset Collection and Preprocessing
	Pointer-Generator Networks
	Fast Abstractive Summarization using Reinforce-Selected Sentence Rewriting

	Experiments
	seq2seq Baseline Model
	Pointer-Generator Networks

	Evaluation
	ROUGE
	Recall and Precision
	ROUGE-N
	ROUGE-L

	METEOR
	Gold Standard ETD Summaries

	Results and Discussion
	Baseline seq2seq Model
	Pointer Generator Networks
	Without Coverage
	With Coverage
	Quantitative Results on Gold Standard Data

	Discussion

	User's Manual
	How to Pre-Process Data
	arXiv Papers
	Electronic Theses and Dissertations
	Pre-process Text

	Grobid
	ScienceParse
	Pointer Generator Networks
	Pre-process Data for PGNs
	Training PGNs
	Testing PGNs
	Interactive Mode


	Developer's Manual
	How to pre-process data
	arXiv Papers
	Electronic Theses and Dissertations
	Pre-process Text

	Grobid
	ScienceParse
	Pointer Generator Networks

	Lessons Learned
	Acknowledgements
	Appendix Gold Standard Summary
	References

