

content

- Categories of cloud computing

- Google cloud platform
 Google App Engine
 Storage technologies
 Datastore vs. traditional database

- Datastore vs. traditional database
 scaling
 Service comparison
 Summary
 References
 Deploy Java example on Google App Engine

Google Cloud platform

App Engine

- platform as a service (PaaS)
- Resource management
- Automatically scales
- Handling security

App Engine Cont.

- Standard Environment

 Standard Environment

 Standard Environment

 Standard Environment

 Containers are preconfigured with one of several available of the property of the pro

- Flexible Environment

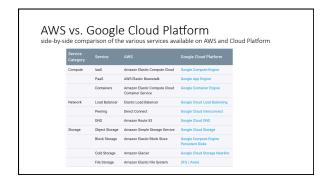
 - Native support for
 Java, Python, Go, Node.js
 Customize runtime
 HTTP support runtime
 - Performance
 - specify how much CPU and memory each instance of your application needs and the flexible environment will provision the necessary infrastructure for you.

Storage technologies

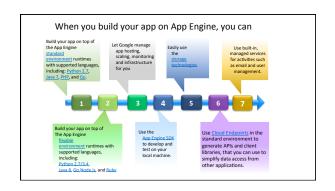
- Google Cloud SQL
 - $\bullet \ \ \text{is your SQL database, supporting either MySQL or PostgreSQL}.$
- App Engine Datastore

 - is your schemaless, NoSQL datastore.
 providing robust, scalable storage for your web application

 - 1 GB storage 50,000 reads, 20,000 writes, 20,000 delete
- Google Cloud Storage
 provides space for your large files.


Datastore vs. traditional databases

Concept		
Category of object	Kind	Table
One object	Entity	Row
Individual data for an object	Property	Field
Unique ID for an object	Key	Primary key


Instance Scaling

- Manual Scaling
 - A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- Basic Scaling
 - A service with basic scaling will create an instance when the application receives a request. The instance will be turned down when the app becomes idle. Basic scaling is ideal for work that is intermittent or driven by user activity.
- Automatic Scaling
 Automatic scaling is based on request rate, response latencies, and other application metrics.

Cont.		
Aj ap M	environment, run your app from the Central US or Western Europe	

References:

- Google Cloud Platform Documentation
 https://cloud.google.com/docs/
- Google App Engine Documentation
- Programming Google App Engine:
 http://shop.oreilly.com/product/9780596522735.do
- Develop a deep understanding of Compute Engine
 https://cloud.google.com/compute/docs/concepts

- App Engine Pricing
 https://cloud.google.com/appengine/pricing

Thank you!

let's deploy Java example on Google App Engine