
CS 61BL Midterm 2
Review Session
Chris Gioia, Patrick Lutz, Ralph Arroyo, Sarah Kim

Algorithmic Analysis

Recall the definitions of:
1. f(n) is in O(g(n))
2. f(n) is in big Omega of g(n)
3. f(n) is in big Theta of g(n)

Algorithmic Analysis

Recall the definitions of:
1. f(n) is in O(g(n))
There exist M, N > 0 such that
for all n > N, f(n) < M*g(n)

Algorithmic Analysis

Recall the definitions of:
2. f(n) is in big Omega of g(n)
There exist M, N > 0 such that
for all n > N, f(n) > M*g(n)

Algorithmic Analysis

Recall the definitions of:
3. f(n) is in big Theta of g(n)
f(n) is in O(g(n)) and f(n) is in big Omega of g
(n)

Algorithmic Analysis

Big-Oh notation just denotes a mathematical
relationship between functions.
Suppose you say that the worst case run-time
of searching in a balanced binary search tree is
O(log(n)).

Algorithmic Analysis

Big-Oh notation just denotes a mathematical
relationship between functions.
Suppose you say that the worst case run-time
of searching in a balanced binary search tree is
O(log(n)).
Make sure to specify what n is!

Algorithmic Analysis

public static int foo(int n,

int m) {

 if (m == 0) {

 return bar(n - 1, n);

 }

 return foo(n, m - 1);

}

public static int bar(int n,
int m) {

 if (n == 0) {

 return 1;

 }

 return foo(n, 3*m);

}

Give a tight bound for the run-time of foo(x, y) in
terms of x and y. Assume x and y are positive.

Algorithmic Analysis

O(x2 + y)
First foo is called y times in a row
Then bar(x-1,x) is called, resulting in 3*x more
calls to foo
and so on…

Algorithmic Analysis

O(x2 + y)
y calls to foo + 1 call to bar
3*x calls to foo + 1 call to bar
3*(x-1) calls to foo + 1 call to bar
.
.
.
3*(1) calls to foo + 1 call to bar

Algorithmic Analysis

O(x2 + y)
y + 1 + 3x + 1 + 3(x-1) + 1 + … + 3(1) + 1 =
y + x + 1 + 3(x + (x-1) + … + 1) =
y + x + 1 + 3(x(x-1)/2) =
y + x + 1 + (3/2)x2 - (3/2)x =
(3/2)x2 - (3/2)x + 1 + y

Linked Lists
public class List {

private ListNode

myHead;

public List() {

myHead = null;

}

public List(ListNode node){

myHead = node;

}

// Rotate method goes here

// Nested ListNode class

}

Linked Lists
private static class ListNode {

public Object myItem;

public ListNode myNext;

public ListNode(Object o) {

myItem = o;

myNext = null;

}

public ListNode(Object o, ListNode node) {

this(o);

myNext = node;

}

}

Linked Lists - Rotate
Implement the rotate method destructively in the List class. Given an index,
place all ListNodes before the index at the end of the list. Assume that index is
not greater than the length of the list.
public void rotate(int index) {...}

Example below when rotate is called with index 2.

null

null

1 2 3 4

43 1 2

Linked Lists - Destructive Iterative
// Flawed iterative solution; fix the errors!
public void rotate(int index) {

 if (index == 0) {
 return;
 }
 ListNode toBeRotated = this.myHead;
 ListNode toShiftUp = this.myHead;
 for (int i = 0; i < index; i++) {
 toShiftUp = toShiftUp.myNext;
 }
 this.myHead = toShiftUp;
 ListNode toAppend = this.myHead;
 while (toAppend.myNext != null) {
 toAppend = toAppend.myNext;
 }
 toAppend.myNext = toBeRotated;
}

Linked Lists - Destructive Iterative
// Iterative
public void rotate(int index) {

 if (index == 0) {
 return;
 }
 ListNode toBeRotated = this.myHead;
 ListNode toShiftUp = this.myHead;
 for (int i = 0; i < index - 1; i++) {
 toShiftUp = toShiftUp.myNext;
 }
 this.myHead = toShiftUp.myNext;
 toShiftUp.myNext = null;
 ListNode toAppend = this.myHead;
 while (toAppend.myNext != null) {
 toAppend = toAppend.myNext;
 }
 toAppend.myNext = toBeRotated;
}

Linked Lists - Recursive Part 1
// Recursive
public void rotate(int index) {

if (index != 0) {
return helper(this.myHead, this.myHead, index);

}
}
public void helper(ListNode cur, ListNode head,

int index) {
if (index == 1) {

helper(cur.myNext, head, index - 1);
myHead = cur.myNext;
cur.myNext = null;

} else if (cur.myNext == null) {
cur.myNext = head;

} else {
helper(cur.myNext, head, index - 1);

}
}

Trees

Trees - Definitions
● Is a linked list with no cycles a type of tree?

Trees - Definitions
● Is a linked list with no cycles a type of tree? Yes
LinkedList’s next node corresponds to a binary tree’s “myRight”
(Provided LinkedList has no cycles)

Trees - Definitions
What are the two constraints of a
tree that this data structure does
not ensure?

public class BinaryTree {
TreeNode root;

public static class TreeNode {
int item;
TreeNode left;
TreeNode right;

public TreeNode(int item) {
this.item = item;

}
}

}

Trees - Definitions
What are the two constraints of a tree that this data structure
does not ensure?

Not a valid tree

Not a valid tree

Trees - Definitions
What are the two constraints of a
tree that this data structure does
not ensure?

1. No Cycles
2. Every node has at most one
parent

public class BinaryTree {
TreeNode root;

public static class TreeNode {
int item;
TreeNode left;
TreeNode right;

public TreeNode(int item) {
this.item = item;

}
}

}

Trees - Definitions
boolean isValidTree();
Description:
Returns true if a tree satisfies the following:
1. no cycles
2. every node has at most one parent.

May add one helper method.

public class BinaryTree {
TreeNode root;

public static class TreeNode {
int item;
TreeNode left;
TreeNode right;

public TreeNode(int item) {
this.item = item;

}
}

}

Trees - Definitions
boolean isValidTree();
Description:
Returns true if a tree satisfies the following:
1. no cycles
2. every node has at most one parent.

Hint: Use the helper method:
boolean static isValidTree
 (TreeNode node,
 HashSet<TreeNode> nodesSeen);

public class BinaryTree {
TreeNode root;

public static class TreeNode {
int item;
TreeNode left;
TreeNode right;

public TreeNode(int item) {
this.item = item;

}
}

}

Trees - Definitions

public boolean isValidTree() {

HashSet<TreeNode> nodesSeen = new
HashSet<TreeNode>();

if (root != null) {

return isValidTree(root, nodesSeen);

}

return true;

}

public static boolean isValidTree
(TreeNode node, HashSet<TreeNode>
nodesSeen) {

if (node != null) {

 if (nodesSeen.contains(node)) {

 return false;

 }

nodesSeen.add(node);

return isValidTree(node.left,
nodesSeen) && isValidTree(node.right,
nodesSeen);

 }

 return true;

}

DFS with HashSet

Trees - Traversals
(a) Given 4 nodes labeled 1, 2, 3, and 4, draw a tree whose inorder and
preorder traversal are equivalent:

(b) Given 4 nodes labeled 1, 2, 3, and 4, draw a tree whose inorder and
postorder traversal are equivalent

(c) Given the preorder and postorder traversals of a tree are identical, what can
I say about the tree?

Trees - Traversals
(a) Given 4 nodes labeled 1, 2, 3, and 4, draw a tree whose inorder and
preorder traversal are equivalent:

Trees - Traversals
(b) Given 4 nodes labeled 1, 2, 3, and 4, draw a tree whose inorder and
postorder traversal are equivalent

Trees - Traversals
(c) Given the preorder and postorder traversals of a tree are identical, what can
I say about the tree?

Say I have a preorder traversal 1, 2, … , N
 and a postorder traversal 1, 2, … , N

By postorder, root node is 1. But by postorder, root node is N (why?)

Trees - Traversals
(c) Given the preorder and postorder traversals of a tree are identical, what can
I say about the tree?

Say I have a preorder traversal 1, 2, … , N
 and a postorder traversal 1, 2, … , N

By postorder, root node is 1. But by postorder, root node is N (why?)
=> N = 1
=> tree has at most one node

Hash Tables
Given a hash table of size 7, show the contents of the hash
table after inserting the elements {8, 5, 4, 19, 7, 1}. The
hash function for the elements is given as h(x) = x.
Assume that the hash table uses chaining to address
collisions.

Hashing - Important methods
❖ If we invoke the contains(E key) method in Java’s implementation of

HashSet<E>, the method will invoke key.hashCode and may call key.
equals if necessary.
➢ What is the purpose of the call to .hashCode?

■ .hashCode determines which bucket the hash set will search
through to find key

➢ When will .equals be used?
■ .equals finds the equivalent object in the collection stored in

the bucket, if the bucket contains the collection.

Hashing

➔ What are some properties of a good hash
function? Try remembering this as “DUQ”
◆ Deterministic

● repeated calls returns the same thing
◆ Uniform

● keys spread out evenly across buckets
◆ Quick

● should try to be close to constant time

Make a hash function!
A binary string is a subset of strings that contain only the characters ‘0’ and ‘1’.
For example, “01100001”, “0” and “100” are binary strings.

Edit: The solution provides a one-to-one mapping from binary strings to non-negative ints iff
there are no leading zeroes in the string! Good job with catching this inconsistency in the
review =)

Create a hash function for binary strings, such that each possible input maps to
a unique positive integer.

Can you extend this to ternary strings?

How about strings containing only lower-cased letters?

Solution
s[0]*b^(n-1) + s[1]*b^(n-2) + s[2]*b^2 + … + s[n-1]*b^0

● b is the number of characters
● s[i] is the i-th character of the string, mapped to a number between 0 and

(b - 1)
● n is the length of the string

Design an algorithm
// Input: Two non-null int arrays, a and b, both of length >= 1
// Output: Return true if there a and b share any common numbers.
// Otherwise, return false.
// Note: Your algorithm must be as efficient as possible.
public boolean hasCommonElements(int[] a, int[] b){

}

Design an algorithm! Solution
// Input: Two non-null int arrays, a and b, both of length >= 1
// Output: Return true if there a and b share any common numbers.
// Otherwise, return false.
// Note: Your algorithm must be as efficient as possible.
public boolean hasCommonElements(int[] a, int[] b){
 HashSet<Integer> nums = new HashSet<Integer>();

 for(int x : a){
 nums.put(x);
 }

 for(int y : b){
 if (nums.contains(y))
 return true;
 }

 return false;
}

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
1. f(n)2 is in O(g(n)2)
2. 2f(n) is in O(2g(n))
3. g(n) is in big Omega of f(n)
4. f(n) is in big Theta of g(n)

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
1. f(n)2 is in O(g(n)2) True
2. 2f(n) is in O(2g(n))
3. g(n) is in big Omega of f(n)
4. f(n) is in big Theta of g(n)

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
1. f(n)2 is in O(g(n)2) True
f(n) <= M*g(n) for all n > N implies
f(n)2 <= M2g(n)2 for all n > N

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
1. f(n)2 is in O(g(n)2) True
2. 2f(n) is in O(2g(n)) False
3. g(n) is in big Omega of f(n)
4. f(n) is in big Theta of g(n)

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
2. 2f(n) is in O(2g(n)) False
Suppose f(n) = 2*n and g(n) = n
Then for any M, for all n>M,
2f(n) = 22n = 2n*2n > n*2n >= M*2n = M*g(n)

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
1. f(n)2 is in O(g(n)2) True
2. 2f(n) is in O(2g(n)) False
3. g(n) is in big Omega of f(n) True
4. f(n) is in big Theta of g(n)

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
3. g(n) is in big Omega of f(n) True
f(n) <= M*g(n) for all n > N implies
g(n) >= (1/M)*f(n) for all n > N

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
1. f(n)2 is in O(g(n)2) True
2. 2f(n) is in O(2g(n)) False
3. g(n) is in big Omega of g(n) True
4. f(n) is in big Theta of g(n) False

Algorithmic Analysis II

Suppose f(n) is in O(g(n))
True or False:
4. f(n) is in big Theta of g(n) False
Suppose f(n) = log(n) and g(n) = n
Then f(n) is in O(g(n)) but f(n) is not in big
Omega of g(n)

Trees - Binary Search Trees
(a) Say we have a Binary Search Trees with nodes whose items are Integers,
and Integers take the natural ordering.
Recreate the BST produced by the preorder traversal: 4, 2, 1, 3, 5, 6

Trees - Binary Search Trees
(a) Say we have a Binary Search Trees with nodes whose items are Integers,
and Integers take the natural ordering.
Recreate the BST produced by the preorder traversal: 4, 2, 1, 3, 5, 6

Hint: What is the inorder traversal?

Trees - Binary Search Trees
(a) Say we have a Binary Search Trees with nodes whose items are Integers,
and Integers take the natural ordering.
Recreate the BST produced by the preorder traversal: 4, 2, 1, 3, 5, 6

Trees - Binary Search Trees
(b) Complete the following function definition: Assume that we are working with
BinaryTrees of Integers and the nodes have unique values.
The maximum integer: Integer.MIN_VALUE The minimum integer: Integer.MAX_VALUE

/** Returns true iff binary tree T is a binary search tree. */
boolean isSearchTree(){
 // implement code here
}

boolean isSearchTree(TreeNode t, int min, int max) {
// implement code here

}

Trees - Binary Search Trees
(b)
boolean isSearchTree(){
 return isSearchTree(root, Integer.MIN_VALUE, Integer.MAX_VALUE)
}

boolean isSearchTree(TreeNode t, int min, int max) {
if (t == null) {

return true;
 } else if (t.item < min || t.item > max) {

return false;
 } else {

return isSearchTree(t.left, min, t.item) &&
isSearchTree(t.right, t.item, max);

}
}

Trees - TreeMaps
(a) What two things should the key of a TreeMap satisfy?

(b) Anything that the value of a TreeMap must satisfy?

Trees - TreeMaps
(a) What two things should the key of a TreeMap satisfy?
 - Implement comparable
 - Immutable

(b) Anything that the value of a TreeMap must satisfy?

Trees - TreeMaps
(a) What two things should the key of a TreeMap satisfy?
 - Implement comparable
 - Immutable

(b) Anything that the value of a TreeMap must satisfy?
 - Nothing

