
CS	61C:	
Great	Ideas	in	Computer	Architecture	

Virtual	Memory	Cont.

Instructors:
Vladimir	Stojanovic	&	Nicholas	Weaver
http://inst.eecs.berkeley.edu/~cs61c/

1

2

“Bare”	5-Stage	Pipeline

• In	a	bare	machine,	the	only	kind	of	address	
is	a	physical	address

PC
Inst.	
Cache D Decode E M

Data	
Cache W+

Main	Memory	 (DRAM)

Memory	Controller

Physical	
Address

Physical	
Address

Physical	
Address

Physical	
Address

Physical	Address

Address	Translation

• So,	what	do	we	want	to	achieve	at	the	
hardware	level?
– Take	a	Virtual	Address,	that	points	to	a	spot	in	the	
Virtual	Address	Space	of	a	particular	program,	and	
map	it	to	a	Physical	Address,	which	points	to	a	
physical	spot	in	DRAM	of	the	whole	machine

3

Virtual	Page	Number OffsetVirtual	Address

Physical	Address Physical Page	Number Offset

Address	Translation

4

Virtual	Page	Number Offset

Physical Page	Number Offset

Virtual	Address

Physical	Address

Address	
Translation

Copy	
Bits

The	rest	of	the	lecture	is	all	about	implementing

5

• Processor-generated	address can	be	split	into:
Paged	Memory	Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of Program #1

Page Table
of Program #1

1
0

2

3

Physical
Memory

• A	page	table	contains	the	physical	address	of	the	base	
of	each	page

Virtual	Page	Number Offset

6

Private	(Virtual)	Address	Space	per	Program

VA1Prog 1

Page Table

VA1Prog 2

Page Table

VA1Prog 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

• Each prog has a page table
• Page table contains an entry for each prog page
• Physical Memory acts like a “cache” of pages for currently

running programs. Not recently used pages are stored
in secondary memory, e.g. disk (in “swap partition”)

7

Where	Should	Page	Tables	Reside?
• Space	required	by	the	page	tables	(PT)	is	proportional	
to	the	address	space,	number	of	users, ...

Þ Too	large	to	keep	in	registers	inside	CPU

• Idea:	Keep	page	tables	in	the	main	memory
– Needs	one	reference	to	retrieve	the	page	base	address	and	
another	to	access	the	data	word
Þ doubles	the	number	of	memory	references!	 (but	we	can	

fix	this	using	something	we	already	know	about…)

8

Page	Tables	in	Physical	Memory

VA1

Prog 1 Virtual
Address Space

Prog 2 Virtual
Address Space

PT
Prog1

PT
Prog2

VA1

Ph
ys

ic
al

 M
em

or
y

9

Linear	(simple)	Page	Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page	Table	Entry	(PTE)	
contains:
– 1	bit	to	indicate	if	page	exists
– And	either	PPN	or	DPN:
– PPN	(physical	page	number)	
for	a	memory-resident	page

– DPN	(disk	page	number)	for	a	
page	on	the	disk

– Status	bits	for	protection	and	
usage	(read,	write,	exec)

• OS	sets	the	Page	Table	Base	
Register	whenever	active	
user	process	changes

10

Suppose	an	instruction	references	a	
memory	page	that	isn’t	in	DRAM?

• We	get	an	exception	of	type	“page	fault”
• Page	fault	handler	does	the	following:
– If	virtual	page	doesn’t	yet	exist,	assign	an	unused	page	in	
DRAM,	or	if	page	exists	…

– Initiate	transfer	of	the	page	we’re	requesting	from	disk	to	
DRAM,	assigning	to	an	unused	page

– If	no	unused	page	is	left,	a	page	currently	in	DRAM	is
selected	to	be	replaced	(based	on	usage)

– The	replaced	page	is	written	(back)	to	disk,	page	table	
entry	that	maps	that	VPN->PPN	is	marked	as	invalid/DPN

– Page	table	entry	of	the	page	we’re	requesting	is	updated	
with	a	(now)	valid	PPN

11

Size	of	Linear	Page	Table
With	32-bit	memory	addresses,	4-KiB	pages:

Þ 232 /	212 =	220 virtual	pages	per	user,	assuming	4-Byte	PTEs,	
Þ 220 PTEs,	i.e,	4	MiB page	table	per	user!

Larger	pages?
• Internal	fragmentation	(Not	all	memory	in page	gets	used)
• Larger	page	fault	penalty	(more	time	to	read	from	disk)

What	about	64-bit	virtual	address	space???
• Even	1MiB	pages	would	require	244		8-Byte	PTEs	(128	TiB!)

What	is	the	“saving	grace”	?	

Most	processes	 only	use	a	set	of	high	address	 (stack),	and	a	set	of	
low	address	 (instructions,	heap)

12

Hierarchical	Page	Table	– exploits	
sparsity	of	virtual	address	space	use

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

or
y

MT2	Grades

13

59%

Administrivia
• Upcoming	Lecture	Schedule
– 04/18:	VM	(today)
– 04/20:	I/O:	DMA,	Disks
– 04/22:	Networking
– 04/25:	Dependability:	Parity,	ECC	(+	HKN	reviews)
– 04/27:	RAID
• Last	day	of	new	material

– 04/29:	Summary,	What’s	Next?

14

Administrivia

• Project	4	programming	competition	rules	posted

• Project	5	released	– due	on	4/26
• Guerrilla	Session:	Virtual	Memory
– Wed	4/20	3	- 5	PM	@	241	Cory
– Sat	4/22	1	- 3	PM	@	521	Cory

• Last	HW	(3)	Virtual	Memory
– Due	05/01

15

16

Address	Translation	&	Protection

• Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

17

Translation	Lookaside Buffers	(TLB)
Address translation is very expensive!

In a two-level page table, each reference
becomes several memory accesses

Solution: Cache some translations in TLB
TLB hit Þ Single-Cycle Translation
TLB miss Þ Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

18

TLB	Designs
• Typically	32-128	entries,	usually	fully	associative

– Each	entry	maps	a	large	page,	hence	less	spatial	locality	across	
pages	=> more	likely	that	two	entries	conflict

– Sometimes	larger	TLBs (256-512	entries)	are	4-8	way	set-
associative

– Larger	systems	sometimes	have	multi-level	(L1	and	L2)	TLBs
• Random	or	FIFO	replacement	policy
• “TLB	Reach”:	Size	of	largest	virtual	address	space	that	can	

be	simultaneously	mapped	by	TLB

Example:	64	TLB	entries,	4KiB	pages,	one	page	per	entry

TLB	Reach	=	
___?

VM-related	events	in	pipeline

• Handling	a	TLB	miss	needs	a	hardware	or	
software	mechanism	to	refill	TLB
– usually	done	in	hardware	now

• Handling	a	page	fault	(e.g.,	page	is	on	disk)	needs	
a	precise	trap	so	software	handler	can	easily	
resume	after	retrieving	page

• Handling	protection	violation	may	abort	process
19

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

20

Hierarchical	Page	Table	Walk:	SPARC	v8

31 11 0

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

21

Page-Based	Virtual-Memory	Machine
(Hardware	Page-Table	Walk)

PC
Inst.	
TLB

Inst.	
Cache D Decode E M

Data	
Cache W+

Page	Fault?
Protection	violation?

Page	Fault?
Protection	violation?

• Assumes	page	tables	held	in	untranslated physical	memory

Data	
TLB

Main	Memory	 (DRAM)

Memory	Controller
Physical	
Address

Physical	
Address

Physical	Address

Physical	
Address

Page-Table
Base Register

Virtual	
Address Physical	

Address

Virtual	
Address

Hardware	Page	
Table	Walker

Miss? Miss?

22

Address	Translation:
putting	it	all	together
Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is
Ï memory Î memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

23

Modern	Virtual	Memory	Systems
Illusion	of	a	large,	private,	uniform	store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table ºname space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping
TLB

Clicker	Question

Let’s	try	to	extrapolate	from	caches…	Which	one	
is	false?
A.	#	offset	bits	in	V.A.	=	log2(page	size)
B.	#	offset	bits	in	P.A.	=	log2(page	size)
C.	#	VPN	bits	in	V.A.	=	log2(#	of	physical	pages)
D.	#	PPN	bits	in	P.A.	=	log2(#	of	physical	pages)
E.	A	single-level	page	table	contains	a	PTE	for	
every	possible	VPN	in	the	system

24

25

Conclusion:	VM	features	track	
historical	uses

• Bare	machine,	only	physical	addresses
– One	program	owned	entire	machine

• Batch-style	multiprogramming
– Several	programs	sharing	CPU	while	waiting	for	I/O
– Base	&	bound:	translation	and	protection	between	
programs	(not	virtual	memory)

– Problem	with	external	fragmentation	(holes	in	memory),	
needed	occasional	memory	defragmentation	as	new	
jobs	arrived

26

Conclusion:	VM	features	track	
historical	uses

• Time	sharing
– More	interactive	programs,	waiting	for	user.		Also,	more	
jobs/second.

– Motivated	move	to	fixed-size	page	translation	and	protection,	
no	external	fragmentation	(but	now	internal	fragmentation,	
wasted	bytes	in	page)

– Motivated	adoption	of	virtual	memory	to	allow	more	jobs	to	
share	limited	physical	memory	resources	while	holding	
working	set	in	memory

• Virtual	Machine	Monitors
– Run	multiple	operating	systems	on	one	machine
– Idea	from	1970s	IBM	mainframes,	now	common	on	laptops

• e.g.,	run	Windows	on	top	of	Mac	OS	X
– Hardware	support	for	two	levels	of	translation/protection

• Guest	OS	virtual	->	Guest	OS	physical	->	Host	machine	physical
– Also	basis	of	Cloud	Computing

• Virtual	machine	instances	on	EC2

