
CS 758: Cryptography/Network Security

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2016

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 1 / 424

1 Course Information

2 Goals of Cryptography

3 Mathematical Background

4 A Formal Model for Security

5 Identification

6 Key Management

7 Multicast Security

8 Additional Topics

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 2 / 424

Course Information

Table of Contents

1 Course Information

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 3 / 424

Course Information

CS 758: Cryptography / Network Security

offered in the Winter term, 2015, by Doug Stinson

my office: DC 3522

my email address: dstinson@uwaterloo.ca

my web page:

http://www.math.uwaterloo.ca/~dstinson/

provides a link to the course web page:

http://www.math.uwaterloo.ca/~dstinson/CS_758/S16/CS758.html

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 4 / 424

http://www.math.uwaterloo.ca/~dstinson/
http://www.math.uwaterloo.ca/~dstinson/CS_758/S16/CS758.html

Course Information

Objectives/Prerequisites

basic cryptography concerns secure communication between two
parties, while in this course we are interested in cryptographic
protocols in multiuser/network context

prerequisites: a previous course in cryptography (e.g. C&O 487,
Applied Cryptography) is helpful but not required

mathematical background: basic complexity theory, elementary
number theory, algebra (finite groups, finite fields, linear algebra),
probability (random variables), combinatorics

This is not a math course, but it has significant mathematical
content. If you are math-phobic, this course is not for you.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 5 / 424

Course Information

Course Requirements

Students’ grades will be based on some combination of assignments
and a project.

I encourage students to work in groups of two (or three) for the
project.

The project will include a written component as well as a presentation
in class.

The project will involve
I preparing a report on a recent research paper on a topic related to the

course material, and/or
I implementing and analyzing one or more protocols on a topic related to

the course material.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 6 / 424

Course Information

Course Outline

Review of cryptographic primitives and their applications to
information security, and notions of cryptographic security. Discussion
of public-key encryption, secret-key encryption, message
authentication, signature schemes, and hash functions.

Techniques for entity authentication. Passwords, challenge-response,
identification schemes (e.g., Fiat-Shamir, Guillou-Quisquater), general
techniques for zero-knowledge proofs for NP-complete languages.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 7 / 424

Course Information

Course Outline (cont.)

Protocols for key establishment, transport, agreement and
maintenance. Online key distribution using a trusted server
(Kerberos). Public-key techniques, including Diffie-Hellman key
agreement, man-in-the-middle attacks, STS and forward secrecy.
Unconditionally secure key distribution, including the Blom scheme
and combinatorial key distribution patterns.

Cryptography in a multi-user setting. Secret sharing schemes
(including Shamir threshold schemes and schemes for general access
structures). Conference key distribution and broadcast encryption.
Copyright protection techniques and tracing schemes.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 8 / 424

Course Information

Introduction to Cryptography and Security

In the rest of this module, we discuss the following:

goals of cryptography

cryptographic tools (primitives)

mathematical background

a formal model for security

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 9 / 424

Goals of Cryptography

Table of Contents

2 Goals of Cryptography
Cryptographic Tools

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 10 / 424

Goals of Cryptography

Goals of Cryptography

confidentiality

Confidentiality (or secrecy) means that data cannot be
understood by an unauthorized party.

data integrity

Data integrity means that data cannot be modified by an
unauthorized party.

data origin authentication

Data origin authentication is achieved when it can be verified
that data was transmitted by a particular source.

entity authentication

Entity authentication (or identification) refers to the
verification of the identity of a person, computer or other
device.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 11 / 424

Goals of Cryptography

Goals of Cryptography (cont.)

non-repudiation

Non-repudiation occurs when it is impossible for someone to
deny having transmitted a message that, in fact, they did
transmit.

access control

Access control refers to the restriction of electronic or
physical access to authorized parties.

anonymity

Anonymity refers to the anonymous transmission of data, so
that the origin cannot be determined.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 12 / 424

Goals of Cryptography Cryptographic Tools

Cryptographic Tools

encryption schemes

Encryption schemes are used to achieve confidentiality.

signature schemes

Signature schemes are used to “sign” data. A signature
helps to ensure data integrity and data origin authentication,
and it can also provide non-repudiation.

message authentication codes

A message authentication code provides data integrity.

cryptographic hash functions

A hash function shrinks a long string into a short,
random-looking string. They are used to provide
unpredictable redundancy in data. They are also used for key
derivation.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 13 / 424

Goals of Cryptography Cryptographic Tools

Cryptographic Tools (cont.)

key agreement protocols

A key agreement protocol is used to establish a common
secret key known to two or more specified parties. Usually
this key is to be subsequently used for another cryptographic
purpose such as symmetric-key encryption or message
authentication.

identification schemes

An identification scheme provides entity authentication.

pseudorandom number generators

Pseudorandom number generators expand a small, truly
random, seed into a long string of bits that cannot be
distinguished from random bits. Pseudorandom number
generators are used in many cryptographic contexts, for
example, in the generation of keys.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 14 / 424

Goals of Cryptography Cryptographic Tools

Tools and their Usage of Keys

A short summary of cryptographic tools and their usage of keys is provided
in the following table. A check mark X indicates that the given algorithm
and key combination is feasible.

keys
scheme public/private? secret? no key?

encryption scheme X X
signature scheme X X

MAC X
hash function X

key agreement scheme X X
identification scheme X X

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 15 / 424

Goals of Cryptography Cryptographic Tools

Secure Socket Layer

client server

I’m Alice−−−−−−−−−−−−−−−→

I’m Bob, Inc.←−−−−−−−−−−−−−−−

PK, sigCA(PK)
←−−−−−−−−−−−−−−−

verify PK

generate MS
y = ePK(MS)

−−−−−−−−−−−−−−−→

MS = dPK(y)
K1,K2 = h(MS) K1,K2 = h(MS)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 16 / 424

Goals of Cryptography Cryptographic Tools

Cryptosystem

A cryptosystem is a five-tuple (P, C,K, E ,D), where the following
conditions are satisfied:

1 P is a finite set of possible plaintexts

2 C is a finite set of possible ciphertexts

3 K, the keyspace, is a finite set of possible keys

4 For each K ∈ K, there is an encryption rule eK ∈ E and a
corresponding decryption rule dK ∈ D. Each eK : P → C and
dK : C → P are functions such that dK(eK(x)) = x for every
plaintext element x ∈ P.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 17 / 424

Goals of Cryptography Cryptographic Tools

Public-key vs Secret-key Cryptosystems

in a secret-key cryptosystem, K is known to both Alice and Bob:

Alice Bob

K K

y = eK(x)
y−−−−−−−−−−−−−−−→ x = dK(y)

in a public-key cryptosystem, K is known only to Bob and eK is
public:

Alice Bob

ek K

y = eK(x)
y−−−−−−−−−−−−−−−→ x = dK(y)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 18 / 424

Goals of Cryptography Cryptographic Tools

A Substitution-Permutation Network

K
1

K
2

K
3

K
4

K
5

u1

1v

w 1

u2

v 2

w 2

u3

v 3

w

u4

v 4

S
1

2

S
2

2

S
3

2 S
3

4S1

3

S1

4

S
4

2 S
4

3 S
4

4

S
2

1 S
2

3 S
2

4

S
1

1 S
1

4S
1

3

S
3

3

3

y

x

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 19 / 424

Goals of Cryptography Cryptographic Tools

The Advanced Encryption Standard (AES)

AES has a block length of 128 bits, and it supports key lengths of 128,
192 and 256 bits. The number of rounds, Nr, depends on the key length:
Nr = 10 if the key length is 128 bits; Nr = 12 if the key length is 192 bits;
and Nr = 14 if the key length is 256 bits.

1 Given a plaintext x, initialize State to be x and perform
AddRoundKey , which x-ors the RoundKey with State.

2 For each of the first Nr− 1 rounds, perform a substitution operation
called SubBytes on State using an S-box; perform a permutation
ShiftRows on State; perform an operation MixColumns on State; and
perform AddRoundKey .

3 Perform SubBytes; perform ShiftRows; and perform AddRoundKey .

4 Define the ciphertext y to be State.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 20 / 424

Goals of Cryptography Cryptographic Tools

AES States

All operations in AES are byte-oriented operations, and all variables used
are considered to be formed from an appropriate number of bytes. The
plaintext x consists of 16 bytes, denoted x0, . . . , x15. State is represented
as a four by four array of bytes, initialized as follows:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

←−

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 21 / 424

Goals of Cryptography Cryptographic Tools

The Finite Field F256

The operation SubBytes performs a substitution on each byte of State
independently, which involves operations in the finite field

F28 = Z2[x]/(x8 + x4 + x3 + x+ 1).

Let BinaryToField convert a byte to a field element; and let FieldToBinary
perform the inverse conversion. This conversion is done in the obvious
way: the field element

7∑
i=0

aix
i

corresponds to the byte

a7a6a5a4a3a2a1a0,

where ai ∈ Z2 for 0 ≤ i ≤ 7.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 22 / 424

Goals of Cryptography Cryptographic Tools

SubBytes

Algorithm: SubBytes(a7a6a5a4a3a2a1a0)
external FieldInv ,BinaryToField ,FieldToBinary
z ← BinaryToField(a7a6a5a4a3a2a1a0)
if z 6= 0

then z ← FieldInv(z)
(a7a6a5a4a3a2a1a0)← FieldToBinary(z)
(c7c6c5c4c3c2c1c0)← (01100011)
for i← 0 to 7

do bi ← (ai + ai+4 + ai+5 + ai+6 + ai+7 + ci) mod 2
return (b7b6b5b4b3b2b1b0)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 23 / 424

Goals of Cryptography Cryptographic Tools

ShiftRows

The operation ShiftRows acts on State as shown in the following diagram:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

←

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 24 / 424

Goals of Cryptography Cryptographic Tools

MixColumns

Algorithm: MixColumn(c)
external FieldMult,BinaryToField ,FieldToBinary
for i← 0 to 3

do ti ← BinaryToField(si,c)
u0 ← FieldMult(x, t0)⊕ FieldMult(x+ 1, t1)⊕ t2 ⊕ t3
u1 ← FieldMult(x, t1)⊕ FieldMult(x+ 1, t2)⊕ t3 ⊕ t0
u2 ← FieldMult(x, t2)⊕ FieldMult(x+ 1, t3)⊕ t0 ⊕ t1
u3 ← FieldMult(x, t3)⊕ FieldMult(x+ 1, t0)⊕ t1 ⊕ t2
for i← 0 to 3

do si,c ← FieldToBinary(ui)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 25 / 424

Goals of Cryptography Cryptographic Tools

Modes of Operation

ECB (electronic code book) mode corresponds to the naive use of a
block cipher: given a sequence x1x2 · · · of plaintext blocks (each
consisting of 128 bits, in the case of the AES), each xi is encrypted
with the same key K, producing a string of ciphertext blocks,
y1y2 · · · .
In CBC (cipher block chaining) mode, each ciphertext block yi is
x-ored with the next plaintext block, xi+1, before being encrypted
with the key K. More formally, we start with an initialization
vector, denoted by IV, and define y0 = IV. Then we construct
y1, y2, . . . , using the rule

yi = eK(yi−1 ⊕ xi),

i ≥ 1.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 26 / 424

Goals of Cryptography Cryptographic Tools

CBC Mode

0
IV = y +

K
e

+

K
e

0
IV = y + +

x
2

y

1
x

2

K K
d d

1

1
y

decrypt

encrypt

2

21
y y

x x

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 27 / 424

Goals of Cryptography Cryptographic Tools

The RSA Public-key Cryptosystem

Let n = pq, where p and q are large primes. Let P = C = Zn, and define

K = {(n, p, q, a, b) : ab ≡ 1 (mod φ(n))}.

For K = (n, p, q, a, b), define

eK(x) = xb mod n

and
dK(y) = ya mod n

(x, y ∈ Zn). The values n and b comprise the public key, and the values
p, q and a form the private key.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 28 / 424

Goals of Cryptography Cryptographic Tools

A Toy Example

suppose Bob chooses primes p = 101 and q = 113

then n = 11413 and φ(n) = 100× 112 = 11200

suppose Bob chooses public encryption exponent b = 3533

then his private decryption exponent is a = b−1 mod 11200 = 6597

suppose Alice wants to encrypt the plaintext x = 9726

she will compute

y = 97263533 mod 11413 = 5761

and send y to Bob

when Bob receives the ciphertext y = 5761, he computes

x = 57616597 mod 11413 = 9726.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 29 / 424

Goals of Cryptography Cryptographic Tools

The Rabin Cryptosystem

Let n = pq, where p and q are primes. Let P = C = Zn∗, and define

K = {(n, p, q)}.

For K = (n, p, q), define

eK(x) = x2 mod n

and
dK(y) =

√
y mod n.

The value n is the public key, while p and q are the private key.

Note: there are four square roots of y modulo n.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 30 / 424

Goals of Cryptography Cryptographic Tools

A Toy Example

suppose Bob chooses primes p = 7 and q = 11

then the encryption function is

eK(x) = x2 mod 77

and the decryption function is

dK(y) =
√
y mod 77

suppose Alice encrypts the plaintext x = 32 to send to Bob

the ciphertext is y = 322 mod 77 = 23

the four square roots of 23 modulo 77 are ±10,±32 mod 77

the four possible plaintexts are x = 10, 32, 45 and 67

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 31 / 424

Goals of Cryptography Cryptographic Tools

Signature Schemes

A signature scheme is a five-tuple (P,A,K,S,V), where the following
conditions are satisfied:

1 P is a finite set of possible messages

2 A is a finite set of possible signatures

3 K, the keyspace, is a finite set of possible keys

4 For each K ∈ K, there is a signing algorithm sigK ∈ S and a
corresponding verification algorithm verK ∈ V. Each sigK : P → A
and verK : P ×A → {true, false} are functions such that the
following equation is satisfied for every message x ∈ P and for every
signature y ∈ A:

ver(x, y) =

{
true if y = sig(x)
false if y 6= sig(x).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 32 / 424

Goals of Cryptography Cryptographic Tools

Signatures with Hash Functions

Alice Bob

K without hash function verK

y = sigK(x)
x, y−−−−−−−−−−−−−−−→ verK(x, y) = true?

K,h with hash function verK , h

z = h(x)
y = sigK(z)

x, y−−−−−−−−−−−−−−−→ z = h(x)
verK(z, y) = true?

h : {0, 1}∗ → Z ⊆ P is a public hash function

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 33 / 424

Goals of Cryptography Cryptographic Tools

RSA Signature Scheme

Let n = pq, where p and q are primes. Let P = A = Zn, and define

K = {(n, p, q, a, b) : n = pq, p, q prime, ab ≡ 1 (mod φ(n))}.

The values n and b are the public key, and the values p, q, a are the private
key.

For K = (n, p, q, a, b), define

sigK(x) = xa mod n

and
verK(x, y) = true⇔ x ≡ yb (mod n)

(x, y ∈ Zn).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 34 / 424

Goals of Cryptography Cryptographic Tools

Primitive Elements in Zp

suppose p is prime; then there exists a primitive element α ∈ Zp
{αi mod p : 0 ≤ i ≤ p− 2} = Zp\{0}
the powers of α (modulo p) yield all the non-zero elements in Zp
αp−1 ≡ 1 (mod p), and α has order p− 1

if q | (p− 1), then β = α(p−1)/q mod p has order q

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 35 / 424

Goals of Cryptography Cryptographic Tools

Primitive Elements in Z13

2 is a primitive element modulo 13:

20 mod 13 = 1 21 mod 13 = 2
22 mod 13 = 4 23 mod 13 = 8
24 mod 13 = 3 25 mod 13 = 6
26 mod 13 = 12 27 mod 13 = 11
28 mod 13 = 9 29 mod 13 = 5
210 mod 13 = 10 211 mod 13 = 7

the primitive elements modulo 13 are 2, 6, 7 and 11

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 36 / 424

Goals of Cryptography Cryptographic Tools

Digital Signature Standard

Let p be a 1024-bit prime and let q be a 160-bit prime that divides p− 1.
Let α ∈ Zp∗ be an element of order q. Let P = {0, 1}∗, A = Zq∗ × Zq∗,
and define

K = {(p, q, α, a, β) : β ≡ αa (mod p)},

where 0 ≤ a ≤ q − 1. The values p, q, α and β are the public key, and a is
the private key.

For K = (p, q, α, a, β), and for a (secret) random number k,
1 ≤ k ≤ q − 1, define

sigK(x, k) = (γ, δ),

where

γ = (αk mod p) mod q and

δ = (SHA-1(x) + aγ)k−1 mod q.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 37 / 424

Goals of Cryptography Cryptographic Tools

Digital Signature Standard (cont.)

For x ∈ {0, 1}∗ and γ, δ ∈ Zq∗, verification is done by performing the
following computations:

e1 = SHA-1(x) δ−1 mod q

e2 = γ δ−1 mod q

verK(x, (γ, δ)) = true ⇔ (αe1βe2 mod p) mod q = γ.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 38 / 424

Goals of Cryptography Cryptographic Tools

A Toy Example
Suppose we take q = 101 and p = 78q + 1 = 7879. 3 is a primitive
element in Z7879, so α = 378 mod 7879 = 170 has order q. Suppose
a = 75; then β = αa mod 7879 = 4567. Suppose Alice wants to sign the
message digest SHA-1(x) = 22, and she chooses the random value
k = 50. Then she computes

k−1 mod 101 = 50−1 mod 101 = 99,

γ = (17050 mod 7879) mod 101

= 2518 mod 101

= 94,

and

δ = (22 + 75× 94)99 mod 101

= 97.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 39 / 424

Goals of Cryptography Cryptographic Tools

A Toy Example (cont.)

The signature (94, 97) on the message digest 22 is verified by the following
computations:

δ−1 = 97−1 mod 101 = 25

e1 = 22× 25 mod 101 = 45

e2 = 94× 25 mod 101 = 27

(17045456727 mod 7879) mod 101 = 2518 mod 101 = 94.

Hence, the signature is valid.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 40 / 424

Goals of Cryptography Cryptographic Tools

Hash Functions and Families

A hash family is a four-tuple (X ,Y,K,H), where the following conditions
are satisfied:

1 X is a set of possible messages

2 Y is a finite set of possible message digests or authentication tags

3 K, the keyspace, is a finite set of possible keys

4 For each K ∈ K, there is a hash function hK ∈ H. Each
hK : X → Y.

X can be a finite or infinite set; Y is always a finite set. If Y is finite, the
we assume that |X | ≥ 2|Y|.
An unkeyed hash function is a single hash function h : X → Y, i.e., a
hash family in which there is only one possible key.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 41 / 424

Goals of Cryptography Cryptographic Tools

Signature Schemes vs MACs

Alice Bob

K,h signature scheme verK , h

z = h(x)
y = sigK(z)

x, y−−−−−−−−−−−−−−−→ z = h(x)
verK(z, y) = true?

K MAC K

y = hK(x)
x, y−−−−−−−−−−−−−−−→ y = hK(x)?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 42 / 424

Goals of Cryptography Cryptographic Tools

Iterated Hash Functions

Suppose compress : {0, 1}m+t → {0, 1}m is a hash function (where t ≥ 1).
We construct an iterated hash function

h :

∞⋃
i=m+t+1

{0, 1}i → {0, 1}`

preprocessing

Given an input string x, where |x| ≥ m+ t+ 1, construct a
string y, using a public algorithm, such that |y| ≡ 0 (mod t).
Typically, y = x ‖ pad(x), where pad is a padding function
such that the mapping x 7→ y is injective. Denote

y = y1 ‖ y2 ‖ · · · ‖ yr,

where |yi| = t for 1 ≤ i ≤ r.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 43 / 424

Goals of Cryptography Cryptographic Tools

Iterated Hash Functions (cont.)

processing

Let IV be a public initial value which is a bitstring of length
m. Then compute the following:

z0 ← IV

z1 ← compress(z0 ‖ y1)

z2 ← compress(z1 ‖ y2)
...

...
...

zr ← compress(zr−1 ‖ yr).

optional output transformation

Let g : {0, 1}m → {0, 1}` be a public function. Define
h(x) = g(zr).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 44 / 424

Goals of Cryptography Cryptographic Tools

The processing step in an iterated hash function

y1 y1

y2

y3

yr

y2

y3

yr

1z

r-1z

z

z

0

2

IV

compress

compress

compress

compress

compress

zr

...

Figure: An Iterated Hash Function

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 45 / 424

Goals of Cryptography Cryptographic Tools

Secure Hash Algorithm

SHA-1 is an iterated hash function with a 160-bit message digest. SHA-1
is built from word-oriented operations on bitstrings, where a word consists
of 32 bits (or eight hexadecimal digits). The operations used in SHA-1 are
as follows:

X ∧ Y bitwise “and” of X and Y
X ∨ Y bitwise “or” of X and Y
X ⊕ Y bitwise “xor” of X and Y
¬X bitwise complement of X
X + Y integer addition modulo 232

ROTLs(X) circular left shift of X by s positions (0 ≤ s ≤ 31)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 46 / 424

Goals of Cryptography Cryptographic Tools

Secure Hash Algorithm (cont.)

Algorithm: SHA-1-pad(x)
d← (447− |x|) mod 512
`← the binary representation of |x|, where |`| = 64
y ← x ‖ 1 ‖ 0d ‖ `

The resulting string y has length divisible by 512. Then we write y as a
concatenation of n blocks, each having 512 bits:

y = M1 ‖M2 ‖ · · · ‖Mn.

Each Mi will be written as the concatenation of 16 words:

Mi = W0 ‖W1 ‖ · · · ‖W15.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 47 / 424

Goals of Cryptography Cryptographic Tools

Secure Hash Algorithm (cont.)

Define the functions f 0, . . . , f 79 as follows:

f i(B,C,D) =


(B ∧ C) ∨ ((¬B) ∧D) if 0 ≤ t ≤ 19

B ⊕ C ⊕D if 20 ≤ t ≤ 39

(B ∧ C) ∨ (B ∧D) ∨ (C ∧D) if 40 ≤ t ≤ 59

B ⊕ C ⊕D if 60 ≤ t ≤ 79.

Each function f i takes three words B, C and D as input, and produces
one word as output.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 48 / 424

Goals of Cryptography Cryptographic Tools

Algorithm: SHA-1(x)
initialize H0, H1, H2, H3, H4

for i← 1 to n

do



for t← 16 to 79
do Wt ← ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)

A← H0;B ← H1;C ← H2;D ← H3;E ← H4

for t← 0 to 79

do


temp ← ROTL5(A) + f t(B,C,D) + E +Wt +Kt

E ← D;D ← C;C ← ROTL30(B)
B ← A;A← temp

H0 ← H0 +A;H1 ← H1 +B;H2 ← H2 + C
H3 ← H3 +D;H4 ← H4 + E

return (H0 ‖ H1 ‖ H2 ‖ H3 ‖ H4)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 49 / 424

Goals of Cryptography Cryptographic Tools

CBC MACs

Suppose that (P, C,K, E ,D) is a cryptosystem, where P = C = {0, 1}t.
Let IV be the bitstring consisting of t zeroes, and let K ∈ K be a secret
key. Finally, let x = x1 ‖ · · · ‖ xn be a bitstring of length tn (for some
positive integer n), where each xi is a bitstring of length t. We compute
CBC-MACK(x) as follows.

Algorithm: CBC-MAC (x,K)
IV← 00 · · · 0 (or some other vector)
y0 ← IV
for i← 1 to n

do yi ← eK(yi−1 ⊕ xi)
return (yn)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 50 / 424

Goals of Cryptography Cryptographic Tools

Public- vs Secret-key Cryptography

speed

Secure secret-key cryptographic protocols are much faster
than correpsonding secure public-key cryptographic protocols
(e.g., 100 to 1000 times faster). Here we are comparing
public- vs secret-key cryptosystems; and signature schemes
vs MACs.

algebraic description

Public-key cryptographic protocols are usually based on
simple-to-describe mathematical functions, and their security
depends on certain computational problems that are
infeasible, or believed to be infeasible.
Secret-key cryptosystems tend to be based on performing a
sequence of very simple operations (e.g., substitutions and
permutations) in such a way that the system has a very
complex algebraic description.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 51 / 424

Goals of Cryptography Cryptographic Tools

Public- vs Secret-key Cryptography (cont.)

key lengths

Key lengths of secure public-key cryptosystems are
sometimes significantly longer than those of secure secret
key cryptosystems. For example, RSA keys are typically
taken to be at least 1024 bits in length, while an AES key is
128 bits long. It should be noted, however, that key lengths
of elliptic curve cryptosystems are much shorter than most
other public-key cryptosystems, e.g., 160 bits is a popular
key length.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 52 / 424

Goals of Cryptography Cryptographic Tools

Public- vs Secret-key Cryptography (cont.)

utility

Public-key cryptosystems do not require that a secret key be
known to two parties before the system is used, of course.
Public keys can be listed in a directory or posted on a web
page, for example. However, such methods of
communicating public keys must also be accompanied by
appropriate mechanisms to allow the public keys to be
authenticated. This is done by using certificates, containing
signed public keys, possibly in the context of a secure
public-key infrastructure. On the other hand, the
authenticity of secret keys is, in general, guaranteed by the
protocol used to generate or distribute them, or assumed to
have been done securely at an earlier time.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 53 / 424

Mathematical Background

Table of Contents

3 Mathematical Background
Modular arithmetic
Groups
Quadratic Residues
Some Algorithms
Example: Rabin Decryption
Computational Problems

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 54 / 424

Mathematical Background Modular arithmetic

Modular arithmetic

Suppose a and b are integers, and m is a positive integer. Then we write
a ≡ b (mod m) if m divides b− a. The phrase a ≡ b (mod m) is called a
congruence, and it is read as “a is congruent to b modulo m.” The
integer m is called the modulus.
For example, we have 11 ≡ −25 (mod 6) because 6 | (11− (−25)).
We will use the notation a mod m (without parentheses) to denote the
non-negative remainder when a is divided by m. Thus, a ≡ b (mod m) if
and only if a mod m = b mod m. If we replace a by a mod m, we say
that a is reduced modulo m.
For example, to compute 101 mod 7, we write 101 = 7× 14 + 3. Since
0 ≤ 3 ≤ 6, it follows that 101 mod 7 = 3. As another example, suppose
we want to compute (−101) mod 7. In this case, we have
−101 = 7× (−15) + 4. Since 0 ≤ 4 ≤ 6, it follows that
(−101) mod 7 = 4.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 55 / 424

Mathematical Background Modular arithmetic

Modular arithmetic (cont.)

Zn is is used to denote the set {0, . . . , n− 1}, which is usually equipped
with the two operations + and ×. Addition and multiplication in Zn work
exactly like real addition and multiplication, except that the results are
reduced modulo n.
For example, suppose we want to compute 11× 13 in Z16. As integers, we
have 11× 13 = 143. Then we reduce 143 modulo 16 as described above:
143 = 8× 16 + 15, so 143 mod 16 = 15, and hence 11× 13 = 15 in Z16.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 56 / 424

Mathematical Background Groups

Finite Abelian Groups

A finite abelian group is a pair G = (X, ?), where X is a finite set and ?
is a binary operation defined on X, that satisfies the following properties:

1 the operation ? is closed, i.e., a ? b ∈ X for any a, b ∈ X
2 the operation ? is commutative, i.e., a ? b = b ? a for any a, b ∈ X
3 the operation ? is associative, i.e., (a ? b) ? c = a ? (b ? c) for any
a, b, c ∈ X

4 There is an element id ∈ X called the identity, such that
a ? id = id ? a = a for any a ∈ X

5 for every a ∈ X, there exists an element b ∈ X called the inverse of
a, such that a ? b = b ? a = id for any a ∈ X

The order of the group G = (X, ?), denoted ord(G), is equal to |X|.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 57 / 424

Mathematical Background Groups

Examples of Finite Abelian Groups

Let n ≥ 2 be an integer. Then (Zn,+) is an abelian group of order n,
where + denotes addition modulo n. The identity element is 0, and the
inverse of a, usually denoted −a, is (−a) mod n.

Let p ≥ 2 be a prime. Define Zp∗ = Zp\{0}. Then (Zp∗, ·) is an abelian
group of order p− 1, where · denotes multiplication modulo p. The
identity element is 1, and the inverse of a, usually denoted a−1, is
computed using the Extended Euclidean algorithm.

Let n ≥ 2 be an integer. Define

Zn∗ = Zn\{d ∈ Zn : gcd(d, n) > 1}.

Then (Zn∗, ·) is an abelian group where · denotes multiplication modulo n.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 58 / 424

Mathematical Background Groups

Examples of Finite Abelian Groups (cont.)

The identity element is 1, and the inverse of a, usually denoted a−1, is
computed using the Extended Euclidean algorithm.
The order of (Zn∗, ·) is denoted φ(n) (note that φ(n) is just the number
of positive integers less than n that are relatively prime to n). φ(n) can be
computed from the following formula: suppose that n has prime power
factorization

n =
∏̀
i=1

pi
ei

(the pi’s are distinct primes and ei ≥ 1 for 1 ≤ i ≤ `). Then

φ(n) =
∏̀
i=1

pi
ei−1(pi − 1) =

∏̀
i=1

(
pi
ei − piei−1

)
.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 59 / 424

Mathematical Background Groups

Order of Group Elements

For a finite group (X, ?), define the order of an element a ∈ X (denoted
ord(a)) to be the smallest positive integer m such that

a ? a ? · · · ? a︸ ︷︷ ︸
m

= id.

If the group operation is multiplication, then

a ? a ? · · · ? a︸ ︷︷ ︸
m

is written as an exponentiation, am. If the group operation is addition,
then the same expression is written as a multiplication, ma.
The identity element is defined to have order 1. It can be shown that the
order of any a ∈ X is a divisor of the order of the group, i.e.,
ord(a) | ord(G).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 60 / 424

Mathematical Background Groups

Order of Group Elements (cont.)

It is also possible to show, for any a ∈ X, that the order of b = ai (where,
for concreteness, we assume that the group operation is written
multiplicatively) is

ord(b) =
ord(a)

gcd(ord(a), i)
.

For example, if ord(a) = 100 and b = a35, then

ord(b) =
100

gcd(100, 35)
=

100

5
= 20.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 61 / 424

Mathematical Background Groups

Cyclic Groups

A finite abelian group (X, ?) is a cyclic group if there exists an element
a ∈ X having order equal to |X|. Such an element is called a generator
of the group.
Let n ≥ 2 be an integer. Then (Zn,+) is a cyclic group, and 1 is a
generator. Further, any element a ∈ Zn is a generator of (Zn,+) if and
only if gcd(a, n) = 1. The number of generators of (Zn,+) is φ(n).
Let p ≥ 2 be a prime. Then (Zp∗, ·) is cyclic group, and a generator of this
group is called a primitive element.
It can be shown that α ∈ Zp∗ is a primitive element if and only if

α(p−1)/q 6≡ 1 (mod p)

for all primes q such that q | (p− 1). The number of generators of (Zp∗, ·)
is φ(p− 1).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 62 / 424

Mathematical Background Groups

Cyclic Groups (cont.)

It is known that (Zn∗, ·) is cyclic group if and only if n = 2, 4, pe or 2 pe,
where p is an odd prime and e is a positive integer.
It is simple to test whether a given element α ∈ Zp∗ is a primitive element
(where p is an odd prime) provided that the factorization of p− 1 is
known. We illustrate with a small example, p = 13 and α = 2. The
factorization of 12 is 12 = 2231. Therefore, to verify that 2 is a primitive
element modulo 13, it is sufficient to check that

26 6≡ 1 (mod 13)

and
24 6≡ 1 (mod 13).

This is much faster than checking all 12 powers of α.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 63 / 424

Mathematical Background Quadratic Residues

Quadratic Residues

Suppose p is an odd prime and a is an integer. a is defined to be a
quadratic residue modulo p if a 6≡ 0 (mod p) and the congruence y2 ≡ a
(mod p) has a solution y ∈ Zp.
It can be shown that a is a quadratic residue modulo p if and only if

a(p−1)/2 ≡ 1 (mod p).

Every quadratic residue modulo p has exactly two square roots in Zp,
which are negatives of each other modulo p. If p ≡ 3 (mod 4) is prime
and a is a quadratic residue modulo p, then it can be shown that the two
square roots of a modulo p are ±a(p+1)/4 mod p.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 64 / 424

Mathematical Background Quadratic Residues

Quadratic Residues

Suppose n is an odd integer and a is an integer. a is defined to be a
quadratic residue modulo n if gcd(a, n) = 1 and the congruence y2 ≡ a
(mod n) has a solution y ∈ Zn. Suppose that n > 1 is an odd integer
having factorization

n =
∏̀
i=1

pi
ei ,

where the pi’s are distinct primes and the ei’s are positive integers.
Suppose further that gcd(a, n) = 1. Then a is quadratic residue modulo n
if and only if

a(pi−1)/2 ≡ 1 (mod pi)

for all i ∈ {1, . . . , `}. If a is quadratic residue modulo n, then there are
exactly 2` solutions modulo n to the congruence y2 ≡ a (mod n).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 65 / 424

Mathematical Background Quadratic Residues

Quadratic Residues (example)

As an example, suppose that p = 43 and a = 13. Note that 43 ≡ 3
(mod 4) is prime. It can be verified that

1321 ≡ 1 (mod 43),

so 13 is a quadratic residue modulo 43. (p+ 1)/4 = 11, so the two square
roots of 13 modulo 43 are

±1311 mod 43 = ±23 mod 43 = 20, 23.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 66 / 424

Mathematical Background Some Algorithms

Extended Euclidean Algorithm

The multiplicative inverse b−1 mod a exists if and only if gcd(a, b) = 1.
The following algorithm computes gcd(a, b), and if gcd(a, b) = 1, then it
also determines the value of b−1 mod a. These computations use the the
so-called Extended Euclidean algorithm.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 67 / 424

Mathematical Background Some Algorithms

Extended Euclidean Algorithm (cont.)

Algorithm: Multiplicative Inverse(a, b)
a0 ← a; b0 ← b; t0 ← 0
t← 1; q ← ba0b0 c; r ← a0 − q b0
while r > 0

do


temp ← t0 − q t; t0 ← t; t← temp
a0 ← b0; b0 ← r
q ← ba0b0 c; r ← a0 − q b0

if b0 6= 1
then return (“the gcd of b and a is b0”)

else

{
t← t mod a
return (“b−1 mod a = t”)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 68 / 424

Mathematical Background Some Algorithms

Extended Euclidean Algorithm (example)

We compute 28−1 mod 75. Here are the steps performed in the
computation:

a0 b0 t0 t q r

75 28 0 1 2 19
28 19 1 −2 1 9
19 9 −2 3 2 1
9 1 3 −8 9 0

Therefore,
28−1 mod 75 = −8 mod 75 = 67.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 69 / 424

Mathematical Background Some Algorithms

Chinese Remainder Theorem

Suppose m1, . . . ,mr are pairwise relatively prime positive integers, and
suppose a1, . . . , ar are integers. Then the system of r congruences x ≡ ai
(mod mi) (1 ≤ i ≤ r) can be shown to have a unique solution modulo
M = m1 × · · · ×mr. The Chinese remainder theorem provides a formula
to compute this solution:

x =

r∑
i=1

aiMiyi mod M,

where Mi = M/mi and yi = Mi
−1 mod mi, for 1 ≤ i ≤ r. The following

algorithm performs this computation.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 70 / 424

Mathematical Background Some Algorithms

Chinese Remainder Theorem (cont.)

Algorithm: CRT (m1, . . . ,mr, a1, . . . , ar)
external MultInv
M ← 1
for i← 1 to r

do M ←M ×mi

for i← 1 to r

do

{
Mi = M/mi

yi = MultInv(mi,Mi)
x← 0
for i← 1 to r

do
{
x← x+ ai ×Mi × yi mod M

return (x)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 71 / 424

Mathematical Background Some Algorithms

Chinese Remainder Theorem (example)
Suppose r = 3, m1 = 7, m2 = 11 and m3 = 13. Then M = 1001. We
compute M1 = 143, M2 = 91 and M3 = 77, and then y1 = 5, y2 = 4 and
y3 = 12. Then the solution to the given system

x ≡ a1 (mod 7)

x ≡ a2 (mod 11)

x ≡ a3 (mod 13)

is
x = (715a1 + 364a2 + 924a3) mod 1001.

For example, if a1 = 5, a2 = 3 and a3 = 10, then

x = (715× 5 + 364× 3 + 924× 10) mod 1001

= 13907 mod 1001

= 894.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 72 / 424

Mathematical Background Some Algorithms

Square-and-multiply Algorithm

We compute z = xc in any multiplicative group. The exponent, c, is
represented in binary notation, say c =

∑`−1
i=0 ci2

i, where ci = 0 or 1,
0 ≤ i ≤ `− 1.

Algorithm: Square-and-multiply(x, c)
external GroupMult
z ← id
for i← `− 1 downto 0

do


z ← GroupMult(z, z)
if ci = 1

then z ← GroupMult(z, x)
return (z)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 73 / 424

Mathematical Background Some Algorithms

Square-and-multiply Algorithm (example)

We compute 97263533 mod 11413. The exponent c = 3533 has binary
representation c = 1101110011012.

i ci z i ci z

11 1 12 × 9726 = 9726 10 1 97262 × 9726 = 2659
9 0 26592 = 5634 8 1 56342 × 9726 = 9167
7 1 91672 × 9726 = 4958 6 1 49582 × 9726 = 7783
5 0 77832 = 6298 4 0 62982 = 4629
3 1 46292 × 9726 = 10185 2 1 101852 × 9726 = 105
1 0 1052 = 11025 0 1 110252 × 9726 = 5761

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 74 / 424

Mathematical Background Example: Rabin Decryption

Rabin Decryption

Suppose that p ≡ q ≡ 3 (mod 4), where n = pq is the public modulus.
The input will be a ciphertext, y ∈ Zn∗. The output should be the four
possible plaintexts, i.e., the elements x ∈ Zn∗ such that x2 ≡ y (mod n).
It is apparent that x2 ≡ y (mod n) if and only if x2 ≡ y (mod p) and
x2 ≡ y (mod q). Because p and q are both congruent to 3 modulo 4, we
can compute the two square roots of y modulo p, and the two square
roots of y modulo q, using the formula presented earlier. Then we can use
the Chinese remainder theorem to compute the four square roots of y
modulo n.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 75 / 424

Mathematical Background Example: Rabin Decryption

Rabin Decryption (cont.)

Algorithm: RabinDecrypt(n, p, q, y)
external CRT

if (y(p−1)/2 6≡ 1 (mod p)) or (y(q−1)/2 6≡ 1 (mod q))
then return (“y is not a valid ciphertext”)

else



xp ← y(p+1)/4 mod p

xq ← y(q+1)/4 mod q
x1 ← CRT (p, q, xp, xq)
x2 ← CRT (p, q, xp, q − xq)
x3 ← CRT (p, q, p− xp, xq)
x4 ← CRT (p, q, p− xp, q − xq)
return (“the four plaintexts are x1, x2, x3 and x4”)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 76 / 424

Mathematical Background Computational Problems

Fundamental Computational Problems

A relatively small number of computational problems underly most
public-key schemes. The most important of these are the
Integer Factoring problem, and the Discrete Logarithm problem in a
finite abelian group.

Problem

Integer Factoring
Instance: A positive integer n ≥ 2.
Question: Find the factorization of n into primes.

In the context of cryptography, a composite integer n is commonly
constructed as the product of two primes of roughly the same size. In
order for this special case of the factoring problem to be intractable, it is
currently recommended that n be a 1024-bit integer (or larger); see
Lenstra and Verheul (2001).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 77 / 424

Mathematical Background Computational Problems

Fundamental Computational Problems (cont.)

Problem

Discrete Logarithm
Instance: A multiplicative group (G, ·), an element α ∈ G having order
n, and an element β ∈ 〈α〉.
Question: Find the unique integer a, 0 ≤ a ≤ n− 1, such that

αa = β.

We will denote this integer a by logα β.

The Discrete Logarithm problem can be easy or difficult to solve,
depending on the way that the group G is presented.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 78 / 424

Mathematical Background Computational Problems

Settings for the Discrete Logarithm Problem

The most important settings (G,α) for the Discrete Logarithm problem
in cryptographic applications are the following:

1 G = (Zp∗, ·), p prime, α a primitive element modulo p, where
p ≈ 21024

2 G = (Zp∗, ·), p, q prime, p ≡ 1 mod q, α an element in Zp having
order q, where p ≈ 21024, q ≈ 2160

3 G = (F2n
∗, ·), n ≈ 21024 α a primitive element in F2n

∗

4 G = (E,+), where E is an elliptic curve modulo a prime p, α ∈ E is
a point having prime order q = #E/h, where (typically) h = 1, 2 or
4, and p, q ≈ 2160.

5 G = (E,+), where E is an elliptic curve over a finite field F2n ,
α ∈ E is a point having prime order q = #E/h, where (typically)
h = 2 or 4, q ≈ 2160 and n ≈ 160.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 79 / 424

A Formal Model for Security

Table of Contents

4 A Formal Model for Security

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 80 / 424

A Formal Model for Security

What does the term “secure” mean?

In the August 1977 issue of Scientific American, Martin Gardner wrote a
column on the newly developed RSA public-key cryptosystem entitled “A
new kind of cipher that would take millions of years to break” Included in
the article was a challenge ciphertext, encrypted using a 512-bit RSA key.
The challenge was solved 17 years later, on April 26, 1994 by factoring the
given public key (the plaintext was “The Magic Words are Squeamish
Ossifrage”).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 81 / 424

A Formal Model for Security

What went wrong

The statement that the cipher would take millions of years to break
probably referred to how long it would take to run the best factoring
algorithm known in 1977 on the fastest computer available in 1977.
However, between 1977 and 1994:

computers became much faster

improved factoring algorithms were found

the development of the internet facilitated large-scale distributed
computations

Even so, the factorization still required over 5000 MIPS-years of
computation time in 1994.
The current state-of-the-art is the factorization of the 232-digit (768 bit)
challenge, RSA-768, in December 2009.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 82 / 424

A Formal Model for Security

A Formal Model

Any discussion of cryptographic security requires a specification of an
attack model, an adversarial goal, and a level of security. These terms are
defined as follows:

attack model

We will always assume that the adversary knows the protocol
being used (this is called Kerckhoff’s Principle) as well as
the public key (if the system is a public-key system). We also
assume that the adversary does not know any secret or
private keys being used. Possible additional information
provided to the adversary is specified in the attack model.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 83 / 424

A Formal Model for Security

A Formal Model (cont.)

adversarial goal

The adversarial goal specifies what it means to “break” the
cryptosystem. In other words, what is the adversary
attempting to do and what information is he trying to
determine? How is the notion of a “successful attack”
defined?

level of security

The security level attempts to quantify the effort required to
break the cryptosystem. Equivalently, what computational
resources does the adversary have access to?

A statement of security for a cryptographic scheme will assert that a
particular adversarial goal cannot be achieved in a specified attack model,
given specified computational resources.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 84 / 424

A Formal Model for Security

Attack Models for Cryptosystems

known ciphertext attack

The adversary is given a string of ciphertext (all encrypted
with the same unknown key).

known plaintext attack

The adversary is given a string of plaintext and the
corresponding ciphertext.

chosen plaintext attack

The adversary chooses a string of plaintext and is then given
the corresponding ciphertext.

chosen ciphertext attack

The adversary chooses a string of ciphertext and is then
given the corresponding plaintext

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 85 / 424

A Formal Model for Security

Adversarial Goals

complete break

The adversary determines the private (or secret) key.

decryption of previously unseen ciphertexts

The adversary can decrypt a previously unseen ciphertext
with some specified non-zero probability.

partial information

The adversary can determine some specific type of partial
information about the plaintext, given a previously unseen
ciphertext, with some specified non-zero probability.

distinguishability

This means that the adversary can distinguish between
encryptions of two given plaintexts (semantic security
means that the adversary cannot do this).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 86 / 424

A Formal Model for Security

Security Levels

computational security

This means that a specific algorithm to break the system is
computationally infeasible.

provable security

This refers to a situation where breaking the cryptosystem
can be reduced in a complexity-theoretic sense to solving
some underlying (assumed difficult) mathematical problem,
or a “simpler” cryptographic protocol.

unconditional security

This means that the cryptosystem cannot be broken, even
with unlimited computational resources, because there is not
enough information available to the adversary for him to be
able to do this.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 87 / 424

A Formal Model for Security

One-time Pad

Let n ≥ 1 be an integer, and take P = C = K = (Z2)n. For K ∈ (Z2)n,
define eK(x) to be the vector sum modulo 2 of K and x (or, equivalently,
the exclusive-or of the two associated bitstrings). So, if x = (x1, . . . , xn)
and K = (K1, . . . ,Kn), then

eK(x) = (x1 +K1, . . . , xn +Kn) mod 2.

Decryption is identical to encryption. If y = (y1, . . . , yn), then

dK(y) = (y1 +K1, . . . , yn +Kn) mod 2.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 88 / 424

A Formal Model for Security

Unconditional Security of the One-time Pad

the one-time pad is unconditionally semantically secure in a
known-ciphertext attack if the key is used only for a single encryption

the attack model is that the adversary is given a single piece of
ciphertext, y, as well as two possible plaintexts, x1 and x2

the adversary is supposed to determine whether y is an encryption of
x1 or x2.

either situation is possible under the given information: y is the
encryption of xi (i = 1, 2) if and only if K = y ⊕ xi.
there is no way for the adversary to achieve his goal, regardless of
how much computer time he uses, so we achieve unconditional
security against the specified attack

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 89 / 424

A Formal Model for Security

Security of the Rabin Cryptosystem

the Rabin cryptosystem achieves provable one-way encryption against
a chosen-plaintext attack, assuming that factoring is infeasible

the proof of security uses a reduction

we prove that, if a decryption algorithm Rabin decrypt exists, then
there exists a randomized algorithm that factors the modulus, n, with
probability at least 1/2

we assume that n is the product of two distinct primes p and q; and
Rabin decrypt is an oracle that performs Rabin decryption, returning
one of the four possible plaintexts corresponding to a given valid
ciphertext

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 90 / 424

A Formal Model for Security

Security of the Rabin Cryptosystem

Algorithm: Rabin oracle factoring(n)
external Rabin decrypt
choose a random integer r ∈ Zn∗
y ← r2 mod n
x← Rabin decrypt(y)
if x ≡ ±r (mod n)

then return (“failure”)

else


p← gcd(x+ r, n)
q ← n/p
return (“n = p× q”)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 91 / 424

A Formal Model for Security

Analysis

x2 ≡ r2 (mod n), and hence n | (x+ r)(x− r)
there are four plaintexts whose encryption yields the ciphertext y; two
of these are r and −r mod n

the probability that x 6= −± r mod n is 1/2

in this case, we have that

(x+ r)(x− r) ≡ 0 (mod pq)

x+ r 6≡ 0 (mod pq)

x− r 6≡ 0 (mod pq)

exactly one of p and q divide x+ r.

gcd(x+ r, n) is one of the two prime factors of n and gcd(x− r, n)
yields the other

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 92 / 424

A Formal Model for Security

An Attack on RSA

the RSA cryptosystem does not provide computationally secure
one-way encryption in the chosen-ciphertext model

the attack uses the homomorphic property of the RSA encryption
function: let y1, y2 ∈ Zn, and suppose y3 ≡ y1y2 (mod n); then
dK(y1)dK(y2) ≡ dK(y3) (mod n)

suppose the adversary is given a ciphertext, say y, and is asked to
decrypt it

The adversary chooses y1, y2 ∈ Zn such that y 6= y1, y2 and y ≡ y1y2

(mod n)

then he requests the values x1 = dK(y1) and x2 = dK(y2)

finally, the adversary easily computes x = x1x2 mod n, which is the
decryption of y

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 93 / 424

A Formal Model for Security

What Do Proofs of Security Mean?

Whether a proof of security has any meaning in the “real world” depends
on several factors:

1 Does the attack model specify all the information available to the
adversary, and his computational resources? If the adversary has
additional information, then all bets are off.

2 Can the adversary do “bad things” even if he cannot achieve the
specified adversarial goal?

3 How realistic are the underlying assumptions in the attack model?
(This includes explicit and “hidden” assumptions.)

Clearly, in order for a security proof to be significant/valid/realistic, we
should try to prove that a weak adversarial goal cannot be attained in a
strong attack model, and we should minimize the assumptions required,
to the greatest extent possible.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 94 / 424

A Formal Model for Security

Assumptions

black-box model

Cryptographic schemes are most often modelled as “black
boxes”. Their input-output behaviour is described precisely,
but details of their implementation (in software or hardware)
are not taken into consideration in security proofs in this
model. A security proof in the black box model may not be
valid if details of the implementation are known to the
adversary. Side channel attacks provide illustrations of this.

intractibility assumptions

The presumed difficulty of certain computational problems
are often used in “provable security” results for public-key
schemes. Commonly used intractibility assumptions are
based on the apparent difficulty of factoring large integers, or
of solving the discrete logarithm problem in certain large
abelian groups.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 95 / 424

A Formal Model for Security

Assumptions (cont.)

random oracle model

Many cryptographic schemes use hash functions (in practice,
SHA-1 is the most common). Many security proofs assume
that the ourputs of a hash function are truly random and
unpredictable; this is the so-called random oracle model. A
proof in the random oracle model presumes that the
adversary cannot use any information about the actual hash
function being used in the scheme in his attack. Stated
another way, a security proof in the random oracle model
shows that the adversary cannot achieve his goal without
exploiting weaknesses of the hash function used in the
scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 96 / 424

A Formal Model for Security

Assumptions (cont.)

random number generators

Many randomized cryptographic schemes require the
generation of random numbers. Most security proofs of such
schemes assume implicitly that there is some ideal random
number generator that outputs truly random numbers for use
in the scheme. It would be better and more accurate to
include this as an explicit assumption in the attack model. In
analogy with the random oracle model, we might call this the
perfect random number generator model. In practice,
any scheme requiring random numbers will make use of a
certain pseudorandom number generator. A security proof in
the perfect random number generator model would show
that the adversary cannot achieve his goal without exploiting
weaknesses of the particular pseudorandom number
generator used in the scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 97 / 424

A Formal Model for Security

Scenarios for Provable Security

1 Proving that cryptographic schemes are secure, provided that an
underlying computaitonal problem is intractable.

2 Proving that a secure basic scheme can be used to build a secure
general scheme with increased functionality.

3 Proving that a basic scheme providing a minimal level of security can
be used to build a scheme with a higher level of security.

4 Proving that a cryptographic protocol is secure if the underlying
cryptographic tools used in the protocol are secure.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 98 / 424

A Formal Model for Security

Attack Models for Signature Schemes

key-only attack

The adversary possesses Alice’s public key, i.e., the
verification function, verK .

known message attack

The adversary possesses a list of messages previously signed
by Alice, say (x1, y1), (x2, y2), . . . , where the xi’s are
messages and the yi’s are Alice’s signatures on these
messages (so yi = sigK(xi), i = 1, 2, . . .).

chosen message attack

The adversary requests Alice’s signatures on a list of
messages. Therefore he chooses messages x1, x2, . . . , and
Alice supplies her signatures on these messages, namely,
yi = sigK(xi), i = 1, 2,

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 99 / 424

A Formal Model for Security

Adversarial Goals for Signature Schemes

total break

The adversary is able to determine Alice’s private key, i.e.,
the signing function sigK .

selective forgery

With some non-negligible probability, the adversary is able to
create a valid signature on a new (random) message chosen
by someone else. In other words, if the adversary is given a
message x, then he can determine (with some probability) a
signature y such that verK(x, y) = true.

existential forgery

The adversary is able to create a valid signature for at least
one new message. In other words, the adversary can create a
pair (x, y) where x is a message and verK(x, y) = true.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 100 / 424

A Formal Model for Security

An Attack on the RSA Signature Scheme

Suppose the RSA Signature Scheme is used without a hash function. It is
a simple matter for an adversary to choose an arbitrary y ∈ Zn and then
compute x = yb mod n. Clearly y is a valid signature on the message x,
so this is a valid forgery. The attack is an existential forgery in the
key-only model.
Note that this attack is prevented by using a preimage resistant hash
function.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 101 / 424

Identification

Table of Contents

5 Identification
Formal Model for Identification Schemes
An Insecure Identification Scheme
A Secure Identification Scheme
Mutual Identification
Public-key Based Schemes
The Schnorr Identification Scheme
Two-channel Cryptography and Applications
Non-interactive Message Authentication Protocols

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 102 / 424

Identification

Identification Techniques: What you are, what you
have, what you know

physical attributes

People often identify other people already known to them by
their appearance. This could include family and friends as
well as famous celebrities. Attributes that are unique to an
individual include fingerprints or retina scans (biometrics).

credentials

Trusted documents or cards such as driver’s licences and
passports function as credentials in many situations.
Credentials often include pictures, which enables physical
identification, as described above.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 103 / 424

Identification

Identification Techniques (cont.)

knowledge

Knowledge is often used for identification when the person
being identified is not in the same physical location as the
the person or entity performing the identification. In the
context of identification, knowledge could be a password or
PIN (personal identification number), or “your mother’s
maiden name” (a favorite of credit card companies). The
difficulty with using knowledge for identification is that such
knowledge may not be secret in the first place, and,
moreover, it is usually revealed as part of the identification
process. This allows for possible future impersonation of the
person being identified, which is not a good thing!

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 104 / 424

Identification

Identification Scenarios

telephone “calling cards”

require the knowledge of the telephone number that is being
billed for the call, together with a four-digit PIN

remote login

requires a valid user name and the corresponding password.

non-chip credit card purchases

usually require verification that the customer’s signature
matches the signature on the back of the card.

credit card purchases without the credit card

require a valid credit card number, the expiry date and the
CVV code.

bank machine withdrawals

require a bank card together with a four-digit PIN.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 105 / 424

Identification Formal Model for Identification Schemes

Attack Model and Adversarial Goal

suppose Alice is identifying herself to Bob

the attack model is that the adversary can observe all the information
being transmitted between Alice and Bob

the adversarial goal will be to impersonate Alice (and perhaps Bob is
the adversary!)

a secure scheme requires randomization, typically a “random
challenge” by Bob; otherwise the adversary can just replay a previous
session

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 106 / 424

Identification Formal Model for Identification Schemes

Interactive Protocols

an interactive protocol will comprise two (or more) parties that are
communicating with each other

each party is modelled as an algorithm that alternately sends and
receives information

each session consists of two or more flows (a message sent from
Alice to Bob counts as one flow)

at the end of a session, Bob “accepts” or “rejects” (this is Bob’s
internal state at the end of the protocol)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 107 / 424

Identification Formal Model for Identification Schemes

Protocols for Identification

the cryptographic tool used in an identification scheme is either a
signature scheme (in the public-key setting) or a message
authentication code (in the secret-key setting)

we first consider the secret-key setting, assuming that Alice and Bob
both hold the same secret key, K

a message authentication code MACK will used to compute
authentication tags for messages and/or challenges sent from Alice to
Bob or vice versa

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 108 / 424

Identification An Insecure Identification Scheme

Protocol: Insecure Challenge-and-Response Scheme

1. Bob chooses a random challenge, r, which he sends to Alice.

2. Alice computes y = MACK(r) and sends y to Bob.

3. Bob computes y′ = MACK(r). If y′ = y, then Bob outputs “accept”;
otherwise, Bob outputs “reject”.

Alice Bob

r←−−−−−−−−−−−−
y = MACK(r)

y−−−−−−−−−−−−→
y = MACK(r)?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 109 / 424

Identification An Insecure Identification Scheme

A Parallel Session Attack

Oscar

r←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r−−−−−−−−−−−−−−−−−−−−−−−−→

y = MACK(r)
←−−−−−−−−−−−−−−−−−−−−−−−−

y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob

In this attack, Oscar pretends to be Alice. After receiving a challenge from
Bob, Oscar initiates a second “parallel” session with Bob, in which he asks
Bob to identify himself using the same challenge, r. Oscar can send Bob’s
tag y (from the inner session) back to Bob in the outer session.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 110 / 424

Identification A Secure Identification Scheme

A Secure Variation?

The following protocol prevents the previous attack:

Protocol: Secure Challenge-and-Response Scheme

1. Bob chooses a random challenge, r, which he sends to Alice.

2. Alice computes
y = MACK(Alice ‖ r)

and sends y to Bob.

3. Bob computes
y′ = MACK(Alice ‖ r).

If y′ = y, then Bob “accepts”; otherwise, Bob “rejects”.

Note: identifiers (such as “Alice”) and random challenges should be
strings of a fixed, predetermined length, e.g., 100 bits each.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 111 / 424

Identification A Secure Identification Scheme

Assumptions Required for a Security Proof

1 The secret key, K is known only to Alice and Bob.

2 Alice and Bob both have perfect random number generators which
they use to determine their challenges. Therefore, the probability that
the same challenge occurs by chance in two different sessions is very
small. If r is a 100-bit string, then each possible challenge occurs
with probability 2−100 in a given session.

3 The message authentication code is “secure”. In other words, the
probability that Oscar can correctly compute MACK(x) is very small,
even when he is given many other valid tags, say MACK(xi),
i = 1, 2, . . . , 1000000, provided that x 6= xi for any i.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 112 / 424

Identification A Secure Identification Scheme

Security Proof (informal)

1 Could the value y = MACK(Alice ‖ r) have previously been
transmitted by Bob himself in some other session?
No: Bob only computes tags of the form MACK(Bob ‖ r), so he
would not have created y himself.

2 Suppose the value y was previously constructed by Alice in some
other session. The challenge r is assumed to be a challenge newly
created by Bob, so it is highly probable that Bob would not have
issued the same challenge in some other session.

3 Suppose that y is a “new” tag that is constructed by Oscar (i.e., it’s
not copied from a previous session). This contradicts the assumed
security of the message authentication code.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 113 / 424

Identification A Secure Identification Scheme

MAC Security

if we can prove an explicit, precise statement of the security of the
underlying MAC, then we can give a precise security guarantee for the
identification protocol

alternatively, if we make an assumption about the MAC’s security,
then we can provide a security result for the identification protocol
that depends on this assumption (thus we achieve provable security)

a MAC is said to be (T, q, ε)-secure if the adversary cannot construct
a valid tag for any new message with probability greater than ε in
time T , given that the adversary has previously observed valid tags for
at most q messages (this would refer to a known-message attack)

suppose that the random challenge is a k-bit string r ∈ {0, 1}k

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 114 / 424

Identification A Secure Identification Scheme

Analysis

1 The tag y = MACK(Alice ‖ r) would not have been previously
constructed by Bob in some other session.

2 Suppose the value y was previously computed by Alice in some other
session. The probability that Bob already used r in a specific previous
session is at most 1/2k. There are at most q previous sessions under
consideration, so the probability that r was used as challenge in one
of these previous sessions is at most q/2k.

3 Suppose the tag y is a “new” tag that is constructed by Oscar. Then,
Oscar will succeed with probability at most ε, given that he has
computing time T ; this follows from the security of the message
authentication code being used.

Summing up, Oscar’s probability of deceiving Bob in time T is at most
q/2k + ε.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 115 / 424

Identification A Secure Identification Scheme

An Attack?

Consider the following intruder-in-the-middle scenario:

Alice Oscar Bob

r←−−−−−−−−−−−−−−−−−− r←−−−−−−−−−

y = MACK(Alice ‖ r)
−−−−−−−−−−−−−−−−−−→ y−−−−−−−−−→

At the end of the session, Bob will accept

Should we consider this to be a successful attack by Oscar?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 116 / 424

Identification A Secure Identification Scheme

Analysis

We do not consider the previous scenario to be a real attack, because
Alice has successfully identified herself to Bob in this session.

Bob issued a challenge r and Alice computed the correct response y
to the challenge.

Oscar simply forwarded messages to their intended recipients without
modifying the messages, so Oscar was not an active participant in the
protocol.

The session executed exactly as it would have if Oscar had not been
present.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 117 / 424

Identification A Secure Identification Scheme

Adversarial Goals, Revisited

We formulate the notion of adversarial goal more precisely.

We will say that the adversary (Oscar) is active in a particular session
if one of the following conditions holds:

1 Oscar creates a new message and places it in the channel
2 Oscar changes a message in the channel, or
3 Oscar diverts a message in the channel so it is sent to someone other

than the intended receiver

According to this definition, Oscar is not active in the
intruder-in-the-middle scenario considered above

The goal of the adversary is to have the initiator of the protocol (e.g.,
Bob) “accept” in some session in which the adversary is active.

Note that disruption is not considered a successful attack.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 118 / 424

Identification A Secure Identification Scheme

Assumptions regarding Honest Participants

A participant in a session of the protocol (Alice or Bob) is said to be
an honest participant if she/he follows the protocol, performs
correct computations, and does not reveal any secret information to
the adversary (namely, Oscar).

If a participant is not honest, then it is very difficult to say anything
meaningful about the security of a protocol.

Statements of security require that participants are honest.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 119 / 424

Identification A Secure Identification Scheme

Attack Models

Before he actually tries to deceive Bob, say, Oscar carries out an
information-gathering phase

Oscar is said to be passive during this phase if he simply observes
sessions between Alice and Bob

alternatively, we might consider an attack model in which Oscar is
active during the information-gathering phase

for example, Oscar might be given temporary access to an oracle that
computes authentication tags MACK(·) for the key K being used by
Alice and Bob

during this time period, Oscar can successfully deceive Alice and Bob

after the information-gathering phase, the MAC oracle is confiscated
(and then Oscar carries out his attack)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 120 / 424

Identification A Secure Identification Scheme

Security

The security analysis that we performed applies to both of these
attack models

The identification protocol is secure (the adversary’s success
probability is at most q/2k + ε in time T) in the passive
information-gathering model provided that the MAC is (q, ε, T)-secure
against a known message attack

The identification protocol is secure in the active
information-gathering model provided that the MAC is (q, ε, T)-secure
against a chosen message attack

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 121 / 424

Identification Mutual Identification

Notions of Mutual Identification

Suppose we have a protocol in which Alice and Bob are proving their
identities to each other simultaneously

This is called mutual identification

Both participants are required to “accept” if a session of the protocol
is to be considered a successfully completed session.

The adversary could be trying to fool Alice, Bob, or both of them into
accepting.

The adversarial goal is to cause an honest participant to “accept”
after a flow in which the adversary is active.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 122 / 424

Identification Mutual Identification

Secure Mutual Identification

The following conditions specify what the outcome of a mutual
identification protocol should be, if the protocol is secure.

1 If Alice and Bob are honest and the adversary is passive, then Alice and
Bob will both output “accept” in any session in which they are the two
participants.

2 If the adversary is active during a given flow of the protocol, then no
honest participant will “accept” after that flow.

Note that the adversary might be inactive in a particular session until
after one participant accepts, and then become active. Therefore it is
possible that one honest participant “accepts ” and then the other
honest participant “rejects”. The adversary does not achieve his goal
in this case, even though the session did not successfully complete.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 123 / 424

Identification Mutual Identification

Mutual Identification Protocol

The following protocol for mutual identification basically consists of two
runs of the secure one-way protocol, modified so that the number of flows
is reduced from four to three:

Protocol: Insecure Mutual Challenge-and-Response Scheme

1. Bob chooses a random challenge, r1, which he sends to Alice.

2. Alice chooses a random challenge, r2. She also computes
y1 = MACK(Alice ‖ r1) and sends r2 and y1 to Bob.

3. Bob computes y′1 = MACK(Alice ‖ r1). If y′1 = y1, then Bob
“accepts”; otherwise, Bob “rejects”. Bob also computes
y2 = MACK(Bob ‖ r2) and sends y2 to Alice.

4. Alice computes y′2 = MACK(Bob ‖ r2). If y′2 = y2, then Alice
“accepts”; otherwise, Alice “rejects”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 124 / 424

Identification Mutual Identification

A Parallel Session Attack

The protocol is insecure; Oscar can fool Alice in a parallel session attack:

Alice Oscar Bob

r1←−−−−−−−−−−−−−−

MACK(Alice ‖ r1), r2−−−−−−−−−−−−−−→

r2−−−−−−−−−−−−−−→

MACK(Bob ‖ r2), r3←−−−−−−−−−−−−−−

MACK(Bob ‖ r2)
←−−−−−−−−−−−−−−

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 125 / 424

Identification Mutual Identification

Secure Mutual Identification Protocol

The following variation is secure:

Protocol: Secure Mutual Challenge-and-Response Scheme

1. Bob chooses a random challenge, r1, which he sends to Alice.

2. Alice chooses a random challenge, r2. She also computes
y1 = MACK(Alice ‖ r1 ‖ r2) and sends r2 and y1 to Bob.

3. Bob computes y′1 = MACK(Alice ‖ r1 ‖ r2). If y′1 = y1, then Bob
outputs “accept”; otherwise, Bob outputs “reject”. Bob also
computes y2 = MACK(Bob ‖ r2) and sends y2 to Alice.

4. Alice computes y′2 = MACK(Bob ‖ r2). If y′2 = y2, then Alice outputs
“accept”; otherwise, Alice outputs “reject”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 126 / 424

Identification Mutual Identification

Secure Mutual Identification Protocol

Alice Bob

r1←−−−−−−
y1 = MACK(Alice ‖ r1 ‖ r2)

r2, y1−−−−−−→
y1 = MACK(Alice ‖ r1 ‖ r2)?
y2 = MACK(Bob ‖ r2)

y2←−−−−−−
y2 = MACK(Bob ‖ r2)?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 127 / 424

Identification Mutual Identification

Informal Analysis

Note that any tag y1 is computed “differently” than any tag y2.
Therefore it is impossible that a y1 tag from one session can be
re-used as a y2 tag from another session (or vice versa), as was done
in the parallel session attack.

Let’s try to prove informally that the protocol is secure against any
attack.

Oscar could try to play the role of Bob (fooling Alice) or Alice
(fooling Bob), by determining y2 or y1, respectively.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 128 / 424

Identification Mutual Identification

Informal Analysis (cont.)

Suppose that Oscar has seen at most q tags from previous sessions
(this limits the number of previous sessions to q/2, because there are
two tags sent per session).

The probability that a tag y1 or y2 can be reused from a previous
session is at most q/2k.

The probability that Oscar can compute a new y1 tag is at most ε,
and the probability that he can compute a new y2 tag is at most ε.

Therefore Oscar’s probability of deceiving Alice or Bob is at most
q/2k + 2ε.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 129 / 424

Identification Public-key Based Schemes

The Public-key Setting

assume that Alice and Bob are members of a network, in which every
participant has public and private keys for certain prespecified
cryptosystems and/or signature schemes

it is necessary to provide a mechanism to authenticate public keys of
other people in the network, i.e., a public key infrastructure

we assume there is a certification authority, denoted CA, who signs
the public keys of all people in the network

the (public) verification key of the CA, denoted verCA, is assumed to
be known “by magic” to everyone in the network

a certificate for someone in the network will consist of some
identifying information for that person, their public key(s), and the
signature of the CA on that information

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 130 / 424

Identification Public-key Based Schemes

Certificates
Protocol: Issuing a Certificate to Alice

1. The CA establishes Alice’s identity by means of conventional forms of
identification such as a birth certificate, passport, etc. Then the CA
forms a fixed length string ID(Alice) which contains her identification
information.

2. A private signing key for Alice, sigAlice, and a corresponding public
verification key, verAlice, are determined.

3. The CA generates its signature

s = sigCA(ID(Alice) ‖ verAlice)

on Alice’s identity string and verification key. The certificate

Cert(Alice) = (ID(Alice) ‖ verAlice ‖ s)

is given to Alice.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 131 / 424

Identification Public-key Based Schemes

Verifying a Certificate

Anyone who knows the CA’s verification key, verCA, can verify
anyone else’s certificate.

Suppose that Bob wants to be assured that Alice’s public key is
authentic.

Alice can give her certificate to Bob. Bob can then verify the
signature of the CA by checking that

verCA(ID(Alice) ‖ verAlice, s) = true.

Certificates contain only public information, so they can be
distributed to anyone.

The security of a certificate follows immediately from the security of
the signature scheme used by the CA.

Certificates are verified before the identification protocol is executed.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 132 / 424

Identification Public-key Based Schemes

Public-key Mutual Identification

we want to modify protocols from the secret-key setting, replacing
message authentication codes by signature schemes

in the secret-key setting, we included the name of the person who
produced the tag in the computation of the tag

in the public-key setting, only one person can create signatures using
a specified private signing key, so we do not need to explicitly
designate who created a particular signature

at the beginning of the protocol, each participant has an intended
peer (i.e., the person they think they are communicating with)

they will use the intended peer’s verification key to verify all
signatures received in the protocol

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 133 / 424

Identification Public-key Based Schemes

Protocol: Public-key Mutual Identification Protocol

1. Bob chooses a random challenge, r1, which he sends to Alice.

2. Alice chooses a random challenge, r2. She also computes
y1 = sigAlice(Bob ‖ r1 ‖ r2) and sends Cert(Alice), r2 and y1 to Bob.

3. Bob verifies Alice’s public key, verAlice, on the certificate Cert(Alice).
Then he checks that verAlice(Bob ‖ r1 ‖ r2, y1) = true. If so, then
Bob “accepts”; otherwise, Bob “rejects”. Bob also computes
y2 = sigBob(Alice ‖ r2) and sends Cert(Bob) and y2 to Alice.

4. Alice verifies Bob’s public key, verBob, on the certificate Cert(Bob).
Then she checks that verBob(Alice ‖ r2, y2) = true. If so, then Alice
“accepts”; otherwise, Alice “rejects”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 134 / 424

Identification Public-key Based Schemes

Public-key Mutual Identification Protocol

Alice Bob

r1←−−−−−
y1 = sigAlice(Bob ‖ r1 ‖ r2)

r2, y1−−−−−→
verAlice(Bob ‖ r1 ‖ r2, y1) = true?
y2 = sigBob(Alice ‖ r2)

y2←−−−−−
verBob(Alice ‖ r2, y2) = true?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 135 / 424

Identification Public-key Based Schemes

Security of the Protocol

the preceding protocol is provably secure

it is secure if the signature scheme is secure and challenges are
generated randomly

interestingly, a slight modification of the scheme is insecure

the insecure modified protocol includes a third random number r3

that is signed by Bob

the protocol becomes vulnerable to a parallel session attack (exercise
for the reader)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 136 / 424

Identification Public-key Based Schemes

Protocol: Insecure Public-key Mutual Identification

1. Bob chooses a random challenge, r1, which he sends to Alice.

2. Alice chooses a random challenge, r2. She also computes
y1 = sigAlice(Bob ‖ r1 ‖ r2) and sends Cert(Alice), r2 and y1 to Bob.

3. Bob verifies Alice’s public key, verAlice, on the certificate
Cert(Alice). Then he checks that verAlice(Bob ‖ r1 ‖ r2, y1) = true.
If so, then Bob “accepts”; otherwise, Bob “rejects”. Bob also chooses
a random number r3, computes y2 = sigBob(Alice ‖ r2 ‖ r3) and
sends Cert(Bob), r3 and y2 to Alice.

4. Alice verifies Bob’s public key, verBob, on the certificate Cert(Bob).
Then she checks that verBob(Alice ‖ r2 ‖ r3, y2) = true. If so, then
Alice “accepts”; otherwise, Alice “rejects”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 137 / 424

Identification Public-key Based Schemes

Insecure Public-key Mutual Identification Protocol

Alice Bob

r1←−−−−−−
y1 = sigAlice(Bob ‖ r1 ‖ r2)

r2, y1−−−−−−→
verAlice(Bob ‖ r1 ‖ r2, y1) = true?
y2 = sigBob(Alice ‖ r2 ‖ r3)

r3, y2←−−−−−−
verBob(Alice ‖ r2 ‖ r3, y2) = true?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 138 / 424

Identification The Schnorr Identification Scheme

Specialized Identification Schemes

Another approach used to construct identification schemes is to
design schemes “from scratch”, without using any other
cryptographic tools as building blocks.

A potential advantage of schemes of this type is that they might be
more efficient and have a lower communication complexity than
schemes considered previously

Such schemes can be based on the discrete logarithm problem:

Problem

Discrete Logarithm
Instance: A multiplicative group (G, ·), an element α ∈ G having order
n, and an element β ∈ 〈α〉.
Question: Find the unique integer a, 0 ≤ a ≤ n− 1, such that αa = β.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 139 / 424

Identification The Schnorr Identification Scheme

The Schnorr Scheme (setup)

We take α to be an element having prime order q in the group Zp∗
(where p is prime and p− 1 ≡ 0 (mod q)).

Such an α can be obtained by raising a primitive element in Zp∗ to
the (p− 1)/qth power.

This setting of the Discrete Logarithm Problem is thought to be
secure if p ≈ 21024 and q ≈ 2160

Values of p, q and α satisfying these conditions are chosen by a CA
and made public to all users of a network.

These values could be included on Alice’s and/or the CA’s certificate,
for example.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 140 / 424

Identification The Schnorr Identification Scheme

The Schnorr Scheme (setup, cont.)

Alice chooses a private key a, where 0 ≤ a ≤ q − 1, and constructs a
public key v = α−a mod p.

v can be computed as (αa)−1 mod p, or (more efficiently) as
αq−a mod p.

The CA signs Alice’s public key and puts it on Alice’s certificate.

The value t = 40 is a public security parameter (the adversary’s
probability of deceiving Alice or Bob will be 2−t, so t = 40 is
sufficient for most applications

The Schnorr Identification Scheme is a three-flow protocol in which
Alice identifies herself to Bob, say.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 141 / 424

Identification The Schnorr Identification Scheme

Protocol: Schnorr Identification Scheme

1. Alice chooses a random number, k, where 0 ≤ k ≤ q− 1 and computes
a commitment γ = αk mod p. She sends Cert(Alice) and γ to Bob.

2. Bob verifies Alice’s public key, v, on the certificate Cert(Alice). Bob
chooses a random challenge r, 1 ≤ r ≤ 2t and sends r to Alice.

3. Alice computes y = k + ar mod q and sends the response y to Bob.

4. Bob verifies that γ ≡ αyvr (mod p). If so, then Bob “accepts”;
otherwise, Bob “rejects”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 142 / 424

Identification The Schnorr Identification Scheme

Completeness

If Alice and Bob are honest, the protocol will run successfully:

αyvr ≡ αk+arα−ar (mod p)

≡ αk (mod p)

≡ γ (mod p).

This is is called the completeness property of the protocol.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 143 / 424

Identification The Schnorr Identification Scheme

An Example

Suppose p = 88667, q = 1031 and t = 10. The element α = 70322 has
order q in Zp∗. Suppose Alice’s private key is a = 755; then

v = α−a mod p

= 703221031−755 mod 88667

= 13136.

Now suppose Alice chooses k = 543. Then she computes

γ = αk mod p

= 70322543 mod 88667

= 84109.

and sends γ to Bob.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 144 / 424

Identification The Schnorr Identification Scheme

An Example (cont.)

Suppose Bob issues the challenge r = 1000. Then Alice computes

y = k + ar mod q

= 543 + 755× 1000 mod 1031

= 851

and sends her response, y, to Bob. Bob then verifies that

84109 ≡ 70322851131361000 (mod 88667).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 145 / 424

Identification The Schnorr Identification Scheme

Efficiency of the Protocol

Alice Bob

k ∈R {0, . . . , q − 1}
γ = αk mod p

γ (1024 bits)
−−−−−−−−−−−−−−−→

r (40 bits)
←−−−−−−−−−−−−−−− r ∈R {1, . . . , 2t}

y = k + ar mod q
y (160 bits)

−−−−−−−−−−−−−−−→ γ ≡ αyvr (mod p)?

Alice’s computations could be done by a smart card; in particular, γ
can be precomputed

the number of bits communicated is small

γ can be replaced by SHA-1(γ) to provide additional efficiency (note
that the scheme would have to be modified slightly if this change is
made)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 146 / 424

Identification The Schnorr Identification Scheme

Proof of Knowledge: Security wrt Impersonations

Can Oscar impersonate Alice?

Oscar can guess Bob’s challenge r with probability 1/2t and
precompute γ and y that work for the given r

Namely, Oscar can choose y at random and compute

γ = αyvr mod p

On the other hand, suppose for some γ that Oscar somehow knows
two values r1 and r2 such that he can compute correct responses y1

and y2, respectively

Then
γ ≡ αy1vr1 ≡ αy2vr2 (mod p),

so
αy1−y2 ≡ vr2−r1 (mod p).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 147 / 424

Identification The Schnorr Identification Scheme

Proof of Knowledge: Security wrt Impersonations
(cont.)

Since v = α−a, we have that

αy1−y2 ≡ αa(r1−r2) (mod p),

and hence
y1 − y2 ≡ a(r1 − r2) (mod q).

0 < |r2 − r1| < 2t and q > 2t is prime.

Hence, Oscar can compute

a = (y1 − y2)(r1 − r2)−1 mod q.

Therefore Oscar can easily compute the value of a, which we are
assuming is infeasible to compute in the given group.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 148 / 424

Identification The Schnorr Identification Scheme

Proof of Knowledge: Mathematical Analysis

It is fair to ask under what conditions Oscar can compute some γ
such that he knows two values r1 and r2 for which he can compute
correct responses y1 and y2, respectively.

Oscar’s ability to do this will certainly depend on how successful he is
in being able to impersonate Alice.

We will prove the following theorem due to Schnorr:

Theorem

Suppose that A is an algorithm that succeeds in completing the
Schnorr Identification Scheme (impersonating Alice) with success
probability ε ≥ 2−t+1. Then A can be used as an oracle in an algorithm B
that computes Alice’s private key, where B is a Las Vegas algorithm having
expected complexity O(1/ε).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 149 / 424

Identification The Schnorr Identification Scheme

Mathematical Analysis (cont.)

We will use the following lemma a bit later.

Lemma

For δ ≈ 0, it holds that (1− δ)c/δ ≈ e−c.

Define a q × 2t matrix M = (mk,r), having entries equal to 0 or 1,
where

mk,r = 1 if and only if A(k, r) executes successfully

(recall that γ = αk).

Since A has success probability ε, it follows that M contains exactly
εq2t 1’s.

The average number of 1’s in a row k of M is ε2t.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 150 / 424

Identification The Schnorr Identification Scheme

Mathematical Analysis (cont.)

Define a row k of M to be a heavy row if it contains more than
ε2t−1 1’s.

Observe that a heavy row contains at least two 1’s, because
ε ≥ 2−t+1.

Lemma

Given a random mk,r = 1, the probability that k is a heavy row is at least
1/2.

Proof.

The total number of 1’s in light rows is at most q × ε2t−1 = εq2t−1.
Hence, the total number of 1’s in heavy rows is at least
εq2t − εq2t−1 = εq2t−1.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 151 / 424

Identification The Schnorr Identification Scheme

Mathematical Analysis (cont.)

We can now describe the algorithm B.

1 Choose random pairs (k, r) and run A(k, r), until M(k, r) = 1.
Define (k1, r1) to be the current pair (k, r) and proceed to step 2.

2 Denote by u the number of trials that were required in step 1.
Choose random pairs (k1, r) and run A(k1, r), until M(k1, r) = 1 or
until 4u trials have finished unsuccessfully.

3 If step 2 terminates with a successful pair (k1, r2) where r2 6= r1, then
we already showed that it is easy to compute Alice’s private key and
the algorithm B terminates successfully. Otherwise, go back to step 1
and start again.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 152 / 424

Identification The Schnorr Identification Scheme

Mathematical Analysis (cont.)

Since ε is the success probability of A, it follows that E[u] = 1/ε, where
E[u] denotes the expected number of trials in step 1.

Lemma

Pr[u > 1/(2ε)] ≈ 0.6.

Proof.

u > 1/(2ε) if and only if the first 1/(2ε) random trials are unsuccessful.
This happens with probability (1− ε)1/(2ε) ≈ e−1/2 ≈ 0.6 (applying the
Lemma stated previously).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 153 / 424

Identification The Schnorr Identification Scheme

Mathematical Analysis (cont.)

Lemma

Suppose that u > 1/(2ε) and suppose also that k1 is a heavy row. Then
the probability that step 2 of B succeeds in finding a value r2 such that
A(k1, r2) = 1 is at least .37.

Proof.

Under the given assumptions, 4u > 2/ε. The probability that a random
entry in row k1 is a 1 is at least ε/2. Therefore the probability that step 2
of B succeeds is at least

1−
(

1− ε

2

)2/ε
≈ 1− e−1 ≈ 0.37.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 154 / 424

Identification The Schnorr Identification Scheme

Mathematical Analysis (cont.)

Lemma

Given that k1 is a heavy row and step 2 of B succeeds in finding a pair
(k1, r2) such that A(k1, r2) = 1, the probability that r2 6= r1 is at least
1/2.

Proof.

This follows immediately from the fact that a heavy row contains at least
two 1’s.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 155 / 424

Identification The Schnorr Identification Scheme

Completing the Proof
Now we can analyze the expected complexity of algorithm B. We have
shown that:

1 The probability that step 1 terminates with k being a heavy row is at
least 1/2.

2 The probability that u > 1/(2ε) is 0.6.

3 Assuming 1 and 2 hold, the probability that step 2 of B succeeds is at
least .37.

4 Given 1, 2 and 3 all hold, the probability that r2 6= r1 in step 3 of B
is at least 1/2.

The probability that 1–4 all hold (and hence algorithm B succeeds) is at
least

1

2
× 0.6× 0.37× 1

2
≈ 0.055.

Therefore, the expected number of iterations of steps 1 and 2 in B is at
most 1/0.055 ≈ 18.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 156 / 424

Identification The Schnorr Identification Scheme

Completing the Proof (cont.)

Finally, we determine the complexity of executing the operations in one
iteration of steps 1 and 2 of B.

The expected complexity of step 1 of B (i.e., the expected number of
trials in step 1) is E[u] = 1/ε.

The complexity of step 2 is at most 4u.

Therefore, the expected complexity of steps 1 and 2 of B is at most
5/ε.

Therefore, the expected complexity of B is at most

18× 5

ε
=

90

ε
∈ O

(
1

ε

)
.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 157 / 424

Identification The Schnorr Identification Scheme

Zero-knowledge Proofs of Knowledge

The protocol is known as a proof of knowledge because Alice (the
prover) cannot carry out the protocol successfully unless she “knows”
the secret discrete logarithm, a.

A zero-knowledge proof of knowledge is one in which no information
about a is revealed to Bob (the verifier) by the protocol.

We will show that the Schnorr scheme is a zero-knowledge proof of
knowledge for an honest verifier (i.e., for a verifier who chooses his
challenges r at random, as specified by the protocol).

This provides fairly convincing evidence of security of the scheme.

We require the notion of a transcript of a session, which consists of a
triple T = (γ, r, y) in which γ ≡ αyvr (mod p).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 158 / 424

Identification The Schnorr Identification Scheme

Probability Distributions of Transcripts

The verifier can obtain a transcript T (S) for each session S.

The set of possible transcripts is

T = {(γ, r, y) : 1 ≤ r ≤ 2t, 0 ≤ y ≤ q − 1, γ ≡ αyvr (mod p)}.

|T | = q 2t, and the probability that any particular transcript occurs in
any given session is 1/(q 2t).

Oscar, say, can generate simulated transcripts, having the same
probability distribution, without taking part in the protocol:

1 choose r ∈R {1, . . . , 2t}
2 choose y ∈R {0, . . . , q − 1}
3 compute γ = αyvr mod p

Prsim[T] = Prreal[T] = 1/(q 2t) for all T ∈ T

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 159 / 424

Identification The Schnorr Identification Scheme

Security wrt an Honest Verifier

Whatever an honest verifier can compute after taking part in several
sessions of the protocol, Oscar can compute without taking part in
any sessions of the protocol.

In particular, computing Alice’s private key, a, which is necessary for
Oscar to be able to impersonate Alice, is not made easier for Oscar if
he plays the role of the verifier in one or more sessions and he (Oscar)
chooses his challenges randomly.

Is it possible that Oscar can obtain some useful information by
choosing his challenges r in a non-uniform way (depending on γ,
say)?

This does not seem likely, but the only known security proofs of the
Schnorr scheme for arbitrary verifiers require additional assumptions.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 160 / 424

Identification The Schnorr Identification Scheme

Summary of Properties of the Schnorr Scheme

The protocol is a proof of knowledge: breaking the protocol is
equivalent to computing the private key.

Transcripts of sessions can be perfectly simulated (i.e., generated at
random, without taking part in the protocol), assuming that the
challenges r are chosen uniformly at random.

This implies that no information about the private key is revealed to
an honest verifier, and the protocol is said to be honest verifier
zero-knowledge.

Therefore, assuming that computing the discrete logarithm a is
infeasible, the protocol is secure with respect to an honest verifier.

Note: a dishonest verifier may choose challenges r depending on γ,
and the resulting probability distribution on the set of possible
transcripts apparently cannot be simulated.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 161 / 424

Identification The Schnorr Identification Scheme

Simulatable Probability Distributions

Why does simulatability imply zero-knowledge?

Suppose there exists an algorithm Extract which, when given a set of
transcripts, say T1, . . . , T`, computes a private key, say a, with some
probability, say ε.

We assume that the transcripts are actual transcripts of sessions, in
which the participants follow the protocol.

Suppose that T ′1, . . . , T
′
` are simulated transcripts.

The probability distribution on simulated transcripts is identical to
the probability distribution on real transcripts.

Therefore Extract(T ′1, . . . , T
′
`) will also compute a with the same

probability ε.

Executing the protocol does not make computing a easier, so the
protocol is zero-knowledge.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 162 / 424

Identification Two-channel Cryptography and Applications

What is Two-channel Cryptography?

Two channels are accessible for communication. They have different
properties in terms of security and cost.

broadband insecure channel: wireless channel,

narrow-band authenticated channel: voice, data comparison, data
imprinting, near field communication, visible light, infra red signals,
laser. This is sometimes termed a manual channel, meaning, for
example, that Alice types a one-time password into a terminal.

Goal: to achieve a certain cryptographic goal by using the two
channels while optimizing the computational and communication
complexity.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 163 / 424

Identification Two-channel Cryptography and Applications

Two-channel Cryptography in Ad Hoc Networks

An ad hoc network is spontaneous: The connection is established for
the duration of one session.

It should be easy to quickly add new users and remove users.

Secret-key techniques may not be not practical (no prior shared secret
keys exist).

Public-key techniques may be too expensive (computationally) for
constrained platforms.

Identity-based systems also need some infrastructure.

What can we do in absence of a public or secret key?

Two-channel Authentication!

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 164 / 424

Identification Two-channel Cryptography and Applications

Authentication using Two-Channel Cryptography

The focus is on message authentication in ad hoc networks.

We assume a totally insecure broadband channel: −→. The
broadband channel can be used to send long messages.

As well, we have a “moderately secure” narrow-band channel: =⇒.
The narrow-band channel can be used to authenticate messages.

Two small devices, Alice and Bob, wish to establish a secure key, M ,
in the presence of an active adversary, Oscar.

Oscar has full control over the broadband channel.

Oscar cannot modify a message or initiate a new flow over the
narrow-band channel.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 165 / 424

Identification Two-channel Cryptography and Applications

Message Authentication Protocols (MAPs)

Alice wants to authenticate a message, M ∈M, to Bob (along with
her identity).

It should be the case that once the MAP is carried out, either Bob
rejects or he outputs (Alice, M ′), where M ′ ∈M.

If there is no active adversary, then M = M ′.

Adversarial Goal:

Oscar is trying to make Bob accept a message M ′ along with the
identity of Alice, when Alice has never sent M ′.

In a successful attack, Bob outputs (Alice, M ′), where Alice has
never sent M ′.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 166 / 424

Identification Two-channel Cryptography and Applications

Non-interactive MAP (NIMAP)

A typical flow structure:

Alice Bob

Input (M , Bob)
−−−→
==⇒

Output (Alice, M ′) or reject.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 167 / 424

Identification Two-channel Cryptography and Applications

Interactive MAP (IMAP)

A possible flow structure:

Alice Bob

Input (M , Bob) −−−→
←−−−
−−−→
==⇒ Output (Alice, M ′) or reject.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 168 / 424

Identification NIMAPs

Mashatan-Stinson NIMAP

Let H be a hash function (which satisfies a certain property, to be
defined later).

Alice Bob

Input (M , Bob), |M | = `1,

Choose K ∈R {0, 1}`2
M,K−−−−−−−→ Receive M ′,K ′

Compute h = H(M‖K)
h

======⇒ Receive h

Accept if h = H(M ′‖K ′),
reject otherwise

Note: Oscar can modify M and/or K but he cannot modify h.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 169 / 424

Identification NIMAPs

The Attack Scenario

Alice Oscar Bob

M←−−− M ∈ {0, 1}`1

K ∈R {0, 1}`2
M,K−−−→ |M ′| = `1, |K ′| = `2

M ′,K ′−−−→

h = H(M‖K)
h

===⇒ h
===⇒ h = H(M ′‖K ′)?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 170 / 424

Identification NIMAPs

Hybrid-Collision Resistance

Definition

A hybrid-collision resistant (HCR) hash function, H, is a hash
function where the following HCR Game is hard to win. The pair
(L,M‖K) is a hybrid-collision.

Oscar Challenger

Choose M , |M | = `1.
M−−−−→ Choose K ∈R {0, 1}`2 .

K←−−−−

Choose L, |L| = `1 + `2.
L−−−−→ Oscar wins if L 6= M‖K

and H(M‖K) = H(L).

If an adversary with computational complexity T wins the HCR game
with probability at most ε, then H is a (T, ε)-HCR hash function.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 171 / 424

Identification NIMAPs

Hardness of the HCR Game

We analyze the HCR Game in the random oracle model.

Let H be a random oracle, i.e., a hash function having domain X and
range Y, where |Y| = 2d, that produces completely random
outputs in Y.

Assume that Oscar is only permitted oracle access to H (in particular,
there is no algorithm describing H).

Oscar can query the oracle H at most T = 2t times, where
t < min{d, `2}.
Let ε be the probability of Oscar winning the HCR Game.

We will show that
ε ≤ 2t−d + 22t−d−`2 .

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 172 / 424

Identification NIMAPs

Analysis of the HCR Game

Suppose Oscar makes S oracle queries, say H(X1), . . . ,H(XS),
before sending M to the Challenger.

Then Oscar makes T − S additional oracle queries, say
H(XS+1), . . . ,H(XT), after receiving K from the Challenger.

We can assume that L ∈ {X1, . . . , XT } and M‖K ∈ {X1, . . . , XT }
(otherwise, ε ≤ 2−d).

We divide the analysis into three cases:
1 L ∈ {XS+1, . . . , XT }.
2 L ∈ {X1, . . . , XS} and M‖K ∈ {XS+1, . . . , XT }
3 L ∈ {X1, . . . , XS} and M‖K ∈ {X1, . . . , XS}

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 173 / 424

Identification NIMAPs

Analysis of the HCR Game (cont.)

In case 1, M‖K is determined before the query H(L) is made.

For any i ∈ {S + 1, . . . , T} the probability that H(Xi) = H(M‖K) is
2−d.

Therefore, the probability of a collision occurring in case 1 is at most

T − S
2d

.

In case 2, H(M‖K) collides with one of the previously computed
values H(Xi), where i ∈ {1, . . . , S}.
Therefore, the probability of a collision occurring in case 2 is at most

S

2d
.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 174 / 424

Identification NIMAPs

Analysis of the HCR Game (cont.)

In case 3, the probability that M‖K ∈ {X1, . . . , XS} is at most
S/2`2

Given that M‖K ∈ {X1, . . . , XS}, say M‖K = Xi where 1 ≤ i ≤ S,
the probability that Xi collides with some Xj (j 6= i, 1 ≤ j ≤ S) is at
most (S − 1)/2d.

Therefore, the probability of a collision occurring in case 3, is at most

S

2`2
× S − 1

2d
≤ T

2`2
× T

2d
= 22t−d−`2 .

The probability of a collision is at most the sum of the probabilities
of case 1, case 2 and case 3, namely,

T − S
2d

+
S

2d
+ 22t−d−`2 = 2t−d + 22t−d−`2 .

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 175 / 424

Identification NIMAPs

Security of the NIMAP

Theorem

Let H be a (T, ε)-HCR hash function. Any adversary against the
Mashatan-Stinson NIMAP having complexity T = 2t, has a probability of
success that is at most ε.

Typical parameter choices:

d = 80 (size of the message digest, i.e., the # of bits sent over the
authenticated channel),

t = 50 (i.e., the adversary makes 250 oracle queries).

`2 = 60 (the number of random bits supplied by Alice in the protocol)

If we treat the hash function as a random oracle, we have

ε ≤ 2t−d + 22t−d−`2 = 2−30 + 2−40 ≈ 2−30.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 176 / 424

Key Management

Table of Contents

6 Key Management
Introduction
The Blom Scheme
Diffie-Hellman Problems
Key Predistribution in Wireless Sensor Networks
Session Key Distribution
Diffie-Hellman Key Agreement
The Station-to-station Protocol
MTI Protocols

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 177 / 424

Key Management Introduction

Key Distribution, Transport and Agreement
Protocols

There are many possible scenarios, including the following:
I a TA distributes keying information “ahead of time” to everyone in the

network (key predistribution scheme or KPS)
I an online TA distributes session keys upon request of network users via

an interactive protocol (session key distribution scheme or SKDS,
e.g., Kerberos)

I network users employ interactive protocols to construct (session) keys
(key agreement scheme or KAS)

as always, we can consider schemes and protocols in the
public/private key setting or the secret key setting; active and/or
passive adversaries; various adversarial goals, attack models, security
levels, etc.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 178 / 424

Key Management Introduction

Long-lived Keys and Session Keys

users (or pairs of users) may have long-lived keys (LL-keys) which
should be pre-computed and stored securely; or computed
(non-interactively) as needed from each user’s secret information

pairs of users will employ short-lived session keys in a particular
session and then throw them away

LL-keys are generally used in protocols to generate session keys

a KPS provides a method to distribute secret LL-keys; then a KAS is
used to generate session keys as needed

a SKDS is a three-party protocol, usually based on long-lived secret
keys held by each user and the TA

a KAS can be secret-key based or public/private key based

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 179 / 424

Key Management Introduction

Why use Session Keys?

The following list is paraphrased from the Handbook of Applied
Cryptography:

to limit the amount of ciphertext (encrypted with one particular key)
available to an attacker

to limit exposure in the event of session key compromise (i.e. the
compromise of a session key should not compromise the LL-key, or
other session keys)

to (possibly) reduce the amount of long-term information that needs
to be securely stored by each user, by generating keys only when they
are needed

to create independence across sessions or applications

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 180 / 424

Key Management Introduction

Requirements of Long-lived Keys

assume a network of n users

the “type” of scheme used to construct session keys dictates the type
of LL-keys required

users’ storage requirements depend on the type of keys used

SKDS requires that each network user have a secret LL-key in
common with the TA:

I low storage requirement for network users
I an on-line TA is required for session key distribution

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 181 / 424

Key Management Introduction

Requirements of Long-lived Keys (cont.)

secret-key based KAS requires that every pair of network users has a
secret LL-key known only to them

I high storage requirement: each user stores n− 1 keys (and there are(
n
2

)
keys in total)

I a TA is not required for session key distribution

public-key based KAS requires that each network user have his/her
own public/private LL-key pair

I low storage requirement: each user stores one private key and a
certificate

I a TA is not required for session key distribution
I an offline TA (or CA) is required to maintain public-key infrastructure

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 182 / 424

Key Management Introduction

Overview of Attack Models and Adversarial Goals
for SKDS and KAS

we consider passive and active adversaries (as in identification
protocols)

we usually require authenticated SKDS and KAS, which include
(mutual) identification of Alice and Bob

I the protocols should be secure identification protocols
I in addition, Alice and Bob should possess a new secret key at the end

of the protocol, whose value is not known to the adversary

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 183 / 424

Key Management Introduction

Extended Attack Models and Adversarial Goals

Extended attack models are also considered, such as:

Suppose that the adversary learns the value of a particular session key
(this is called a known session key attack).

I In this attack model, we would still want other session keys (as well as
the LL-keys) to remain secure.

Suppose that the adversary learns the LL-keys of the participants
(this is a known LL-key attack).

I This is a catastrophic attack: a new scheme must be set up.
I Can we limit the damage done? If the adversary cannot learn the

values of previous session keys, then the scheme possesses the property
of perfect forward secrecy.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 184 / 424

Key Management Introduction

Attack Models and Adversarial Goals for KPS

we assume that the TA distributes secret information securely to the
network users

the adversary may corrupt a subset of at most k users, and obtain all
their secret information, where k is a security parameter

the adversary’s goal is to determine the secret LL-key of a pair of
uncorrupted users

the Blom KPS is a KPS that is unconditionally secure against
adversaries of this type

suppose that p ≥ n is prime

LL-keys will be elements of Zp
each user must store k + 1 elements of Zp as his/her secret
information (the storage requirement is independent of n)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 185 / 424

Key Management The Blom Scheme

The Blom PKS (k = 1)

For each user U, a value rU is made public. The values rU must be
distinct elements of Zp.

Protocol: Blom’s key distribution scheme (k = 1)

1. The TA chooses three random elements a, b, c ∈ Zp (not necessarily
distinct), and forms the polynomial

f(x, y) = a+ b(x+ y) + cxy mod p.

2. For each user U, the TA computes the polynomial

gU (x) = f(x, rU) mod p = aU + bUx

and transmits (aU , bU) to U over a secure channel.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 186 / 424

Key Management The Blom Scheme

The Blom PKS (cont.)

the LL-key for U and V is

KU,V = KV ,U = f(rU , rV),

where U computes KU,V = gU (rV) and V computes KU,V = gV (rU)

we have:

aU = a+ b rU mod p and

bU = b+ c rU mod p, so

gU (rV) = a+ b rU + (b+ c rU)rV

= a+ b(rU + rV) + c rUrV

= f(rU , rV) mod p

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 187 / 424

Key Management The Blom Scheme

A Toy Example

suppose p = 17

suppose there are three users: U, V and W, and their public values
are rU = 12, rV = 7 and rW = 1

suppose the TA chooses a = 8, b = 7 and c = 2, so the polynomial f
is

f(x, y) = 8 + 7(x+ y) + 2xy

the g polynomials are as follows:

gU (x) = 7 + 14x

gV (x) = 6 + 4x

gW (x) = 15 + 9x

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 188 / 424

Key Management The Blom Scheme

A Toy Example

the three keys are

KU,V = 3

KU,W = 4

KV ,W = 10

U would compute KU,V as

gU (rV) = 7 + 14× 7 mod 17 = 3

V would compute KU,V as

gV (rU) = 6 + 4× 12 mod 17 = 3

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 189 / 424

Key Management The Blom Scheme

Unconditional Security of the Blom Scheme (k = 1)

we show that no one user, say W, can determine any information
about a key for two other users, say KU,V

what information does W possess?

W knows the values

aW = a+ b rW mod p

and
bW = b+ c rW mod p

the key that W is trying to compute is

KU,V = a+ b(rU + rV) + c rUrV mod p.

rU , rV and rW are public, but a, b and c are unknown

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 190 / 424

Key Management The Blom Scheme

Security of the Blom Scheme (cont.)

we will show that the information known by W is consistent with any
possible value K∗ ∈ Zp of the key KU,V

consider the following matrix equation (in Zp): 1 rU + rV rUrV
1 rW 0
0 1 rW

 a
b
c

 =

 K∗

aW
bW

 .

the determinant of the coefficient matrix is

rW
2 + rUrV − (rU + rV)rW = (rW − rU)(rW − rV),

where all arithmetic is done in Zp
since rW 6= rU and rW 6= rV , it follows that the coefficient matrix
has non-zero determinant, and hence the matrix equation has a
unique solution for a, b and c

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 191 / 424

Key Management The Blom Scheme

Security of the Blom Scheme (cont.)

a coalition of two users, say {W,X}, will be able to compute any key
KU,V where {W,X} ∩ {U, V } = ∅
W and X together have the following information:

aW = a+ b rW

bW = b+ c rW

aX = a+ b rX

bX = b+ c rX

where a, b and c are unknowns

W and X together have four equations in three unknowns, and they
can easily compute a unique solution for a, b and c

once they know a, b and c, they can form the polynomial f(x, y) and
compute any key they wish

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 192 / 424

Key Management The Blom Scheme

Protocol: Blom’s key distribution scheme (arbitrary k)

1. For 0 ≤ i, j ≤ k, the TA chooses random elements ai,j ∈ Zp, such that
ai,j = aj,i for all i, j. Then the TA forms the polynomial

f(x, y) =

k∑
i=0

k∑
j=0

ai,j x
iyj mod p.

2. For each user U, the TA computes the polynomial

gU (x) = f(x, rU) mod p =

k∑
i=0

aU,i x
i

and transmits the coefficient vector (aU,0, . . . , aU,k) to U over a secure
channel.

3. For any two users U and V , the key KU,V = f(rU , rV).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 193 / 424

Key Management The Blom Scheme

Security of the Blom Scheme (arbitrary k)

The Blom scheme satisfies the following security properties:

1 no set of k users, say W1, . . . ,Wk can determine any information
about a key for two other users, say KU,V

2 any set of k + 1 users, say W1, . . . ,Wk+1, can break the scheme

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 194 / 424

Key Management The Blom Scheme

Security of the Blom Scheme (cont.)

a set of users W1, . . . ,W` (collectively) know the polynomials

gWi(x) = f(x, rWi) mod p,

1 ≤ i ≤ `
we use a Lagrange interpolation formula to prove 2.

suppose p is prime; x1, x2, . . . , xm+1 ∈ Zp are distinct; and
a1, a2, . . . , am+1 ∈ Zp are not necessarily distinct

there is a unique polynomial A(x) ∈ Zp[x] having degree at most m
such that A(xi) = ai, 1 ≤ i ≤ m+ 1

the polynomial A(x) is defined as follows:

A(x) =

m+1∑
j=1

aj
∏

1≤h≤m+1,h 6=j

x− xh
xj − xh

.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 195 / 424

Key Management The Blom Scheme

Bivariate Polynomial Interpolation

the Lagrange interpolation formula has a bivariate form:

suppose p is prime; y1, y2, . . . , ym+1 ∈ Zp are distinct; and suppose
that a1(x), a2(x), . . . , am+1(x) ∈ Zp[x] are polynomials of degree at
most m

there is a unique polynomial A(x, y) ∈ Zp[x, y] having degree at most
m (in x and y) such that A(x, yi) = ai(x), 1 ≤ i ≤ m+ 1

the polynomial A(x, y) is defined as follows:

A(x, y) =

m+1∑
j=1

aj(x)
∏

1≤h≤m+1,h6=j

y − yh
yj − yh

.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 196 / 424

Key Management The Blom Scheme

Example of Bivariate Interpolation
Suppose that p = 13, m = 2, y1 = 1, y2 = 2, y3 = 3 a1(x) = 1 + x+ x2,
a2(x) = 7 + 4x2 and a3(x) = 2 + 9x.

(y − 2)(y − 3)

(1− 2)(1− 3)
= 7y2 + 4y + 3

(y − 1)(y − 3)

(2− 1)(2− 3)
= 12y2 + 4y + 10

(y − 1)(y − 2)

(3− 1)(3− 2)
= 7y2 + 5y + 1

A(x, y) = (1 + x+ x2)(7y2 + 4y + 3) + (7 + 4x2)(12y2 + 4y + 10)

+(2 + 9x)(7y2 + 5y + 1) mod 13

= y2 + 3y + 10 + 5xy2 + 10xy + 12x+ 3x2y2 + 7x2y + 4x2

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 197 / 424

Key Management The Blom Scheme

Insecurity wrt k + 1 Colluders

a set of bad users W1, . . . ,Wk+1 (collectively) know the polynomials

gWi(x) = f(x, rWi) mod p,

1 ≤ i ≤ k + 1

using the bivariate interpolation formula, they can compute f(x, y)

then they can compute any key

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 198 / 424

Key Management The Blom Scheme

Security wrt k Colluders

a set of bad users W1, . . . ,Wk (collectively) know the polynomials

gWi(x) = f(x, rWi) mod p,

1 ≤ i ≤ k
we show that this information is consistent with any possible value of
the key

let K be the real (unknown) key, and let K∗ 6= K

define a polynomial f∗(x, y) as follows:

f∗(x, y) = f(x, y) + (K∗ −K)
∏

1≤i≤k

(x− rWi)(y − rWi)

(rU − rWi)(rV − rWi)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 199 / 424

Key Management The Blom Scheme

Security wrt k Colluders (cont.)

f∗ is a symmetric polynomial (i.e., f(x, y) = f(y, x))

for 1 ≤ i ≤ k, it holds that

f∗(x, rW i) = f(x, rW i) = gW i(x)

further,
f∗(rU , rV) = f(rU , rV) +K∗ −K = K∗

For any possible value of the key, K∗, there is a symmetric
polynomial f∗ such that the key KU,V = K∗ and such that the secret
information held by the k bad users is unchanged

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 200 / 424

Key Management Diffie-Hellman Problems

Subgroups of Cyclic Groups (review)

suppose that (G, ·) is a cyclic group of order n

let α be a generator of G (i.e., ord(α) = n)

suppose that m is a divisor of n

there is a unique subgroup H of G having order m

the subgroup H is cyclic, and αn/m is a generator of H (i.e.,
ord(αn/m) = m)

H consists of all the elements of G that have order dividing m

if m is prime, then all elements of H other than the identity have
order m (and hence they are all generators of H)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 201 / 424

Key Management Diffie-Hellman Problems

The Diffie-Hellman KPS

the Diffie-Hellman KPS is a public-key based scheme to distribute
secret LL-keys

suppose α is an element having prime order q in the group Zp∗, where
p is prime, p− 1 ≡ 0 (mod q), p ≈ 21024 and q > 2160

α, p and q are public domain parameters

every user U has a private LL-key aU (where 0 ≤ aU ≤ q − 1) and a
corresponding public key

bU = αaU mod p

the users’ public keys are signed by the TA and stored on certificates,
as usual

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 202 / 424

Key Management Diffie-Hellman Problems

The Diffie-Hellman KPS (cont.)

the secret LL-key KU,V for two users U and V is defined as follows:

KU,V = αaUaV mod p

V computes
KU,V = bU

aV mod p,

using the public key bU from U’s certificate, together with his own
secret key aV

U computes
KU,V = bV

aU mod p,

using the public key bV from V’s certificate, together with her own
secret key aU

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 203 / 424

Key Management Diffie-Hellman Problems

Security of the Diffie-Hellman KPS

a coalition of bad users is of no help to the adversary in determining
the key belonging to some disjoint pair of users

the adversary’s attempt to compute a key KU,V is an instance of the
Computational Diffie-Hellman problem:

Problem

Computational Diffie-Hellman (CDH)
Instance: A multiplicative group (G, ·), an element α ∈ G having order
n, and two elements β, γ ∈ 〈α〉.
Question: Find δ ∈ 〈α〉 such that

logα δ ≡ logα β × logα γ (mod n).

(Equivalently, given β = αb and γ = αc, where b and c are unknown,
compute δ = αbc.)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 204 / 424

Key Management Diffie-Hellman Problems

Computational Diffie-Hellman ∝T Discrete
Logarithm

the Computational Diffie-Hellman problem is no harder to solve
than the Discrete Logarithm problem in the same subgroup 〈α〉
given an oracle for the DLP, it is easy to solve the CDH problem, as
follows:

given inputs α, β, γ for CDH,
1 use the oracle to compute b = logα β
2 compute δ = γb

the Computational Diffie-Hellman problem is thought to be
infeasible when G = Zp where p ≈ 21024 is prime, n is a divisor of
p− 1, and n has at least one prime divisor q with q > 2160

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 205 / 424

Key Management Diffie-Hellman Problems

Partial Information about Diffie-Hellman Keys

the adversary may be unable to compute a Diffie-Hellman key but he
could still (possibly) determine some partial information about the key

we desire semantic security of the keys, which means that an
adversary can compute no partial information about them (in
polynomial time, say)

in other words, distinguishing Diffie-Hellman keys from random
elements of the subgroup 〈α〉 should be infeasible

semantic security of Diffie-Hellman keys is equivalent to the
infeasability of the Decision Diffie-Hellman problem

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 206 / 424

Key Management Diffie-Hellman Problems

The Decision Diffie-Hellman Problem

Problem

Decision Diffie-Hellman (DDH)
Instance: A multiplicative group (G, ·), an element α ∈ G having order
n, and three elements β, γ, δ ∈ 〈α〉.
Question: Is it the case that logα δ ≡ logα β × logα γ (mod n)?
(Equivalently, given αb, αc and αd, where b, d and d are unknown,
determine if d ≡ bc (mod n).)

It is easy to see that the Decision Diffie-Hellman problem is no
harder to solve than the Computational Diffie-Hellman problem in
the same subgroup 〈α〉

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 207 / 424

Key Management Diffie-Hellman Problems

Decision Diffie-Hellman ∝T Computational
Diffie-Hellman

given an oracle for CDH, it is easy to solve the DDH problem, as
follows:

given inputs α, β, γ, δ for DDH,
1 use the oracle to to find the value δ′ such that

logα δ
′ ≡ logα β × logα γ (mod n)

2 check to see if δ′ = δ

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 208 / 424

Key Management Diffie-Hellman Problems

Security of DDH

the Decision Diffie-Hellman problem is thought to be infeasible
when G = Zp where p ≈ 21024 is prime, n is a divisor of p− 1, and n
has no prime divisor q with q < 2160

this is a stronger condition than the one that is conjectured for the
security of the Computational Diffie-Hellman problem

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 209 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Wireless Sensor Networks

sensor nodes have limited computation and communication
capabilities

a wireless sensor network (or WSN) of 1000 – 10000 sensor nodes
is distributed in a random way in a possibly hostile physical
environment

the sensor nodes operate unattended for extended periods of time

the sensor nodes have no external power supply, so they should
consume as little battery power as possible

usually, the sensor nodes communicate using secret key cryptography

a set of secret keys is installed in each node, before the sensor nodes
are deployed, using a suitable key predistribution scheme (or KPS)

nodes may be stolen by an adversary (this is called node
compromise)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 210 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Two Trivial Schemes

1 If every node is given the same secret master key, then memory costs
are low. However, this situation is unsuitable because the compromise
of a single node would render the network completely insecure.

2 For every pair of nodes, there could be a secret pairwise key given
only to these two nodes. This scheme would have optimal resilience
to node compromise, but memory costs would be prohibitively
expensive for large networks because every node would have to store
n− 1 keys, where n is the number of nodes in the WSN.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 211 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Eschenauer-Gligor and Related Schemes

In 2002, Eschenauer and Gligor proposed a probabilistic approach to
key predistribution for sensor networks. For a suitable value of k,
every node is assigned a random k-subset of keys chosen from a given
pool of secret keys.

In 2003, Chan, Perrig and Song suggested that two nodes should
compute a pairwise key only if they share at least η common keys,
where the integer η ≥ 1 is a pre-specified intersection threshold.
Such a pair of nodes is termed a link.

Suppose that Ui and Uj have exactly ` ≥ η common keys, say
keya1 , . . . , keya` , where a1 < a2 < · · · < a`. Then they can each
compute the same pairwise secret key,

Ki,j = h(keya1 ‖ . . . ‖ keya` ‖ i ‖ j),

using a key derivation function h that is constructed from a secure
public hash function, e.g., SHA-1 .

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 212 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Attack Model

The most studied adversarial model in WSNs is random node
compromise.

An adversary compromises a fixed number of randomly chosen
nodes in the network and extracts the keys stored in them.

Any links involving the compromised nodes are broken.

However, this can also cause other links to be broken that do not
directly involve the compromised nodes.

A link formed by two nodes A1, A2, where |A1 ∩A2| ≥ η, will be
broken if a node B 6∈ {A1, A2} is compromised, provided that
A1 ∩A2 ⊆ B.

If s nodes, say B1, . . . , Bs, are compromised, then a link A1, A2 will
be broken whenever

A1 ∩A2 ⊆
s⋃
i=1

Bi.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 213 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Important Metrics

Storage requirements

The number of keys stored in each node, which is denoted by
k, should be “small” (e.g., at most 100).

Network connectivity

The probability that a randomly chosen pair of nodes can
compute a common key is denoted by Pr1. Pr1 should be
“large” (e.g., at least 0.5).

Network resilience

The probability that a random link is broken by the
compromise of s randomly chosen nodes not in the link is
denoted by fail(s). We want fail(s) to be small: high
resilience corresponds to a small value for fail(s). For
simplicity, we just consider fail(1) here.

Remark: As η is increased, Pr1 and fail(1) both decrease.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 214 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Deterministic Schemes

In 2004, deterministic KPS were proposed independently by
Camtepe and Yener; by Lee and Stinson; and by Wei and Wu.

A suitable set system is chosen, and each block is assigned to a node
in the WSN (the design and the correspondence of nodes to blocks is
public).

The points in the block are the indices of the keys given to the
corresponding node.

Probabilistic schemes are analyzed using random graph theory, and
desirable properties hold with high probability.

Deterministic schemes can be proven to have desirable properties,
and they have more efficient algorithms for shared-key discovery
than probabilistic schemes.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 215 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Combinatorial Set Systems (aka Designs)

A set system is a pair (X,A), where the elements of X are called
points and A is a set of subsets of X, called blocks.

We pair up the blocks of the set system with the nodes in the WSN.

The points in the block are the key identifiers of the keys given to
the corresponding node.

The degree of a point x ∈ X is the number of blocks containing x

(X,A) is regular (of degree r) if all points have the same degree, r;
then each key occurs in r nodes in the WSN.

If all blocks have size k, then (X,A) is said to be uniform (of rank
k); then each node is assigned k keys.

A (v, b, r, k)-configuration is a set system (X,A) where |X| = v and
|A| = b, that is uniform of rank k and regular of degree r, such that
every pair of points occurs in at most one block.

In a configuration, it holds that vr = bk.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 216 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Toy Example

We list the blocks in a (7, 7, 3, 3)-configuration (a projective plane of order
2) and the keys in a corresponding KPS:

node block key assignment

N1 {1, 2, 4} k1, k2, k4

N2 {2, 3, 5} k2, k3, k5

N3 {3, 4, 6} k3, k4, k6

N4 {4, 5, 7} k4, k5, k7

N5 {1, 5, 6} k1, k5, k6

N6 {2, 6, 7} k2, k6, k7

N7 {1, 3, 7} k1, k3, k7

The actual values of keys are secret, but the lists of key identifiers (i.e.,
the blocks) are public.
In this example, Pr1 = 1 and fail(1) = 1/5.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 217 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Properties of Configuration-based KPS
For a configuration-based KPS, we take η = 1.
Every block intersects k(r − 1) blocks in one point and is disjoint
from all the other blocks.
Therefore

Pr1 =
k(r − 1)

b− 1
.

A link L is defined by two blocks that intersect in one point, say x.
There are r − 2 other blocks that contain x; the corresponding nodes
will compromise the link L.
Therefore,

fail(1) =
r − 2

b− 2
.

There is a tradeoff between Pr1 and fail(1), which is quantified by
computing the ratio ρ = Pr1/fail(1):

ρ =
k(b− 2)(r − 1)

(b− 1)(r − 2)
≈ k.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 218 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Transversal Designs

Lee and Stinson (2005) proposed using transversal designs to
construct KPS.

Let n, k and t be positive integers

A transversal design TD(t, k, n) is a triple (X,H,A), where X is a
finite set of cardinality kn, H is a partition of X into k parts (called
groups) of size n, and A is a set of k-subsets of X (called blocks),
which satisfy the following properties:

1 |H ∩A| = 1 for every H ∈ H and every A ∈ A, and
2 every t elements of X from different groups occurs in exactly one block

in A.

Bose-Bush bound: When t = 2, 3, a TD(t, k, n) exists only if
k ≤ n+ t− 1.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 219 / 424

Key Management Key Predistribution in Wireless Sensor Networks

An Easy Construction for Transversal Designs

Suppose that p is prime and t ≤ k ≤ p.

Define
X = {0, . . . , k − 1} × Zp.

For every ordered t-subset c = (c0, . . . , ct−1) ∈ (Zp)t, define a block

Ac =

{(
x,

t−1∑
i=0

cix
i

)
: 0 ≤ x ≤ k − 1

}
.

Let
A = {Ac : c ∈ (Zp)t}.

Then (X,A) is a TD(t, k, p).

The construction can be adapted to any finite field Fq, where q is a
prime power.

These transversal designs are equivalent to Reed-Solomon codes.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 220 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Example

Suppose we take p = 5 and k = 4; then we construct a TD(2, 4, 5):

A0,0={00,10,20,30} A0,1={01,11,21,31} A0,2={02,12,22,32}
A0,3={03,13,23,33} A0,4={04,14,24,34} A1,0={00,11,22,33}
A1,1={01,12,23,34} A1,2={02,13,24,30} A1,3={03,14,20,31}
A1,4={04,14,24,34} A2,0={00,12,24,31} A2,1={01,13,20,32}
A2,2={02,14,21,33} A2,3={03,10,22,34} A2,4={04,11,23,30}
A3,0={00,13,21,34} A3,1={01,14,22,30} A3,2={02,10,23,31}
A3,3={03,11,24,32} A3,4={04,12,20,33} A4,0={00,14,23,32}
A4,1={01,10,24,33} A4,2={02,11,20,34} A4,3={03,12,21,30}
A4,4={04,13,22,31}

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 221 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Properties of KPS from TDs with t = 2

A TD(2, k, n) is an (nk, n2, n, k)-configuration.

Therefore

Pr1 =
k(n− 1)

n2 − 1
=

k

n+ 1
and fail(1) =

n− 2

n2 − 2
.

Since the set system is a configuration, we have ρ ≈ k.

Benefit:

We can make Pr1 arbitrarily close to 1.

Drawback:

The network size is n2, which may not be large enough for
“reasonable” values of n.

Drawback:

The ratio ρ ≈ k is a bit small for many applications (this
applies to any configuration-based KPS).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 222 / 424

Key Management Key Predistribution in Wireless Sensor Networks

Properties of KPS from TDs with t = 3, η = 2

We can base a KPS on a TD(3, k, n) with η = 1 or 2.

When η = 2, we have

Pr1 =
k(k − 1)

2(n2 + n+ 1)
and fail(1) =

n− 2

n3 − 2
.

Drawback:

The maximum value of Pr1 is about 1/2.

Benefit:

The network size is n3, which is quite large, even for
“reasonable” values of n.

Benefit:

The ratio ρ ≈ k2/2 is now considerably larger.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 223 / 424

Key Management Session Key Distribution

Session Key Distribution

The TA shares secret keys with network users.

The TA chooses session keys and distributes them in encrypted form
upon request of network users.

We will need to define appropriate attack models and adversarial
goals.

It is difficult to formulate precise definitions because SKDS often do
not include mutual identification of Alice and Bob.

In this section, we mainly give a historical tour of some SKDS.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 224 / 424

Key Management Session Key Distribution

Protocol: Needham-Schroeder SKDS (1978)

1. Alice chooses a random number, rA. Alice sends ID(Alice), ID(Bob)
and rA to the TA.

2. The TA chooses a random session key, K. Then it computes
tBob = eKBob

(K ‖ ID(Alice)) (a ticket to Bob) and
y1 = eKAlice

(rA ‖ ID(Bob) ‖ K ‖ tBob) and sends y1 to Alice.

3. Alice decrypts y1 using her key KAlice , obtaining K and tBob . Then
Alice sends tBob to Bob.

4. Bob decrypts tBob using his key KBob , obtaining K. Then, Bob
chooses a random number rB and computes y2 = eK(rB). Bob sends
y2 to Alice.

5. Alice decrypts y2 using the session key K, obtaining rB. Then Alice
computes y3 = eK(rB − 1) and sends y3 to Bob.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 225 / 424

Key Management Session Key Distribution

Validity Checks in the NS Protocol

in this protocol, the term validity checks refers to checking that
decrypted data has correct format and contains expected information
(note that there are no MACs being used in the
Needham-Schroeder SKDS)

when Alice decrypts y1, she checks to see that the plaintext
dKAlice

(y1) = rA ‖ ID(Bob) ‖ K ‖ tBob for some K and tBob

if the above condition holds, then Alice “accepts”, otherwise
Alice“rejects”

when Bob decrypts y3, he checks to see that the plaintext
dK(y3) = rB − 1

if the above condition holds, then Bob “accepts”, otherwise Bob
“rejects”

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 226 / 424

Key Management Session Key Distribution

The Needham-Schroeder SKDS (diagram)

TA Alice Bob

Alice,Bob, rA←−−−−−−−−−−−−−−−−
tBob = eKBob

(K ‖ Alice)

eKAlice
(rA ‖ Bob ‖ K ‖ tBob)

−−−−−−−−−−−−−−−−−−−−−→

tBob−−−−−−−−→

eK(rB)
←−−−−−−−−

eK(rB − 1)
−−−−−−−−→

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 227 / 424

Key Management Session Key Distribution

Denning-Sacco Known Session-key Attack (1981)

suppose Oscar records a session of the Needham-Schroeder SKDS
between Alice and Bob, and then he somehow obtains the session key,
K

Oscar can then initiate a new session of the
Needham-Schroeder SKDS by sending the previously used ticket,
tBob , to Bob:

Oscar Bob

tBob = eKBob
(K ‖ Alice)

−−−−−−−−−−−−−−−−−−−−−→

eK(r′B)
←−−−−−−−−−−−−−−−−−−−−−

eK(r′B − 1)
−−−−−−−−−−−−−−−−−−−−−→

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 228 / 424

Key Management Session Key Distribution

Consequences of the Denning-Sacco Attack

Bob thinks he has a “new” session key, K, shared with Alice

this “new” key K is known to Oscar, but it might not be known to
Alice (she may have thrown away the key K after the previous session
terminated)

in any reasonable formulation of adversarial goals, this would be
considered a successful attack!

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 229 / 424

Key Management Session Key Distribution

Protocol: Simplified Kerberos V5 (1989)

1. Alice chooses a random number, rA. Alice sends ID(Alice), ID(Bob)
and rA to the TA.

2. The TA chooses a random session key K and a validity period (or
lifetime), L. Then it computes tBob = eKBob

(K ‖ ID(Alice) ‖ L) and
y1 = eKAlice

(rA ‖ ID(Bob) ‖ K ‖ L) and sends tBob and y1 to Alice.

3. Alice decrypts y1 using her key KAlice , obtaining K. Then Alice
determines the current time, timeA, she computes
y2 = eK(ID(Alice) ‖ timeA) and she sends tBob and y2 to Bob.

4. Bob decrypts tBob using his key KBob , obtaining K. Then, Bob
computes y3 = eK(timeA). Bob sends y3 to Alice.

5. Alice decrypts y3 using the session key K, and verifies that timeA is
the result.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 230 / 424

Key Management Session Key Distribution

Validity Checks in Kerberos

when Alice decrypts y1, she checks to see that the plaintext
dKAlice

(y1) = rA ‖ ID(Bob) ‖ K ‖ L for some K and L

if the above condition does not hold, then Alice “rejects” and aborts
the current session

when Bob decrypts y2 and tBob , he checks to see that the plaintext
dK(y3) = ID(Alice) ‖ timeA and the plaintext
dKBob

(tBob) = K ‖ ID(Alice) ‖ L, where ID(Alice) is the same in
both plaintexts and timeA ∈ L

if the above conditions hold, then Bob “accepts”, otherwise Bob
“rejects”

when Alice decrypts y3, she checks that dK(y3) = timeA

if the above condition holds, then Alice “accepts”, otherwise Alice
“rejects”

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 231 / 424

Key Management Session Key Distribution

Kerberos V5 (diagram)

TA Alice Bob

Alice,Bob, rA←−−−−−−−−−−−−

tBob , y1−−−−−−−−−−−−→

tBob , y2−−−−−−−−−−−−→

eK(timeA)
←−−−−−−−−−−−−

where

tBob = eKBob
(K ‖ Alice ‖ L),

y1 = eKAlice
(rA ‖ Bob ‖ K ‖ L), and

y2 = eK(Alice ‖ timeA)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 232 / 424

Key Management Session Key Distribution

Comments on Needham-Schroeder and Kerberos

Steps 1–3 of Needham-Schroeder comprise key distribution; steps 4
and 5 provide key confirmation from Alice to Bob. In Kerberos,
mutual key confirmation is accomplished in steps 3 and 4.

In Needham-Schroeder , information intended for Bob is doubly
encrypted, which adds unnecessary complexity to the protocol; this
double encryption was removed in Kerberos.

Partial protection against the Denning-Sacco replay attack is provided
in Kerberos by the authenticated timestamp, y2. However:

I timestamps require reliable, synchronized clocks; and
I protocols using timestamps are hard to analyze and it is difficult to give

convincing security proofs for them.

For the above reasons, random challenges may be preferred to
timestamps.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 233 / 424

Key Management Session Key Distribution

Comments on Needham-Schroeder and Kerberos
(cont.)

It is not a good idea to use the session key, K, to encrypt information
in an SKDS, because information about K may be revealed; this
makes it difficult to ensure semantic security of the session key.

Key confirmation is not required for an SKDS protocol to be
considered secure! Furthermore, possession of a key during the SKDS
does not imply possession of the key at a later time. For these
reasons, it is now generally recommended that key confirmation be
omitted from SKDS.

In Needham-Schroeder and Kerberos, encryption is used to provide
both secrecy and authenticity — it is much better to use a MAC to
provide authenticity.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 234 / 424

Key Management Session Key Distribution

Improving the Second Flow of Needham-Schroeder
It is better to remove the double encryption and use MACs for
authentication:

2. The TA chooses a random session key K. Then it computes
tBob = eKBob

(K ‖ ID(Alice)) and
y1 = eKAlice

(rA ‖ ID(Bob) ‖ K ‖ tBob) and sends y1 to Alice.

. . . should be replaced by the following:

2′. The TA chooses a random session key K. Then it computes

y1 = (eKBob
(K),MACBob(ID(Alice) ‖ eKBob

(K)),

and

y′1 = (eKAlice
(K),MACAlice(ID(Bob) ‖ rA ‖ eKAlice

(K))

The TA sends y1 to Bob (possibly via Alice) and y′1 to Alice.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 235 / 424

Key Management Session Key Distribution

Further Discussion

the revised second flow does not fix the flaw in Needham-Schroeder
found by Denning and Sacco (also note that a similar attack can be
carried out in Kerberos within the specified lifetime of the key)

to prevent the Denning-Sacco attack, the flow structure of the
protocol must be modified: a “secure” protocol should involve Bob as
an active participant prior to his receiving the session key, in order to
prevent these kinds of replay attacks

the solution is to have Alice contact Bob (or vice versa) before
sending a request to the TA

we present a more recent, secure protocol due to Bellare and Rogaway

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 236 / 424

Key Management Session Key Distribution

Protocol: Bellare-Rogaway SKDS (1995)

1. Alice chooses a random number, rA, and she sends ID(Alice) and rA
to Bob.

2. Bob chooses a random number, rB, and he sends ID(Alice), ID(Bob),
rA and rB to the TA.

3. The TA chooses a random session key K. Then it computes

yB = (eKBob
(K),MACBob(ID(Alice) ‖ ID(Bob) ‖ rB ‖ eKBob

(K))

and

yA = (eKAlice
(K),MACAlice(ID(Bob) ‖ ID(Alice) ‖ rA ‖ eKAlice

(K))

The TA sends yB to Bob and yA to Alice.

4. Alice decrypts yA using her key KAlice, obtaining K. Bob decrypts yB
using his key KBob, obtaining K.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 237 / 424

Key Management Session Key Distribution

Comments on the Bellare-Rogaway Protocol

(honest) Alice and Bob “accept” if the MACs they receive are valid,
and the random challenges (rA and rB, respectively) in the MACs are
the same as the ones that they chose in steps 1 and 2 of the protocol

the TA is authenticated to Alice and Bob by the use of MACs in step
3

the protocol does not include authentication of Alice to Bob, or of
Bob to Alice, or of Alice or Bob to the TA

the protocol also does not provide key confirmation (from Alice to
Bob, or from Bob to Alice)

however, the protocol is a secure (unauthenticated) key
distribution protocol, which means that it satisfies certain security
properties in a known session key attack, which will be discussed later
. . .

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 238 / 424

Key Management Session Key Distribution

Bellare-Rogaway SKDS (diagram)

TA Bob Alice

Alice, rA←−−−−−−−−−−−−−−−

Alice,Bob, rA, rB←−−−−−−−−−−−−−−−

yA, yB−−−−−−−−−−−−−−−→

yA−−−−−−−−−−−−−−−→

where

yB = (eKBob
(K),MACBob(ID(Alice) ‖ ID(Bob) ‖ rB ‖ eKBob

(K))

yA = (eKAlice
(K),MACAlice(ID(Bob) ‖ ID(Alice) ‖ rA ‖ eKAlice

(K))

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 239 / 424

Key Management Session Key Distribution

Security Properties of the Bellare-Rogaway Protocol

1 If Alice, Bob and the TA are honest and the adversary is passive, then
Alice and Bob compute the same session key, K, and the adversary
cannot compute any information about K.

2 If an (active) adversary changes messages originating from (or being
sent to) an honest participant, then that participant will “reject” with
high probability.

3 If Alice and the TA are honest, and an (active) adversary impersonates
Bob, then then the adversary cannot compute the session key.

4 If Bob and the TA are honest, and an (active) adversary impersonates
Alice, then then the adversary cannot compute the session key.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 240 / 424

Key Management Session Key Distribution

Analysis and Discussion

properties (1), (3) and (4) are guaranteed by using a secure
encryption scheme

proving property (2) requires analyzing the probability that the
adversary can guess a correct new MAC or reuse a MAC from a
previous session (similar to the analysis of the identification protocols
considered earlier)

the scheme is not secure against a known LL-key attack

the Bellare-Rogaway protocol does “less” than Needham-Schroeder or
Kerberos, but its simplicity means that it can be analyzed rigourously

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 241 / 424

Key Management Session Key Distribution

Consequences of the Security Properties

if (honest) Alice accepts, then she has received a session key, K, and
she can be confident that Bob and the TA are the only parties that
can determine K

the adversary’s goal is to cause an (honest) participant to accept in a
situation where someone other than the (honest) intended partner of
that participant knows the value of the session key K

we argue that the adversary cannot achieve his goal, as follows:
I if (honest) Alice accepts, then the adversary did not tamper with

messages sent to or from Alice
I hence, yA was constructed by the TA, and K is encrypted only with

the keys KAlice and KBob

I therefore, the adversary will not learn the value of K if Bob and the TA
are honest

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 242 / 424

Key Management Diffie-Hellman Key Agreement

Protocol: Diffie-Hellman key agreement

1. U chooses aU at random, where 0 ≤ aU ≤ q − 1. Then U computes

bU = αaU mod p

and sends bU to V.

2. V chooses aV at random, where 0 ≤ aV ≤ q − 1. Then V computes

bV = αaV mod p

and sends bV to U.

3. U computes
K = (bV)aU mod p

and V computes
K = (bU)aV mod p.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 243 / 424

Key Management Diffie-Hellman Key Agreement

Security wrt Passive and Active Attacks

the key K = CDH(α, bU , bV)

assuming that DDH is intractible, a passive adversary cannot
compute any information about K

the scheme is insecure against active attacks, however

Diffie-Hellman Key Agreement is supposed to look like this:

U V

αaU−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

αaV←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 244 / 424

Key Management Diffie-Hellman Key Agreement

Intruder-in-the-middle Attack

In an intruder-in-the-middle attack, W will intercept messages between U
and V and substitute his own messages:

U W V

αaU−−−−−−−−−−−−−−→ αa
′
U−−−−−−−−−−−−−−→

αa
′
V←−−−−−−−−−−−−−− αaV←−−−−−−−−−−−−−−

At the end of the protocol, U has actually established the secret key
αaUa

′
V with W, and V has established a secret key αa

′
UaV with W.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 245 / 424

Key Management The Station-to-station Protocol

Secure Authenticated Key Agreement Protocols

Here is a design strategy to obtain a secure authenticated key agreement
protocol:

1 start with a secure mutual identification protocol

2 replace the random challenges of U and V, say rU and rV
respectively, by bU and bV respectively, where bU = αaU mod p and
bV = αaV mod p

3 then both U and V can compute the session key
K = CDH(α, bU , bV), but the adversary cannot do so

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 246 / 424

Key Management The Station-to-station Protocol

Protocol: Public-key Mutual Identification Protocol

1. U chooses a random challenge rU and sends it to V.

2. V chooses a random challenge rV . Then he computes

yV = sigV (ID(U) ‖ rV ‖ rU).

and sends (Cert(V), rV , yV) to U.

3. U verifies yV using verV (and she verifies Cert(V) using verTA). If
the signature yV is not valid, then she outputs “reject” and quits.
Otherwise, she outputs “accept”, computes

yU = sigU (ID(V) ‖ rU ‖ rV),

and sends (Cert(U), yU) to V.

4. V verifies yU using verU (and he verifies Cert(U) using verTA). If the
signature yU is not valid, then U outputs “reject”; otherwise, he
outputs “accept”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 247 / 424

Key Management The Station-to-station Protocol

We now transform the previous protocol into a key agreement scheme.
This is basically a simplified version of the Station-to-station (or STS)
protocol.

Protocol: (Simplified) station-to-station protocol

1. U chooses a random number aU , 0 ≤ aU ≤ q − 1. Then she computes

bU = αaU mod p

and sends it to V.

2. V chooses a random number aV , 0 ≤ aV ≤ q − 1. Then he computes

bV = αaV mod p

K = (bU)aV mod p, and

yV = sigV (ID(U) ‖ αaV ‖ αaU).

Then V sends (Cert(V), bV , yV) to U.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 248 / 424

Key Management The Station-to-station Protocol

Protocol: (Simplified) station-to-station protocol (cont.)

3. U verifies yV using verV (and she verifies Cert(V) using verTA). If
the signature yV is not valid, then she outputs “reject” and quits.
Otherwise, she outputs “accept”, computes

K = (bV)aU mod p, and

yU = sigU (ID(V) ‖ αaU ‖ αaV),

and sends (Cert(U), yU) to V.

4. V verifies yU using verU (and he verifies Cert(U) using verTA). If the
signature yU is not valid, then U outputs “reject”; otherwise, he
outputs “accept”.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 249 / 424

Key Management The Station-to-station Protocol

Station-to-Station Protocol

U V

bU = αaU
bU−−−−−−−−→

bV , yV←−−−−−−−− bV = αaV

yV = sigV (U ‖ bV ‖ bU)

yU = sigU (V ‖ bU ‖ bV)
yU−−−−−−−−→

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 250 / 424

Key Management The Station-to-station Protocol

Security Properties of STS

STS is secure against known session key attacks and provides perfect
forward secrecy

STS is a secure mutual identification scheme (i.e., if the adversary is
active during a given flow of the protocol, then no honest participant
will “accept” after that time)

in addition, the scheme is a secure KAS wrt a passive adversary (i.e.,
U and V can both compute the same session key, K, and the
adversary cannot compute any information about K)

if U “accepts”, it means that she is confident that
I she has been communicating with V
I U and V can compute the same session key, and
I no one other than V can compute any information about the session

key

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 251 / 424

Key Management The Station-to-station Protocol

Key Authentication and Key Confirmation

Suppose U and V are honest, and they execute an SKDS or KAS. At the
end of the session, U and V should each be able to compute the same
session key, K, whose value should be unknown to the adversary. Suppose
that U “accepts”. The following properties discuss various types of
assurance that may be provided to U:

implicit key authentication

U is assured that no one other than V can compute K

implicit key confirmation

U is assured that V has the necessary information in order
to be able to compute K, and no one other than V can
compute K

explicit key confirmation

U is assured that V actually has computed K, and no one
other than V can compute K

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 252 / 424

Key Management The Station-to-station Protocol

Key Authentication/Confirmation in Specific
Protocols

the Needham-Schroeder and Kerberos SKDS provide explicit key
confirmation

the Station-to-Station KAS provides implicit key confirmation

the Bellare-Rogaway SKDS provides implicit key authentication

it is now generally accepted that explicit key confirmation is not an
important requirement of an SKDS or KAS

if desired, a protocol to ensure explicit key confirmation can be
carried out at some later time, e.g., when the session key is going to
be used for its intended purpose

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 253 / 424

Key Management The Station-to-station Protocol

Identification and Key Authentication/Confirmation

implicit or explicit key confirmation is not possible without
simultaneous mutual identification (entity authentication)

implicit key authentication is possible without identification

of course, mutual identification can be done in the absence of any key
distribution or key agreement

a KAS (or SKDS) with key confirmation is “secure” if it is a secure
mutual identification scheme, and the specified type of key
confirmation is acheived

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 254 / 424

Key Management MTI Protocols

Matsumoto-Takashima-Imai Protocols

the MTI protocols are public-key key agreement schemes that use
LL-keys (authenticated via certificates)

the algebraic setting is the same as for Diffie-Hellman key agreement
schemes, i.e., we work in a subgroup of Zp∗ of prime order q, in which
the DDH problem is believed to be intractable

the protocols are two-pass key agreement protocols without
identification, in which signatures are not used

every user U has a private LL-key aU and a corresponding public key

bU = αaU mod p

the users’ public keys are signed by the TA and stored on certificates,
as usual

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 255 / 424

Key Management MTI Protocols

Protocol: MTI/A0 key agreement

1. U chooses rU at random, where 0 ≤ rU ≤ q − 1. Then U computes

sU = αrU mod p

and sends Cert(U) and sU to V.

2. V chooses rV at random, where 0 ≤ rV ≤ q − 1. Then V computes

sV = αrV mod p

and sends Cert(V) and sV to U.

3. U computes
K = (bV)rU (sV)aU mod p

and V computes
K = (bU)rV (sU)aV mod p.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 256 / 424

Key Management MTI Protocols

Analysis of MTI/A0

the session key is
K = αrUaV +rV aU mod p

the MTI/A0 protocol attempts to provide implicit key authentication
without identification (similar to the Bellare-Rogaway SKDS)

the protocol is secure against passive attacks (assuming the DDH
problem is intractable)

the protocol is apparently secure against intruder-in-the-middle
attacks

however, the MTI/A0 protocol is vulnerable to a certain kind of
parallel session known session key attack, as well as the more
innovative Burmester triangle attack

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 257 / 424

Key Management MTI Protocols

A Parallel Session Attack

W pretends to be V in a session S1 with U; and W pretends to be U
in a session S2 with V:

V

(1) Cert(V), sV−−−−−−−−−−−−−−−→

(3) Cert(U), sU←−−−−−−−−−−−−−−−

W

(2) Cert(U), sU←−−−−−−−−−−−−−−−

(4) Cert(V), sV−−−−−−−−−−−−−−−→

U

S2 S1

then W requests the key K for session S2, which is allowed in a
known session key attack

K is also the key for session S1

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 258 / 424

Key Management MTI Protocols

The Triangle Attack

V W U

Cert(U), sU←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Cert(V), sV−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cert(W), sU←−−−−−−−−−−−−−−

Cert(V), s′V−−−−−−−−−−−−−−→

Cert(W), sV−−−−−−−−−−−−−−→

Cert(U), s′U←−−−−−−−−−−−−−−

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 259 / 424

Key Management MTI Protocols

Analysis of the Triangle Attack

the session keys for the three sessions are as follows:

K1 = αrUaV +rV aU

K2 = αrUaV +r′V aW

K3 = αr
′
UaW +rV aU

therefore

K1 =
K2K3

(s′V s
′
U)aW

suppose that W requests K2 and K3 (in a known session key attack)

then W can compute K1

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 260 / 424

Key Management MTI Protocols

A Secure (?) Variation

the parallel session attack can be carried out because the key is a
symmetric function of the inputs provided by the two parties (i.e.,
K((rU , aU), (rV , aV)) = K((rV , aV), (rU , aU)))

to eliminate the attack, we should destroy this symmetry property

the triangle attack can be eliminated through the use of a key
derivation function, which is a “random” public function used to
derive the session key from the values αrUaV and αrV aU

suppose that the key derivation function is defined as

K = hRO(αrUaV ‖ αrV aU),

where hRO is a truly random function (i.e., a random oracle)

the resulting scheme is conjectured to be secure by Blake-Wilson,
Johnson and Menezes

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 261 / 424

Key Management MTI Protocols

Further Settings For Two-Party Key Establishment
Protocols

we have considered two-party key agreement schemes in the
public-key setting

it is also possible to study key transport schemes, where one party
chooses the session key and “transports” it to the other party (i.e., by
encrypting it)

KAS and KTS can also be studied in the secret-key setting, where
signature schemes are replaced by MACs and public-key encryption is
replaced by secret-key encryption

in the public-key setting, identity-based schemes have also been
devised, in which public keys are derived from users’ identities; this
eliminates the need for certificates to authenticate public keys

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 262 / 424

Multicast Security

Table of Contents

7 Multicast Security
Introduction
Secret Sharing
Key Distribution Patterns
Applications of Cover-free Families
Broadcast Encryption
Ramp Schemes
Re-keying and Revocation
Logical Key Hierarchy
Copyright Protection

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 263 / 424

Multicast Security Introduction

Multicast Security

a multicast message is a message that has many designated
receivers, i.e., one-to-many communication as opposed to one-to-one
communication

a multicast network is a network of users in which it is possible to
send messages simultanously to all of the users

two “benchmark scenarios” for multicast security:

single source broadcast

a single entity broadcasts information to a long-lived,
possibly dynamic, group (consisting of some or all of
the users in the network)

virtual conference

a subset of the network users wish to form a small
virtual conference, i.e., a short-lived, static, group

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 264 / 424

Multicast Security Introduction

Possible Goals

in a single source broadcast, we might want to achieve one or more of
the following goals:

I confidentiality, data integrity
I key revocation, key updating
I source authentication
I copyright protection

in a virtual conference, we might want to achieve one or more of the
following goals:

I establishment of a group session key (which enables confidentiality and
data integrity within the group)

I source or group authentication
I anonymity
I shared access control

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 265 / 424

Multicast Security Introduction

Cryptographic Tools

New cryptographic tools are required to enable multicast security:

secret sharing schemes

distributing shares of a “secret” in such a way that a
specified threshold of shares is required to reconstruct the
secret; used as a building block in more complicated
protocols

group key predistribution schemes

KPS in whick keys are associated with groups of users of a
certain size; secure against coalitions of a certain size

broadcast encryption/exclusion

broadcasting an encrypted message in such a way that only
users in a specified group can decrypt the message; secure
against coalitions of a certain size; used for group session key
distribution and key updating

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 266 / 424

Multicast Security Introduction

Cryptographic Tools (cont.)

tracing schemes

also called fingerprinting schemes; they comprise techniques
and algorithms to facilitate tracing of illegally redistributed
keys and/or content back to the owners

interactive group KAS

KAS in which a session key is established for a specified
group of users

multireceiver authentication codes

a MAC in which all the users in a specified group can
validate the authenticity and/or the source of data
transmitted by one of the group members

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 267 / 424

Multicast Security Secret Sharing

Secret Sharing (overview)

various types of shared control schemes depend on a cryptographic
primitive called a (t, n)-threshold scheme

let t and n be positive integers, t ≤ n
we have a trusted authority, denoted TA, and n users, denoted
U1, . . . , Un

the TA has a secret value K ∈ K, called a secret or a key, where K
is a specified finite set

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 268 / 424

Multicast Security Secret Sharing

Secret Sharing (overview)

the TA uses a share generation algorithm to split K into n shares,
denoted s1, . . . , sn

each share si ∈ S, where S is a specified finite set

for every i, 1 ≤ i ≤ n, the share si is transmitted by the TA to user
Ui using a secure channel

the following two properties should hold:
1 a reconstruction algorithm can be used to reconstruct the secret,

given any t of the n shares,
2 no t− 1 shares reveal any information as to the value of the secret

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 269 / 424

Multicast Security Secret Sharing

An (n, n)-Threshold Scheme

suppose K ∈ Zm is the secret

let s1, . . . , sn−1 be chosen independently and uniformly at random
from Zm
let

sn = K −
n−1∑
i=1

si mod m

s1, . . . , sn are shares of an (n, n)-threshold scheme:
1 K =

∑
si mod m

2 given all the shares except sj , K could take on any value, depending
on the value of the share sj

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 270 / 424

Multicast Security Secret Sharing

Shamir Threshold Scheme

in 1979, Shamir showed how to construct a (t, n)-threshold scheme
based on polynomial interpolation over Zp, where p is prime

let p ≥ n+ 1 be a prime

let K = S = Zp
in an initialization phase, x1, x2, . . . , xn are defined to be n distinct
non-zero elements of Zp
the TA gives xi to Ui, for all i, 1 ≤ i ≤ n
the xi’s are public information

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 271 / 424

Multicast Security Secret Sharing

Share Generation for the Shamir Scheme

given a secret K ∈ Zp, the share generation algorithm is as follows:
1 the TA chooses a1, . . . , at−1 independently and uniformly at random

from Zp
2 the TA defines

a(x) = K +

t−1∑
j=1

aj x
j

(note that a(x) ∈ Zp[x] is a random polynomial of degree at most
t− 1, such that the constant term is the secret, K)

3 for 1 ≤ i ≤ n, the TA constructs the share si = a(xi)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 272 / 424

Multicast Security Secret Sharing

Reconstruction Algorithm for the Shamir Scheme

suppose users Ui1 , . . . , Uit want to determine K

they know that sij = a(xij), 1 ≤ j ≤ t
since a(x) is a polynomial of degree at most t− 1, they can
determine a(x) by Lagrange interpolation; then K = a(0)

recall the Lagrange interpolation formula:

a(x) =

t∑
j=1

sij
∏

1≤k≤t,k 6=j

x− xik
xij − xik

set x = 0:

K =

t∑
j=1

sij
∏

1≤k≤t,k 6=j

−xik
xij − xik

=

t∑
j=1

sij
∏

1≤k≤t,k 6=j

xik
xik − xij

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 273 / 424

Multicast Security Secret Sharing

Reconstruction Algorithm for the Shamir Scheme
(cont.)

for 1 ≤ j ≤ t, define

bj =
∏

1≤k≤t,k 6=j

xik
xik − xij

the bj ’s do not depend on the shares, so they can be precomputed
(for a given subset of t users)

then K can be computed from the formula

K =

t∑
j=1

bj sij

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 274 / 424

Multicast Security Secret Sharing

Example

suppose that p = 17, t = 3, and n = 5; and the public x-co-ordinates
are xi = i, 1 ≤ i ≤ 5

suppose that the group G = {U1, U3, U5} wishes to compute K,
given their shares 8, 10, and 11, respectively

it is possible to (pre)compute b1, b2, and b3:

b1 =
x3x5

(x3 − x1)(x5 − x1)
mod 17

= 3× 5× (−2)−1 × (−4)−1 mod 17

= 4,

b2 = 3, and

b3 = 11

then the users in G can (collectively) compute K as follows:

K = 4× 8 + 3× 10 + 11× 11 mod 17 = 13

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 275 / 424

Multicast Security Secret Sharing

Security of the Shamir Scheme

suppose users Ui1 , . . . , Uit−1 want to determine K

they know that sij = a(xij), 1 ≤ j ≤ t− 1

let K0 be arbitrary

by Lagrange interpolation, there is a unique polynomial a0(x) such
that sij = a0(xij) for 1 ≤ j ≤ t− 1 and such that K0 = a0(0)

hence no value of K can be ruled out, given the shares held by t− 1
users

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 276 / 424

Multicast Security Key Distribution Patterns

Key Distribution Patterns

suppose we have a TA and a network of n users, U = {U1, . . . , Un}
the TA chooses v random keys, say k1, . . . , kv ∈ K, where (K,+) is
an additive abelian group, and gives a (different) subset of keys to
each user

a key distribution pattern is a public v by n incidence matrix,
denoted M , which has entries in {0, 1}
M specifies which users are to receive which keys: user Uj is given
the key ki if and only if M [i, j] = 1

for a subset P ⊆ U , define

keys(P) = {i : M [i, j] = 1 for all Uj ∈ P}

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 277 / 424

Multicast Security Key Distribution Patterns

Key Distribution Patterns (cont.)

observe that
keys(P) =

⋂
Uj∈P

keys(Uj)

if keys(P) 6= ∅, then the group key kP for the set P is defined to be

kP =
∑

i∈keys(P)

ki

each member of P can compute kP (no interaction requred)

suppose F ∩ P = ∅
the coalition F can compute kP if and only if

keys(P) ⊆
⋃
Uj∈F

keys(Uj)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 278 / 424

Multicast Security Key Distribution Patterns

A Trivial Example

Suppose n = 4, v = 6, and the matrix M is as follows:

M =



1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1


keys(U1) = {1, 2, 3}, keys(U2) = {1, 4, 5}, and keys(U1, U2) = {1}, so
k{U1,U2} = k1.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 279 / 424

Multicast Security Key Distribution Patterns

A Trivial Generalization

it is always possible to construct a trivial
(
n
2

)
by n KDP, in which any

two users have exactly one common key, and each key is given to
exactly two users

in this KDP, each user must store n− 1 keys

the group key for any two users is the unique key that they both
possess

there are
(
n
2

)
group keys

each group key k{Uj ,Uj′} is secure against the coalition U\{Uj , Uj′}
having size n− 2

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 280 / 424

Multicast Security Key Distribution Patterns

A More Interesting Example

Suppose n = 7, v = 7, and the matrix M is as follows:

M =



1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 0 0 1


keys(U1) = {1, 4, 6, 7}, keys(U2) = {1, 2, 5, 7}, and keys(U1, U2) = {1, 7},
so k{U1,U2} = k1 + k7.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 281 / 424

Multicast Security Key Distribution Patterns

Example (cont.)

no other user has both k1 and k2, so k{U1,U2} is secure against any
other individual user

however, U3 and U4 (for example) together can compute k{U1,U2} by
pooling their secret information

in this example, every pair of users can compute a key that is secure
against any other individual user

this scheme enables the construction of
(

7
2

)
= 21 group keys for pairs

of users

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 282 / 424

Multicast Security Key Distribution Patterns

Fiat-Naor KDPs

let 1 ≤ w ≤ n and define

v =

w∑
i=0

(
n

i

)
the Fiat-Naor w-KDP is the v by n matrix whose rows are the
incidence vectors of all subsets of U having cardinality at least n− w
there is a group key for any subset P ⊆ U , that is secure against any
disjoint coalition F of size at most w

Proof: |F | ≤ w, so |U\F | ≥ n− w. Hence, there exists a key ki
given to the users in U\F and to no other user. P ⊆ (U\F), so all
users in P have ki and no user in F has ki.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 283 / 424

Multicast Security Key Distribution Patterns

An Example

Suppose n = 6 and w = 1. The Fiat-Naor 1-KDP has v = 7, and the
matrix M is as follows:

M =



1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1


keys(U1) = {1, 2, 3, 4, 5, 6}, keys(U3) = {1, 2, 3, 4, 6, 7},
keys(U4) = {1, 2, 3, 5, 6, 7}, and keys(U1, U3, U4) = {1, 2, 3, 6}, so
k{U1,U3,U4} = k1 + k2 + k3 + k6. No other single user can compute this key.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 284 / 424

Multicast Security Key Distribution Patterns

Cover-free Families

a set system is a pair (X,A), where X is a finite set of points and
A is a set of subsets of X called blocks

denote X = {x1, . . . , xv} and denote A = {A1, . . . , An}
(X,A) is a (t, w)-cover-free family provided that, for any two
disjoint subsets of blocks P, F ⊆ A, where |P | = t and |F | = w, it
holds that ⋂

Ai∈P
Ai 6⊆

⋃
Aj∈F

Aj

a (t, w)-cover-free family will be denoted as a (t, w)-CFF(v, n) if
|X| = v and |A| = n

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 285 / 424

Multicast Security Key Distribution Patterns

Mitchell-Piper KDPs

the incidence matrix of (X,A) is the v × n matrix M = (mi,j) in
which

mi,j =

{
1 if xi ∈ Aj
0 otherwise

a Mitchell-Piper (t, w)-KDP is a KDP in which there is a key for
every group of t users, and each such key is secure against any
disjoint coalition of at most w users

the KDP given by a v × n matrix M yields a Mitchell-Piper
(t, w)-KDP if and only if M is the incidence matrix of a
(t, w)-CFF(v, n)

the blocks of the CFF correspond to the columns of M (i.e., the
blocks are keys(U1), . . . , keys(Un))

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 286 / 424

Multicast Security Key Distribution Patterns

A (2, 1)-CFF(7, 7)

M =



1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 0 0 1


X = {1, . . . , 7}, and

A = {{1, 4, 6, 7}, {1, 2, 5, 7}, {1, 2, 3, 6}, {2, 3, 4, 7},
{1, 3, 4, 5}, {2, 4, 5, 6}, {3, 5, 6, 7}}

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 287 / 424

Multicast Security Key Distribution Patterns

Non-constructive Existence Results

given t, w and n, we want to construct (t, w)-CFF(v, n) for v as small
as possible

let M be a v by n matrix, having entries from {0, 1}, whose columns
are labelled 1, . . . , n

let 0 < ρ < 1, and suppose that every entry of M is (independently)
defined to be a “1” with probability ρ

the probability that the matrix M constructed in this fashion is a
(t, w)-CFF(v, n) will be shown to be positive, provided that certain
numerical conditions on the parameters are satisfied

this will prove (non-constructively) that a (t, w)-CFF(v, n) exists for
certain values of t, w, v and n

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 288 / 424

Multicast Security Key Distribution Patterns

Non-constructive Existence Results (cont.)

let the matrix M be given

suppose that P, F ⊆ {1, . . . , n}, |P | = t, |F | = w and P ∩ F = ∅
then, a given row i of M satisfies the property (*) provided that the
entries in the columns in P are all “1”s and the entries in the columns
in F are all “0”s

define a random variable

X(P, F) =

{
0 if there exists a row i such that (*) is satisfied

1 otherwise

First Observation: if X(P, F) = 1, then M is not the incidence
matrix of a (t, w)-CFF(v, n)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 289 / 424

Multicast Security Key Distribution Patterns

Non-constructive Existence Results (cont.)

the probability that (*) is satisfied with respect to a given row is
ρt(1− ρ)w

the probability that (*) is not satisfied with respect to all v rows is(
1− ρt(1− ρ)w

)v
the expected value of X(P, F) is

Exp[X(P, F)] = Pr[X(P, F) = 0]× 0 + Pr[X(P, F) = 1]× 1

= Pr[X(P, F) = 1]

=
(
1− ρt(1− ρ)w

)v
in order to minimize Exp[X(P, F)], we should maximize ρt(1− ρ)w

elementary calculus shows that we should define ρ = t/(t+ w)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 290 / 424

Multicast Security Key Distribution Patterns

Non-constructive Existence Results (cont.)

define the random variable

X =
∑

{(P,F):|P |=t,|F |=w,P∩F=∅}

X(P, F)

Second Observation: X = 0 if and only if M is the incidence matrix
of a (t, w)-CFF(v, n)

it is easy to see that

Exp[X] =
∑

{(P,F):|P |=t,|F |=w,P∩F=∅}

Exp[X(P, F)]

=

(
n

t

)(
n− t
w

)(
1− ρt(1− ρ)w

)v
< nt+w

(
1− ttww

(t+ w)t+w

)v
D.R. Stinson (University of Waterloo) CS 758 Spring 2016 291 / 424

Multicast Security Key Distribution Patterns

Non-constructive Existence Results (cont.)

if Exp[X] < 1, then there is a (t, w)-CFF(v, n)

define

pt,w = 1− ttww

(t+ w)t+w

Exp[X] < 1 if

nt+w(pt,w)v < 1 ⇔
(t+ w) log2 n+ v log2(pt,w) < 0 ⇔

v >
(t+ w) log2 n

− log2(pt,w)

in other words, there exist (t, w)-CFF(v, n) in which v is O(log n) (for
any fixed t and w)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 292 / 424

Multicast Security Key Distribution Patterns

Example

suppose t = 2 and w = 1

then

ρ = 2/3

p2,1 = 1− 2211

33
=

23

27
, and

2 + 1

− log2 p2,1
≈ 12.97

for all n ≥ 2, there exists a (1, 2)-CFF(v, n) in which v ≤ 13 log2 n

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 293 / 424

Multicast Security Key Distribution Patterns

Non-constructive Existence Results (summary)

define

ρ =
t

t+ w

and

pt,w = 1− ttww

(t+ w)t+w

recall that Exp[X] < nt+w(pt,w)v

if

v >
(t+ w) log2 n

− log2(pt,w)

then Exp[X] < 1, and hence a (t, w)-CFF(v, n) exists

this is an existence proof, so we do not have an explicit formula or an
efficient deterministic algorithm to construct the CFF

we will consider two possible approaches to making this method
practical:

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 294 / 424

Multicast Security Key Distribution Patterns

Error Probabilities

1 generate a random M (as described in the existence proof), and then
check to see if it is a CFF

2 choose v such that a random M will be a CFF with high probability,
and don’t check it

what is the probability that a random M is not a CFF?

we have that

Exp[X] =

∞∑
i=0

(Pr[X = i]× i)

≥
∞∑
i=1

Pr[X = i]

= Pr[X > 0]

= Pr[M is not a CFF]

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 295 / 424

Multicast Security Key Distribution Patterns

A Practical Algorithm?

let s ≥ 1 (s is an error probability parameter)

it is easy to determine v so that Exp[X] ≤ 2−s

if

v >
(t+ w) log2 n+ s

− log2(pt,w)

then Exp[X] < 2−s

then a randomly constructed M will be a (t, w)-CFF(v, n) with
probability at least 1− 2−s

if s = 1, then it will take (on average) two tries until a CFF is
constructed

if s = 20, then almost surely a random M will be a CFF (and hence
we might not even bother to verify that M is indeed a CFF)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 296 / 424

Multicast Security Key Distribution Patterns

Verification

how do we verify that a given M is a (t, w)-CFF(v, n)?

if M is constructed “randomly”, it is necessary to check all possible
(P, F) to see that the CFF property is satisfied

the complexity of this algorithm is O
((
n
t

)(
n−t
w

)
(t+ w)v

)
for fixed t, w, this simpifies to O

(
nt+w log n

)
verification is reasonably fast if t+ w is small, or if n is small

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 297 / 424

Multicast Security Key Distribution Patterns

Applications of (t, w)-CFF to Multicast Security

group key predistribution

A (t, w)-CFF can be used to construct a KDP in which
predefined keys for groups of size at most t exist, that are
secure against coalitions of size at most w.

group session key distribution

The TA can use an existing group key (from the
above-described KDP) to encrypt a group session key, which
is then broadcasted to the group.

blacklisting (broadcast exclusion)

A (1, w)-CFF allows the TA to broadcast a group (session)
key, K, to everyone in the network except for a specified set
of at most w excluded users.
This technique can be used for key revocation in a network.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 298 / 424

Multicast Security Applications of Cover-free Families

Applications of (t, w)-CFF to Multicast Security

anti-jamming

A (1, w)-CFF allows a TA to broadcast a message using a set
of carrier fequencies so that no coalition of at most w users
can “jam” the communication to any intended receiver.

network source authentication

A (1, w)-CFF enables everyone in a network to verify that a
given message was transmitted by the TA (and not by
someone else); the scheme is secure against coalitions of size
at most w.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 299 / 424

Multicast Security Applications of Cover-free Families

Blacklisting

for every

i 6∈
⋃
Uj∈F

keys(Uj),

the TA computes yi = eki(K) using a secure secret-key encryption
scheme

the following properties hold:
1 no user Uj ∈ F can compute K (even if the users in F combine all

their information)
2 if |F | ≤ w, then every user Uh 6∈ F can decrypt K, because

keys(Uh) 6⊆
⋃
Uj∈F

keys(Uj)

(this is the (1, w) cover-free property).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 300 / 424

Multicast Security Applications of Cover-free Families

Anti-jamming

a (1, w)-CFF is used to distribute carrier frequencies to the network
users

every user knows a subset of the v carrier frequencies

the TA broadcasts v copies of the same message, using all v carrier
frequencies

a bad user can “jam” a frequency, destroying the ability of that
frequency to transmit a message

a coalition of bad users, F , can jam all the frequencies that they
know jointly

if |F | ≤ w, then every user not in F still receives at least one copy of
the message (because of the (1, w) cover-free property)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 301 / 424

Multicast Security Applications of Cover-free Families

Source Authentication

a (1, w)-CFF is used to distribute keys for a MAC

the TA broadcasts a message x, along with v MAC tags for this
message: MACk1(x), . . . ,MACkv(x)

each user Uj verifies the MAC tags using all keys that he possesses

he accepts the message as being valid only if all the MACs that he
can compute are valid

a coalition F of size at most w cannot create a list of forged MAC
tags for a new message x′ which will be accepted by any user not in F

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 302 / 424

Multicast Security Broadcast Encryption

Broadcast Encryption to Arbitrary Subsets of Users

we have seen that a (t, w)-CFF enables broadcast encryption to a
subset of at most t users, and a (1, w)-CFF enables broadcast
encryption to a subset of at least n− w users

in a general broadcast encryption scheme (BES), a TA wants to
broadcast an encrypted message to an arbitrary subset P of the n
users

for example, a pay-TV movie, M, might be encrypted with a key K,
i.e., y = eK(M)

the BES is used to encrypt K in such a way that only the members of
P can determine K

the BES is used to encrypt a short key, rather than a long movie,
because of the message expansion that is typically required in a BES

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 303 / 424

Multicast Security Broadcast Encryption

The Trivial BES

suppose the TA gives each user Ui in the network a different key, ki

for every Ui ∈ P , the TA can encrypt K with the key ki, by
computing yi = eki(K)

the broadcast bP = (yi : Ui ∈ P) is of length |P |, so the broadcast
message expansion is |P |
this scheme has low storage requirements (one key per user) and high
security (no coalition can compute K), but it has a high message
expansion

in general, we want to find good tradeoffs between the parameters of
a BES

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 304 / 424

Multicast Security Broadcast Encryption

Designing Efficient BES: A High-Level View

suppose P ⊆ U , and let w denote the maximum size of a coalition
(security parameter)

many BES involve two steps:
1 split K into shares s1, . . . , sv using an (r, v) threshold scheme (for

some positive integer r ≤ v)
2 encrypt every share si with a key ki, in such a way that

1 every user Uj ∈ P can compute at least r of the keys k1, . . . , kv (hence
they can decrypt r shares of K, and then reconstruct K)

2 any coalition F , such that F ∩ P = ∅ and |F | ≤ w, can compute at
most r − 1 of the keys (hence they can decrypt at most r − 1 shares of
K, and therefore they cannot obtain any information about K)

the keys ki are obtained from key predistribution scheme(s)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 305 / 424

Multicast Security Broadcast Encryption

Efficient BES

we construct a collection of v different Fiat-Naor 1-KDPs, each of
which is constructed on a certain subset of participants

a v by n incidence matrix, M , having entries from {0, 1}, is used to
define which users are associated with which schemes

the v schemes are denoted F1, . . . ,Fv
user Uj is given keys from the KDP Fi if and only if M [i, j] = 1

for 1 ≤ i ≤ v, let

users(i) = {Uj : M [i, j] = 1}

and for 1 ≤ j ≤ n, let

schemes(j) = {i : M [i, j] = 1}

suppose that |schemes(j)| = r for every j, 1 ≤ j ≤ n

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 306 / 424

Multicast Security Broadcast Encryption

Encryption Steps

On input K, the TA performs the following operations:

1 the TA uses the share generation algorithm of an (r, v) threshold
scheme to construct v shares, s1, . . . , sv

2 for 1 ≤ i ≤ v, the TA constructs the group key ki to be the group key
for P ∩ users(i) in the scheme Fi

3 for 1 ≤ i ≤ v, the TA computes bi = eki(si)

4 the TA broadcasts the vector bP = (b1, . . . , bv)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 307 / 424

Multicast Security Broadcast Encryption

Step 2: Constructing the Group Keys

for 1 ≤ i ≤ v, the scheme Fi is a Fiat-Naor 1-KDP defined on the
subset users(i)

to set up Fi, the TA distributes keys as follows:
1 a key `i is given to every user in users(i)
2 for every Uj ∈ users(i), a key `i,j is given to every user in the set

users(i)\{Uj}
the group key for the subset users(i) ∩ P is defined to be

ki = `i +
∑

{j:Uj∈users(i)\P}

`i,j

ki can be computed (non-interactively) by all members of users(i)∩P
no individual user not in users(i) ∩ P can compute ki, but a subset of
(at least) two users in users(i)\P can compute ki

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 308 / 424

Multicast Security Broadcast Encryption

Decryption Steps

On input bP = (b1, . . . , bv), a user Uj ∈ P performs the following
operations:

1 for all i ∈ schemes(j), Uj constructs the group key ki for P ∩ users(i)
in the scheme Fi

2 for all i ∈ schemes(j), Uj computes si = dki(bi)

3 Uj uses the share reconstruction algorithm of the (r, v) threshold
scheme to compute K from the r shares in the set
{si : i ∈ schemes(j)}

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 309 / 424

Multicast Security Broadcast Encryption

Example of a BES

Suppose n = 7, v = 7, and the incidence matrix is as follows:

M =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1



users(1) = {U1, U2, U4}
users(2) = {U2, U3, U5}
users(3) = {U3, U4, U6}
users(4) = {U4, U5, U7}
users(5) = {U1, U5, U6}
users(6) = {U2, U6, U7}
users(7) = {U1, U3, U7}

Note that every user is associated with r = 3 schemes.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 310 / 424

Multicast Security Broadcast Encryption

Example (cont.)

In the set-up phase, a total of nine keys will be given to each user, as
indicated below:

U1 U2 U3 U4 U5 U6 U7

`1 `1 `2 `1 `2 `3 `4
`1,2 `1,1 `2,2 `1,1 `2,2 `3,3 `4,4
`1,4 `1,4 `2,5 `1,2 `2,3 `3,4 `4,5
`5 `2 `3 `3 `4 `5 `6
`5,5 `2,3 `3,4 `3,3 `4,4 `5,1 `6,2
`5,6 `2,5 `3,6 `3,6 `4,7 `5,5 `6,6
`7 `6 `7 `4 `5 `6 `7
`7,3 `6,6 `7,1 `4,5 `5,1 `6,2 `7,1
`7,7 `6,7 `7,7 `4,7 `5,6 `6,7 `7,3

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 311 / 424

Multicast Security Broadcast Encryption

Example (cont.)

suppose that the TA wants to broadcast a message to the set
P = {U1, U2, U3}
the following will be the keys used in the seven Fiat-Naor schemes:

i users(i) ∩ P ki
1 {U1, U2} `1 + `1,4
2 {U2, U3} `2 + `2,5
3 {U3} `3 + `3,4 + `3,6
4 ∅ `4 + `4,4 + `4,5 + `4,7
5 {U1} `5 + `5,5 + `5,6
6 {U2} `6 + `6,6 + `6,7
7 {U1, U3} `7 + `7,7

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 312 / 424

Multicast Security Broadcast Encryption

Security (Example)

we can prove that the example BES is secure against coalitions of size
w = 2

let F = {Uj , Uj′} be an arbitrary coalition of size two

the incidence matrix M has the property that there is only one set
users(i) such that F ⊆ users(i)

F can compute only one of the seven group keys

the threshold r = 3 and the coalition can decrypt only one share, so
the scheme is secure

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 313 / 424

Multicast Security Broadcast Encryption

Security Properties of Incidence Matrices for BES

in general, M is required to be a v by n incidence matrix in which
there are exactly r “1”s in each column

let (U ,A) be the set system in which the blocks are formed by the
rows of M (i.e., the subsets users(i))

note that we previously considered set systems (namely, cover-free
families) associated with the columns of KDPs

there are n points and v blocks in (U ,A)

every point (user) is in exactly r blocks (schemes)

suppose that every pair of points occur in at most λ blocks

then a coalition of size w can compute at most λ
(
w
2

)
group keys

the BES is secure against coalitions of size w if r > λ
(
w
2

)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 314 / 424

Multicast Security Broadcast Encryption

Security Properties of Incidence Matrices (cont.)

summarizing, we want to construct an incidence matrix such that the
associated set system (U ,A) satisfies the following properties:

1 |U| = n (there are n points)
2 |A| = v (there are v blocks)
3 every point occurs in exactly r blocks
4 every pair of points occurs in at most λ blocks
5 r > λ

(
w
2

)
then M can be used to construct a BES secure against coalitions of
size at most w

clearly, we want v to be small (given n and w)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 315 / 424

Multicast Security Broadcast Encryption

A Polynomial-based Construction

let q be prime and let d ≤ q
v = q2 and n = qd

the columns of M are labelled by d-tuples (a0, . . . , ad−1) ∈ (Zq)d (a
d-tuple corresponds to a polynomial in Zq[x] having degree at most
d− 1)

the rows of M are labelled by 2-tuples (x, y) ∈ (Zq)2

the entries of M are defined as follows:

M [(x, y), (a0, . . . , ad−1)] = 1⇔
d−1∑
i=0

aix
i ≡ y (mod q)

it is clear that r = q, because every polynomial takes on a unique
y-value, given any x-value

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 316 / 424

Multicast Security Broadcast Encryption

Example

Suppose q = 3 and d = 2; then n = v = 9, and M is as follows:

(x, y) 0 1 2 x 1 + x 2 + x 2x 1 + 2x 2 + 2x

(0, 0) 1 0 0 1 0 0 1 0 0

(0, 1) 0 1 0 0 1 0 0 1 0

(0, 2) 0 0 1 0 0 1 0 0 1

(1, 0) 1 0 0 0 0 1 0 1 0

(1, 1) 0 1 0 1 0 0 0 0 1

(1, 2) 0 0 1 0 1 0 1 0 0

(2, 0) 1 0 0 0 1 0 0 0 1

(2, 1) 0 1 0 0 0 1 1 0 0

(2, 2) 0 0 1 1 0 0 0 1 0

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 317 / 424

Multicast Security Broadcast Encryption

Computing λ

suppose we have two columns, (a0, . . . , ad−1) and (a′0, . . . , a
′
d−1)

these define two polynomials, a(x) and a′(x), respectively

we want to determine an upper bound on

|{(x, y) : a(x) = a′(x) = y}| = |{x : a(x) = a′(x)}|

this quantity is at most d− 1, because the values at d points
determine a unique polynomial of degree at most d− 1

hence, λ = d− 1

therefore we have v = q2, n = qd, r = q and λ = d− 1

the BES is secure against coalitions of size at most w provided that
q > (d− 1)

(
w
2

)
if w = 2 in the example, then q = 3 > (d− 1)

(
w
2

)
= 1

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 318 / 424

Multicast Security Broadcast Encryption

Choosing Parameters (Numerical Examples)

suppose we want to have w = 3

for any prime q, we can take d < 1 + q
3

we get a w-secure BES for n = qd users, based on v = q2 Fiat-Naor
KDPs

the size of the broadcast is v (elements of Zp)

some sample parameters:

q d v n

7 3 49 343
13 5 169 371, 293
19 7 361 893, 871, 739

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 319 / 424

Multicast Security Broadcast Encryption

Choosing Parameters (An Asymptotic Analysis)

suppose that values for the parameters n and w are given

define q ≈ w2 log2 n and d ≈ log2 n

qd > 2log2 n = n and d < q, so the incidence matrix M exists

q = w2d > (d− 1)
(
w
2

)
, so the security condition holds

we obtain a BES secure against coalitions of size w

the size of the broadcast is v = q2 = w4(log2 n)2

for fixed w, v is O((log n)2)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 320 / 424

Multicast Security Broadcast Encryption

Storage Requirements

consider the set system (X,A) corresponding to an incidence matrix
M (points correspond to users, and blocks correspond to Fiat-Naor
KDPs)

if x ∈ A, where A ∈ A, then the corresponding user must store |A|
keys from the Fiat-Naor scheme associated with the block A

in the polynomial scheme, every point is in r = q blocks, and the
blocks have size qd−1

therefore every user stores qd = n keys in total

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 321 / 424

Multicast Security Ramp Schemes

An Efficiency Improvement

in the BES, recall that each user in P can decrypt r shares, and the
coalition F can (collectively) decrypt at most λ

(
w
2

)
shares, where

λ
(
w
2

)
< r

the use of an (r, v) threshold scheme ensures that the secret K
cannot be computed, given r − 1 shares

if λ
(
w
2

)
< r − 1, then the security provided by the threshold scheme is

stronger than required

in this situation, it is possible to replace the threshold scheme by a
ramp scheme

we can maintain the same security of the BES, while allowing more
information to be broadcast

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 322 / 424

Multicast Security Ramp Schemes

Ramp Schemes

let tlow , thigh and n be non-negative integers, tlow < thigh ≤ n
there is a trusted authority, denoted TA, and n users, denoted
U1, . . . , Un

the TA has a secret value K ∈ K
the TA uses a share generation algorithm to split K into n shares,
denoted s1, . . . , sn

each share si ∈ S, where S is a specified finite set

a (tlow , thigh, n)-ramp scheme satisfies the following two properties:
1 a reconstruction algorithm can be used to reconstruct the secret,

given any thigh of the n shares,
2 no set of at most tlow shares reveals any information as to the value of

the secret

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 323 / 424

Multicast Security Ramp Schemes

Generalized Shamir (Ramp) Scheme

let p ≥ n+ 1 be a prime

define t0 = thigh − tlow
in a threshold scheme, t0 = 1

let K = (Zp)t0 and let S = Zp
in an initialization phase, x1, x2, . . . , xn are defined to be n distinct
non-zero elements of Zp
the TA gives xi to Ui, for all i, 1 ≤ i ≤ n
the xi’s are public information

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 324 / 424

Multicast Security Ramp Schemes

Share Generation for the Ramp Scheme

given a secret K = (a0, . . . , at0−1) ∈ Zp, the share generation
algorithm is as follows:

1 the TA chooses at0 , . . . , athigh−1 independently and uniformly at

random from Zp
2 the TA defines

a(x) =

thigh−1∑
j=0

aj x
j

(note that a(x) ∈ Zp[x] is a random polynomial of degree at most
thigh − 1, such that the first t0 coefficients comprise the secret, K)

3 for 1 ≤ i ≤ n, the TA constructs the share si = a(xi)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 325 / 424

Multicast Security Ramp Schemes

Reconstruction Algorithm for the Ramp Scheme

suppose users Ui1 , . . . , Uithigh
want to determine K

they know that sij = a(xij), 1 ≤ j ≤ thigh
since a(x) is a polynomial of degree at most thigh − 1, they can
determine

a(x) =

thigh−1∑
j=0

aj x
j

by Lagrange interpolation

then K = (a0, . . . , at0−1)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 326 / 424

Multicast Security Ramp Schemes

Security of the Ramp Scheme

suppose tlow users, say Ui1 , . . . , Uitlow , pool their shares in an attempt
to determine some information about K

let (a′0, . . . , a
′
t0−1) be a guess for the secret

then there exists a unique polynomial a′(x) of degree at most
thigh − 1 such that

1 the first t0 coefficients of a′(x) are a′0, . . . , a
′
t0−1, and

2 sij = a′(xij), 1 ≤ j ≤ tlow
this is because there are are tlow remaining coefficients of a′(x), and
the value of a′(x) is known at tlow points

therefore no information about K can be computed

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 327 / 424

Multicast Security Ramp Schemes

Ramp Schemes and BES

the BES remains secure if a
(
λ
(
w
2

)
, r, v

)
ramp scheme is used to

construct shares of the secret

this allows the size of the secret to be increased: K ∈ (Zp)t0 , where

t0 = r − λ
(
w

2

)
shares are still elements of Zp, however

therefore the broadcast ratio (the length of the broadcast divided by
the length of the secret) has been decreased by a factor of t0, from v
to v/t0

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 328 / 424

Multicast Security Ramp Schemes

Choosing Parameters (An Asymptotic Analysis)

as before, define q ≈ w2 log2 n and d ≈ log2 n in the polynomial
scheme

we have

t0 = r − λ
(
w

2

)
= q − (d− 1)

(
w

2

)
≈ w2 log2 n− (log2 n)

(
w

2

)
≈ w2 log2 n

2

the length of the broadcast is v = q2 = w4(log2 n)2

the broadcast ratio is O(w2 log2 n), which is O(log n) for fixed w

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 329 / 424

Multicast Security Re-keying and Revocation

Multicast Re-keying

consider the setting of a long-lived dynamic group, say U , with single
source broadcast

an on-line subscription service is one example of this

the TA wants to broadcast to every user in the group, but members
may join or leave the group over time

communications to the group are encrypted with a single group key

every user has a copy of the group key

users may also have additional LL-keys, that are used to update the
system as the group evolves over time

the system is initialized in a key predistribution phase, during which
the TA gives LL-keys and an initial group key to the users in the
network

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 330 / 424

Multicast Security Re-keying and Revocation

Re-keying Operations

when a new user joins the group, that user is given a copy of the
current group key, as well as appropriate long-term keys (user join
operation)

when a user U leaves the group, a user revocation operation is
necessary to remove the user from the group

the user revocation operation will establish a new group key for
U\{U} (this is sometimes called re-keying)

in addition, updating of LL-keys may be required as part of user
revocation operation

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 331 / 424

Multicast Security Re-keying and Revocation

Properties of Multicast Re-keying Schemes

Criteria used to evaluate multicast rekeying schemes include the following:

communication and storage complexity (and trade-offs), for example:
I size of broadcast, and
I size (and number) of secret LL-keys required to be stored by users

security WRT coalitions of revoked users

anonymity of revoked users

flexibility/efficiency of user revocation operations, for example:
I users must be revoked one at a time, or
I multiple user revocation is possible (up to some specified bound)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 332 / 424

Multicast Security Re-keying and Revocation

Properties of Multicast Re-keying Schemes (cont.)

flexibility/efficiency of user join operation, for example:
I any number of new users may be added easily to the system, or
I entire system must be reinitialized to add new users (one-time system)

efficiency of updating LL-keys, for example:
I no updating required (LL-keys are static), or
I keys can be updated “efficiently”, or
I entire system must be reinitialized after a user revocation (one-time

system)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 333 / 424

Multicast Security Re-keying and Revocation

Some Possible Approaches

Some possible approaches to multicast re-keying include the following:

blacklisting schemes (using (1, w)-cover-free families)

general broadcast encryption schemes

re-keying schemes based on threshold schemes (Naor-Pinkas)

tree-based schemes, such as the logical key hierarchy (LKH)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 334 / 424

Multicast Security Re-keying and Revocation

Using a (1, w)-CFF to Revoke a Set of w Users

LL-keys are distributed according to an incidence matrix derived from
a (1, w)-CFF(v, n)

let |F | = w, and let K denote the new group key for U\F
for every

i 6∈
⋃
Uj∈F

keys(Uj),

the TA computes yi = eki(K) and broadcasts yi
recall that the following properties hold:

1 no user Uj ∈ F can compute K (even if the users in F combine all
their information)

2 if |F | ≤ w, then every user Uh 6∈ F can decrypt K, because

keys(Uh) 6⊆
⋃
Uj∈F

keys(Uj)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 335 / 424

Multicast Security Re-keying and Revocation

Comments

LL-keys are static in this scheme

each user stores O(log n) keys and the broadcast has size O(log n)

new users can be added to the scheme after it is initialized only if
|U| < n

anonymity is possible, because each user Uj only needs to know the
keys in the set keys(Uj) (the entire matrix M does not need to be
public)

if it is desired, users can be revoked in stages (up to a total of w
revoked users over some period of time) – see next slide

however, there doesn’t appear to be a convenient way to update
LL-keys, so the scheme must be re-initialized after w users have been
revoked

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 336 / 424

Multicast Security Re-keying and Revocation

Revoking Users in Stages

suppose we want to revoke the users in Fi at stage i, 1 ≤ i ≤ T
we assume that |F1|+ · · ·+ |FT | ≤ w and F1, . . . , FT are disjoint

let Ki denote the group key at stage i, 1 ≤ i ≤ T
the T group keys are broadcast as follows:

Algorithm: Revoke(F1, . . . , FT ;K1, . . . ,KT)
F ← ∅
for i← 1 to T

do


F ← F ∪ {Fi}
if |F | ≤ w

then broadcast the group key Ki to U\F
else quit

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 337 / 424

Multicast Security Re-keying and Revocation

Revocation Using General BES

LL-keys are static in this scheme

each user stores O(n) keys and a broadcast has size O(log n)

users can be added to the scheme after it is initialized only if |U| < n

in general, anonymity is not possible

any number of users can be revoked at any given time

there is no limit on the total number of users that can be revoked

however, coalitions of more than w revoked users can compute group
keys

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 338 / 424

Multicast Security Re-keying and Revocation

Basic Naor-Pinkas Scheme

denote n = |U|
the TA uses a (w + 1, n) Shamir threshold scheme to construct n
shares, say s1, . . . , sn, of a new group key, K

every user Ui is given the share si in the intialization phase

let |F | = w be the set of users to be revoked

in order to activate the “pre-positioned” group key K, the TA
broadcasts the w shares si for all Ui ∈ F
every user not in F now has w + 1 shares, which permits K to be
computed

the users in F are not able to compute F , since they (collectively)
hold only w shares

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 339 / 424

Multicast Security Re-keying and Revocation

Comments

LL-keys are static in this scheme

each user stores O(1) keys and the broadcast has size O(w)

users can be added to the scheme after it is initialized by creation of
new shares of K (shares are just evaluations of the secret polynomial
at new x-values)

anonymity is possible, if x-co-ordinates corresponding to the shares
are broadcast when the new group key is activated

it is possible to revoke w′ < w users by broadcasting the shares of the
w′ revoked users, along with w − w′ newly created shares that do not
correspond to any user

however, the basic scheme does not allow users to be revoked in
stages

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 340 / 424

Multicast Security Re-keying and Revocation

A “Re-usable” Version of the Naor-Pinkas Scheme

suppose that keys and shares are defined in a subgroup G of Zp∗,
having prime order q, in which the Decision Diffie-Hellman problem
is intractable

let α be a generator of G

the TA constructs shares of K ∈ Zq using a (w + 1, n) Shamir
threshold scheme implemented in Zq
recall that K can be reconstructed using the formula

K =

w+1∑
j=1

bjsij mod q,

where the bj ’s are coefficients defined as follows:

bj =
∏

1≤k≤w+1,k 6=j

xik
xik − xij

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 341 / 424

Multicast Security Re-keying and Revocation

Re-usable Scheme (cont.)

then it follows that

αK =

w+1∏
j=1

αbjsij mod p

hence, for any r, it follows that

αrK =

w+1∏
j=1

αrbjsij mod p

suppose that the TA broadcasts αr along with w “exponentiated
shares” γj = αrsij (1 ≤ j ≤ w)

a non-revoked user, say Uiw+1 can compute his own exponentiated
share, as follows:

γw+1 = αrsiw+1 = (αr)siw+1

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 342 / 424

Multicast Security Re-keying and Revocation

Re-usable Scheme (cont.)

then Uiw+1 can compute αrK :

αrK =

w+1∏
j=1

(
αrsij

)bj mod p

αrK is the new group key

by choosing random values of r for each broadcast, a series of new
group keys can be set up

as in previous schemes, coalitions of more than w revoked users can
compute group keys

we would prefer a rekeying scheme that permits an arbitrary number
of users to be revoked

achieving this property apparently requires updating LL-keys when
users are revoked

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 343 / 424

Multicast Security Logical Key Hierarchy

Logical Key Hierarchy (LKH)

suppose the number of users, n, satisfies 2d−1 < n ≤ 2d

construct a binary tree, say T , of depth d, having exactly n leaf nodes

the n leaf nodes of T correspond to the n users: for every user U , let
U also denote the (leaf) node corresponding to the user U

there is a key associated with every node in the tree

for every node X, let k(X) denote the key for node X

k(R) is the group key, where R is the root node of T
every user U is given the d+ 1 keys belonging to the nodes of T that
lie on the unique path from U to R in T
therefore every user has O(log n) keys

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 344 / 424

Multicast Security Logical Key Hierarchy

Example

A binary tree with d = 4 and n = 16, having nodes labelled
1, 2 . . . , 2d+1 − 1 = 31:

1

29

2 3

5 7

10 11 15

1716 18 19 20 21 22 23 24 25 26 27 28 30 31

8 12 14139

64

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 345 / 424

Multicast Security Logical Key Hierarchy

A Simple Data Structure For Binary Trees

the leaf nodes are labelled 2d, 2d + 1, . . . , 2d+1 − 1

the parent of node j (j 6= 1) is node b j2c
the children of node j (j ≤ 2d − 1) are nodes 2j and 2j + 1

the sibling of node j (j 6= 1) is node

j + 1 if j is even
j − 1 if j is odd

therefore the binary tree can be stored in the form of an array,
T [1], . . . , T [2d+1 − 1], and it is a simple matter to find parents,
children and siblings of nodes in this data structure

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 346 / 424

Multicast Security Logical Key Hierarchy

User Revocation: Removing User U

let P(U) denote the set of nodes in the unique path from a leaf node
U to the root node R (recall that R has the label 1)

it is necessary to change the keys corresponding to the d nodes in
P(U)\{U}
for each node X ∈ P(U)\{U}, let k′(X) denote the new key for
node X

let sib(·) denote the sibling of a given node, and let par(·) denote the
parent of a given node

the following 2d− 1 items are broadcast by the TA:
1 e

k(sib(U))
(k′(par(U)))

2 ek(sib(X))(k
′(par(X))) and ek′(X)(k

′(par(X))), for all nodes

X ∈ P\{U,R}

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 347 / 424

Multicast Security Logical Key Hierarchy

Example

the broadcast allows any non-revoked user V to update all the keys in
the intersection P(U) ∩ P(V)

for example, suppose the TA wants to revoke user U = 22

the path P(U) = {22, 11, 5, 2, 1}
the TA creates new keys k′11, k′5, k′2 and k′1
the siblings of the nodes in P(U) are {23, 10, 4, 3}
the broadcast consists of

ek(23)(k
′(11)) ek(10)(k

′(5)) ek(4)(k
′(2)) ek(3)(k

′(1))

ek′(11)(k
′(5)) ek′(5)(k

′(2)) ek′(2)(k
′(1))

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 348 / 424

Multicast Security Logical Key Hierarchy

Example (cont.)

The labels of the nodes receiving new keys are boxed. Encryptions of new
keys are indicated by arrows:

1

29

2 3

5 7

10 11 15

1716 18 19 20 21 23 24 25 26 27 28 30 31

8 12 14139

64

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 349 / 424

Multicast Security Logical Key Hierarchy

Comments

every user stores O(log n) keys and the broadcast has size O(log n)

any number of users can be revoked over a period of time, without
affecting the security of the system

multiple (simultaneous) revocation can be done, but it is somewhat
complicated

new users can be added, whenever the current number of users is less
than 2d, by assigning the new user to an “unoccupied” leaf node of
the tree

if the number of users exceeds 2d, then a new root node can be
created

this increases the depth d by one, and allows the number of users to
be doubled

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 350 / 424

Multicast Security Copyright Protection

Copyright Protection

protection against copyright violation is an important, but very
difficult, challenge

digital content can easily be copied and transmitted over computer
networks

content may be encrypted before it is transmitted

for example, broadcast encryption protects encrypted content (i.e.,
unauthorized users cannot decrypt it)

however, all content must eventually be decrypted in order to be
useful

after content is decrypted, it can potentially be copied

“hardware-based” solutions provide a limited amount of protection

other approaches include algorithms for tracing

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 351 / 424

Multicast Security Copyright Protection

Two Types of Copyright Violation

Here are two potential threats:

illegal content redistribution

Decrypted content can be copied and transmitted to others,
for example in an illegal pirate broadcast.

illegal key redistribution

Here we are assuming that content is encrypted. The keys
used to decrypt the content may be copied and distributed,
or they may be used to create a pirate decoder which can
subsequently be used to illegally decrypt encrypted content.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 352 / 424

Multicast Security Copyright Protection

Fingerprinting

suppose that every copy of some digital data, D, contains a different
fingerprint, F

for example, there might be 1 Mb of binary data, and the fingerprint
might consist of 100 “special” bits “hidden” in the data

the vendor can maintain a database of all the fingerprints, and the
owners of the corresponding copies of the data

then any exact copy can traced back to its owner

potential problems include the following:
I if the fingerprint is easily recognized, then it can be modified or

destroyed, thus making the data impossible to trace
I coalitions may be able to recognize fingerprints, even if individual uisers

cannot do so

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 353 / 424

Multicast Security Copyright Protection

Mathematical Model

for concreteness, suppose that (a copy of) the data, D, consists of L
bits of content, say C, and an `-bit fingerprint, F , i.e., D = (C,F)

all copies of D have the same content but different fingerprints:
D1 = (C,F1), D2 = (C,F2), . . .

the fingerprint bits always occur in the same (secret) positions in all
copies of the data; e.g., bits bi1 , . . . , bi` are fingerprint bits

fingerprinting problems
are usually studied assuming that a certain marking assumption holds:

Given some number of copies of the data, say
D1, D2, . . . , Dw, the only bits that can be identified as
fingerprint bits are those bits b such that Di[b] 6= Dj [b] for
some i, j.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 354 / 424

Multicast Security Copyright Protection

Possible Attacks

the marking assumption implies that the content is irrelevant, and the
problem reduces to studying properties of the fingerprints

given w copies of the data, some bits can be identified as fingerprint
bits

a new “pirate” copy can be constructed, by setting values of these
identified bits to be 0 or 1 arbitrarily

the resulting data D′ = (C,F ′), where F ′ is a newly created hybrid
fingerprint

the fundamental question is whether a hybrid fingerprint can be
“traced” if the fingerprints are constructed in a suitable way

these concepts can be generalized to non-binary data (i.e., data
consisting of strings over a specified alphabet of size q, say)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 355 / 424

Multicast Security Copyright Protection

Hybrid Fingerprints

an (`, n, q)-code is a subset C ⊆ Q` such that |Q| = q and |C| = n

let C0 ⊆ C
define desc(C0) to consist of all `-tuples f = (f1, . . . , f`) such that,
for all 1 ≤ i ≤ `, there exists a codeword c = (c1, . . . , c`) ∈ C0 such
that fi = ci

for example,

desc({(1, 1, 2), (2, 3, 2)}) = {(1, 1, 2), (2, 3, 2), (1, 3, 2), (2, 1, 2)}

desc(C0) consists of all the hybrid fingerprints that can be
constructed from the fingerprints in C0

the codewords in C0 are called the parents of the codewords in
desc(C0)\C0

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 356 / 424

Multicast Security Copyright Protection

Descendant Codes and Suspect Coalitions

for an integer w ≥ 2, the w-descendant code of C, denoted
descw(C), consists of the following set of `-tuples:

descw(C) =
⋃

C0⊆C,|C0|≤w

desc(C0)

the w-descendant code consists of all hybrid fingerprints that could be
produced by a coalition of size at most w

suppose that f ∈ descw(C)
define the set of suspect coalitions as follows:

suspw(f) = {C0 ⊆ C : |C0| ≤ w, f ∈ desc(C0)}

C is a w-identifiable parent property code (w-IPP code) provided
that, for all f ∈ descw(C), there exists a codeword c ∈ C such that
c ∈ C0 for all C0 ∈ suspw(f)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 357 / 424

Multicast Security Copyright Protection

An Example

We present a (3, 6, 3) code, and consider coalitions of size at most 2:

c1 = (0, 1, 1), c2 = (1, 0, 1), c3 = (1, 1, 0),
c4 = (2, 0, 2), c5 = (1, 0, 2), c6 = (2, 1, 0)

consider f1 = (1, 1, 1)

susp2(f1) = {{1, 2}, {1, 3}, {2, 3}, {1, 5}, {2, 6}}, which violates the
2-IPP property

consider f2 = (2, 1, 2)

susp2(f2) = {{1, 4}, {3, 4}, {4, 6}, {5, 6}}, which also violates the
2-IPP property

the code is not a 2-IPP code

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 358 / 424

Multicast Security Copyright Protection

Alternative Definition of IPP Code

an (`, n, q)-code is a w-IPP code if and only if⋂
C0∈suspw(f)

C0 6= ∅

for all f ∈ descw(C)
given any hybrid fingerprint f which was created by a coalition of size
at most w in a w-IPP code, any codeword in the above-defined
intersection is an identifiable parent

the w-IPP property means that at least one parent is identifiable

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 359 / 424

Multicast Security Copyright Protection

An Example

We present a (3, 7, 5) 2-IPP code:

c1 = (0, 0, 0), c2 = (0, 1, 1), c3 = (0, 2, 2), c4 = (1, 0, 3),
c5 = (2, 0, 4), c6 = (3, 3, 0), c7 = (4, 4, 0)

suppose that f = (f1, f2, f3) is a hybrid fingerprint

if any co-ordinate of f is non-zero, then at least one parent of f can
be identified:

f1 = 1⇒ c4; f1 = 2⇒ c5; f1 = 3⇒ c6; f1 = 4⇒ c7
f2 = 1⇒ c2; f2 = 2⇒ c3; f2 = 3⇒ c6; f2 = 4⇒ c7
f3 = 1⇒ c2; f3 = 2⇒ c3; f3 = 3⇒ c4; f3 = 4⇒ c5

finally, if f = (0, 0, 0), then c1 must be a parent

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 360 / 424

Multicast Security Copyright Protection

IPP Codes

in general, it is not an easy task
I to construct a w-IPP code;
I to verify whether a given code is a w-IPP code; or
I to find an efficient algorithm to identify a parent, given an `-tuple in

the w-descendant code of a w-IPP code

it is of interest to design w-IPP codes for which efficient
parent-identifying algorithms can be constructed

we will pursue these questions in the easiest case, w = 2

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 361 / 424

Multicast Security Copyright Protection

Perfect Hash Families

an (n,m,w)-perfect hash family is a set of functions, say F , such
that |X| = n, |Y | = m, f : X → Y for each f ∈ F , and for any
X1 ⊆ X such that |X1| = w, there exists at least one f ∈ F such
that f |X1 is one-to-one

when |F| = N , an (n,m,w)-perfect hash family will be denoted by
PHF(N ;n,m,w).

a PHF(N ;n,m,w) can be depicted as an n×N matrix with entries
from Y , having the property that in any w rows there exists at least
one column such that the w entries in the given w rows are
distinct

perfect hash families have been widely studied in the context of
information retrieval algorithms

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 362 / 424

Multicast Security Copyright Protection

Separating Hash Families

an (n,m, {w1, w2})-separating hash family is a set of functions, say
F , such that |X| = n, |Y | = m, f : X → Y for each f ∈ F , and for
any X1, X2 ⊆ X such that |X1| = w1, |X2| = w2 and X1 ∩X2 = ∅,
there exists at least one f ∈ F such that

{f(x) : x ∈ X1} ∩ {f(x) : x ∈ X2} = ∅

the notation SHF(N ;n,m, {w1, w2}) will be used to denote an
(n,m, {w1, w2})-separating hash family with |F| = N .

an SHF(N ;n,m, {w1, w2}) can be depicted as an n×N matrix with
entries from the set Y , having the property that in any w1 rows and
any w2 disjoint rows there exists at least one column such that the
entries in the given w1 rows are distinct from the entries in the
given w2 rows

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 363 / 424

Multicast Security Copyright Protection

An Example

Consider the following 7 by 3 array

0 0 0

0 1 1

0 2 2

1 0 3

2 0 4

3 3 0

4 4 0

the above array is a PHF(3; 7, 5, 3)

it is also an SHF(3; 7, 5, {2, 2})
it is not a PHF(3; 7, 5, 4) (consider rows 1, 2, 4 and 6)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 364 / 424

Multicast Security Copyright Protection

2-IPP Codes

we will derive an efficient algorithm to determine if a given (`, n, q)
code, C, is a 2-IPP code

suppose the codewords are written in the form of an n by ` array, say
A(C)
suppose that A(C) is not a PHF(`;n, q, 3)

I then there exist three rows, r1, r2, r3 of A that violate the PHF
property

I for every column c, let fc be an element that is repeated (i.e., it occurs
in at least two of the three given rows in column c)

I define f = (f1, . . . , f`)
I clearly {r1, r2}, {r1, r3}, {r2, r3} ∈ suspw(f)
I therefore, C is not a 2-IPP code

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 365 / 424

Multicast Security Copyright Protection

2-IPP Codes (cont.)

suppose that A(C) is not an SHF(`;n, q, {2, 2})
I then there exist two sets of two rows of A(C), {r1, r2} and {r3, r4},

that violate the SHF property
I for every column c, let fc be an element such that it occurs in one of

rows r1 and r2, and in one of rows r3 and r4, in column c
I define f = (f1, . . . , f`)
I clearly {r1, r2}, {r3, r4} ∈ suspw(f)
I therefore, C is not a 2-IPP code

hence, a necessary condition for C to be a 2-IPP code is that A(C) is
simultaneously a PHF(`;n, q, 3) and an SHF(`;n, q, {2, 2})

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 366 / 424

Multicast Security Copyright Protection

2-IPP Codes (cont.)

We show that the converse is also true.

We assume that C is not a 2-IPP code, and prove that A(C) is not an
SHF(`;n, q, {2, 2}) or A(C) is not a PHF(`;n, q, 3).

Suppose f ∈ desc2(C) and ∩C0∈susp2(f)C0 = ∅.
Let e = uv ∈ susp2(f).

There exists a subset in susp2(f) not containing u, say u′v′.

If {u, v} ∩ {u′, v} = ∅, then A(C) is not an SHF(`;n, q, {2, 2}).

Therefore we can assume that v = v′.

There also exists a subset in susp2(f) not containing v, say u′′v′′.

If {u, v} ∩ {u′, v} = ∅, then A(C) is not an SHF(`;n, q, {2, 2}).

Therefore we can assume that u = u′′.

If u′ 6= v′′, then the fact that uv′′, u′v ∈ susp2(f) shows that A(C) is
not an SHF(`;n, q, {2, 2}).

Finally, if u′ = v′′, then the fact that uv, uv′′, vv′′ ∈ susp2(f) shows
that A(C) is not a PHF(`;n, q, 3).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 367 / 424

Multicast Security Copyright Protection

2-IPP Codes (cont.)

So we know that C is a 2-IPP code if and only if A(C) is
simultaneously a PHF(`;n, q, 3) and an SHF(`;n, q, {2, 2})
as a corollary, an (`, n, 2) code cannot be a 2-IPP code if n ≥ 3

an (`, n, q) code, C, can be tested to see if it is a 2-IPP code in time
O(n4`)

if C is a 2-IPP code and f ∈ desc2(C)\C, then we can determine
susp2(f) in time O(n2`)

there are two possible cases: either susp2(f) consists of a single set of
two codewords, both of which are identifiable parents; or susp2(f)
consists of a two or more sets of two codewords, all of which contain
a fixed codeword (i.e., we have one identifiable parent)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 368 / 424

Multicast Security Copyright Protection

A Construction For 2-IPP Codes with ` = 3

suppose that q = r2 + 2r

define

S = {1, . . . , r} (|S| = r)

M = {r + 1, . . . , 2r} (|M | = r)

L = {2r + 1, . . . , q} (|L| = r2)

C1 = {(s1, s2, rs1 + s2 + r) : s1, s2 ∈ S} ⊆ S × S × L
C2 = {(m, sr +m, s) : m ∈M, s ∈ S} ⊆M × L× S
C3 = {(rm1 +m2 − r2,m1,m2) : m1,m2 ∈M} ⊆ L×M ×M

C1 ∪ C2 ∪ C3 is a 2-IPP code with n = 3r2

this code has an (efficient) O(1) time algorithm to find an identifiable
parent

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 369 / 424

Multicast Security Copyright Protection

An Example

We present a (3, 27, 15) 2-IPP code:

c1 = (1, 1, 7), c2 = (1, 2, 8), c3 = (1, 3, 9),
c4 = (2, 1, 10), c5 = (2, 2, 11), c6 = (2, 2, 12),
c7 = (3, 1, 13), c8 = (3, 2, 14), c9 = (3, 3, 15),

c10 = (4, 7, 1), c11 = (5, 8, 1), c12 = (6, 9, 1),
c13 = (4, 10, 2), c14 = (5, 11, 2), c15 = (6, 12, 2),
c16 = (4, 13, 3), c17 = (5, 14, 3), c18 = (6, 15, 3),

c19 = (7, 4, 4), c20 = (8, 4, 5), c21 = (9, 4, 6),
c22 = (10, 5, 4), c23 = (11, 5, 5), c24 = (12, 5, 6),
c25 = (13, 6, 4), c26 = (14, 6, 5), c27 = (15, 6, 6)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 370 / 424

Multicast Security Copyright Protection

Finding an Identifiable Parent

if f = (f1, f2, f3) has a co-ordinate in L, then a parent is easily
identified

I for example, suppose that r = 3 (so q = 15) and f2 = 13
I then 3s+m = 13, where s,m ∈ {1, 2, 3}, so s = 3, m = 4 and hence

(4, 13, 3) is an identifiable parent

if f has no co-ordinate in L, then it is possible to compute i 6= j such
that the two parents of f are in Ci and Cj
the parent that contributed two co-ordinates to f can then be
identified

I for example, suppose that f = (1, 3, 2)
I the parents of f are from C1 and C2
I the parent from C1 contributes f1 and f2
I hence (1, 3, 9) is an identifiable parent

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 371 / 424

Multicast Security Copyright Protection

A Tracing Algorithm

Let (x1, x2, x3) be the input to the tracing algorithm. If
(x1, x2, x3) ∈ desc2(C), then there are six cases that can occur:

(1) If x1 ∈ L, compute m2 ∈M such that m2 ≡ x1 (mod n).
Then compute m1 = (x1 + r2 −m2)/r. The codeword
(x1,m1,m2) is a parent of (x1, x2, x3).

(2) If x2 ∈ L, compute m ∈M such that m ≡ x2 (mod n).
Then compute s = (x2 −m)/r. The codeword (m,x2, s) is
a parent of (x1, x2, x3).

(3) If x3 ∈ L, compute s2 ∈ S such that s2 ≡ x3 (mod n).
Then compute s1 = (x3 − s2 − r)/r. The codeword
(s1, s2, x3) is a parent of (x1, x2, x3).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 372 / 424

Multicast Security Copyright Protection

A Tracing Algorithm (cont.)

(4) If x1, x2 ∈ S, let s1 = x1 and s2 = x2. The codeword
(s1, s2, rs1 + s2 + r) = (x1, x2, rx1 + x2 + r) is a parent of
(x1, x2, x3).

(5) If x2, x3 ∈M , let m1 = x2 and m2 = x3. The codeword
(rm1 +m2 − r2,m1,m2) = (rx2 + x3 − r2, x2, x3) is a
parent of (x1, x2, x3).

(6) If x1 ∈M and x3 ∈ S, let m = x1 and s = x3. The
codeword (m, sr +m, s) = (x1, rx3 + x1, x3) is a parent of
(x1, x2, x3).

(7) If none of the previous six cases arise, then
(x1, x2, x3) 6∈ desc2(C).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 373 / 424

Multicast Security Copyright Protection

Tracing Illegally Redistributed Keys

suppose that every user in a network is given a decoder box that
allows encrypted broadcasts to be decrypted

i.e., we have a BES in which every user can decrypt the broadcast

every decoder box contains a different collection of keys

a coalition of w bad guys might create a pirate decoder by
combining keys from their decoder boxes

the keys in each decoder box can be thought of as a codeword in a
certain code, and the keys in a pirate decoder can be thought of as a
codeword in the w-descendant code

if the code is traceable (e.g., if it satisfies the w-IPP property), then a
pirate decoder can be traced back to at least one member of the
coalition that created it

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 374 / 424

Multicast Security Copyright Protection

The Broadcast Encryption Scheme

the TA chooses ` sets of keys, denoted K1, . . . ,K`, where each Ki
consists of q keys chosen from Zm, for some fixed m

for 1 ≤ i ≤ `, let Ki = {ki,j : 1 ≤ j ≤ q}
a decoder box contains ` keys, one from each set Ki
the secret key K ∈ Zp (which is used to encrypt the broadcast
content, M) is split into ` shares using an (`, `) threshold scheme

the shares are s1, . . . , s`, where s1 + · · ·+ s` ≡ K (mod m)

K is used to encrypt M , and for 1 ≤ i ≤ `, every ki,j is used to
encrypt si

the entire broadcast consists of

eK(M) and (eki,j (si) : 1 ≤ i ≤ `, 1 ≤ j ≤ q)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 375 / 424

Multicast Security Copyright Protection

Decoder Boxes and Codes

every user can perform the following operations:
1 decrypt all ` shares of K,
2 reconstruct K, and
3 decrypt M

each decoder box corresponds to a codeword c ∈ Q`, where
Q = {1, . . . , q}, in an obvious way:

{k1,j1 , k2,j2 , . . . , k`,j`} ↔ (j1, j2, . . . , j`)

the keys in a pirate decoder form a codeword in the w-descendant
code

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 376 / 424

Additional Topics

Table of Contents

8 Additional Topics
Error Decodable Secret Sharing
Proof-of-retrievability schemes for cloud storage

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 377 / 424

Additional Topics Error Decodable Secret Sharing

Secret Sharing Scheme

A bank has 5 managers.

No single manager is trusted to open the safe.

Any pair of managers are allowed to open it together.

M1

M2

M3

M4

M5

s

public line

(2, 5)-threshold scheme

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 378 / 424

Additional Topics Error Decodable Secret Sharing

(k, n)-Threshold Scheme (Blakley, Shamir 1979)

linear scheme: (over GF(p))

M =


1 1 1 · · · 1
1 2 4 · · · 2k−1

...
...

1 i i2 · · · ik−1

...
...



secret: s
randomisation:
r = (r1 = s, r2, . . . , rk)
shares: Mi · r= f(i)

f(x) =
r1 + r2x+ r3x

2 + · · ·+ rkx
k−1

k∑
j=1

αijMij = (1, 0, . . . , 0)⇒
k∑
j=1

αij (Mij · r) = (1, 0, . . . , 0) · r = s

M has rank k (Vandermonde)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 379 / 424

Additional Topics Error Decodable Secret Sharing

More General Schemes

Set of participants: S = {1, 2, . . . , n}

Definition (monotone access structure)

Collection Σ of subsets of S such that A′ ∈ Σ whenever A′ ⊇ A and
A ∈ Σ.

A ∈ Σ authorised set

B ∈ Σc := P(S) \ Σ unauthorised set

Definition (linear secret sharing scheme realising Σ)

n′ × d matrix M over GF (p) where
(1, 0, 0, . . . , 0) ∈ span(rows I1, I2, . . . , Ij) iff {i1, i2, . . . , ij} ∈ Σ.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 380 / 424

Additional Topics Error Decodable Secret Sharing

Example

n = 8, n′ = 12
Σ : {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {8, 1}}

6 5

7

8

4

3

1 2

M =



0 1 0 0 0
0 0 1 0 0

1 0 1 0 0

0 0 1 0 0
0 0 0 1 0

1 0 0 1 0

0 0 0 1 0
0 0 0 0 1

1 0 0 0 1

0 0 0 0 1
0 1 0 0 0

1 1 0 0 0


D.R. Stinson (University of Waterloo) CS 758 Spring 2016 381 / 424

Additional Topics Error Decodable Secret Sharing

Ramp Schemes

Definition (perfect secret sharing scheme)

unauthorised sets are unable to determine any information about s

Example ((t, k, n)-ramp scheme)

Take a (k, n)-threshold scheme and define the secret to be
r1, r2, r3, . . . , rk−t (i.e. the first k − t coefficients of f).
Then:

Any k users can recover the secret.

Any set of at most t users learns no information about the secret.

If k > t+ 1, then the ramp scheme is not perfect.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 382 / 424

Additional Topics Error Decodable Secret Sharing

Information Rate

Definition (information rate of a secret sharing scheme)

(size of the secret)/(size of the largest share)

Every perfect scheme has information rate at most 1.

An ideal secret sharing scheme has information rate 1.

Shamir’s secret sharing scheme is ideal.

The previously described (t, k, n)-ramp scheme has (optimal)
information rate k − t.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 383 / 424

Additional Topics Error Decodable Secret Sharing

(k, n)-Threshold Schemes and Reed-Solomon Codes

r→ f(x) = s+ r2x+ r3x
2 + · · ·+ rkx

k−1

→ shares (f(1), f(2), . . . , f(n))

The code

C = {(f(1), f(2), . . . , f(n)) : f ∈ GF(p)[x], deg f < k}

is an [n, k, n− k + 1] Reed-Solomon code.

Conclusion: Given the shares of all participants, the secret can be
recovered even if (n− k)/2 of the shares are corrupted.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 384 / 424

Additional Topics Error Decodable Secret Sharing

Error Correction for General Schemes?

Kaoru Kurosawa: eprint. iacr. org/ 2009/ 263

General Error Decodable Secret Sharing Scheme and Its Application

e.g. n = 8, access structure
Σ : {{1, 2}, {2, 3}, {3, 4}, {4, 5}{5, 6}, {6, 7}, {7, 8}, {8, 1}}

(s1, s2, s3, s4, s5, s6, s7, s8) share vector
↓

(s1, s2,A, s4,A, s6,A, s8) corrupt positions of B ∈ Σc

↓
(t1, t2, t3, t4, t5, t6, t7, t8) corrupted share vector

Given (t1, t2, t3, t4, t5, t6, t7, t8) can you recover the secret?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 385 / 424

eprint.iacr.org/2009/263

Additional Topics Error Decodable Secret Sharing

General Adversary Structures

Σ =access structure

Γ =monotone adversary structure

Definition (monotone adversary structure)

Collection Γ of subsets of S such that A′ ∈ Γ whenever A′ ⊆ A and
A ∈ Γ.

Examples:

Γ = Σc (e.g., as considered by Kurosawa)

Γ is the collection of subsets of size at most t

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 386 / 424

Additional Topics Error Decodable Secret Sharing

Γ-Error Decodable Secret Sharing

Γ-error decodable secret sharing scheme realising an access structure Σ: if
shares belonging to members of a set W ∈ Γ are corrupted then the
following decoding algorithm succeeds in recovering the correct secret.

Definition (decoding algorithm)

Input: A possibly corrupted share list t = (t1, t2, . . . , tn).

1 ∀ possible randomisation vectors r compute the share list
v = (v1, v2, . . . , vn) ∈ GF(p)n.
If {j : vj 6= tj} ∈ Γ then r1 is a candidate secret.

2 If ∃ unique candidate secret s, return s.

3 If there are no candidate secrets, or if there is more than one
candidate secret, return ⊥.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 387 / 424

Additional Topics Error Decodable Secret Sharing

A Necessary and Sufficient Condition for
Γ-Error Decodability

Definition (condition Q(Γ,Γ,Σc))

∀ W1,W2 ∈ Γ, B ∈ Σc we have W1 ∪W2 ∪B 6= S.

Theorem (Fehr-Maurer ’02)

A secret sharing scheme is Γ-Error Decodable if and only if condition
Q(Γ,Γ,Σc) is satisfied.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 388 / 424

Additional Topics Error Decodable Secret Sharing

Γ-Error Decodability (cont.)

Proof:

X Y ZX Y Z

X Y ′ Z

X ′ Y ′ ZX ′ Y ′ Z

↑

↓
t →⊥t →⊥
↓

↑

v1

v2

→ s1

→ s2 6= s1

v1

v2

→ s1

→ s2 6= s1

W1 W2 B

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 389 / 424

Additional Topics Error Decodable Secret Sharing

Γ-Error Decodability (cont.)

Proof: (⇒):

X Y Z

X Y Z

X Y ′ Z

X ′ Y ′ Z

X ′ Y ′ Z

↑

↓
t →⊥t →⊥
↓

↑

v1

v2

→ s1

→ s2 6= s1

v1

v2

→ s1

→ s2 6= s1

W1 W2 B

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 389 / 424

Additional Topics Error Decodable Secret Sharing

Γ-Error Decodability (cont.)

Proof: (⇒):

X Y Z

X Y Z

X Y ′ Z

X ′ Y ′ Z

X ′ Y ′ Z

↑

↓
t →⊥

t →⊥
↓

↑

v1

v2

→ s1

→ s2 6= s1

v1

v2

→ s1

→ s2 6= s1

W1 W2 B

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 389 / 424

Additional Topics Error Decodable Secret Sharing

Γ-Error Decodability (cont.)

Proof: (⇐):

X Y ZX Y Z

X Y ′ Z

X ′ Y ′ ZX ′ Y ′ Z

↑

↓
t →⊥

t →⊥

↓

↑

v1

v2

→ s1

→ s2 6= s1

v1

v2

→ s1

→ s2 6= s1

W1 W2 B

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 389 / 424

Additional Topics Error Decodable Secret Sharing

Γ-Error Decodability (cont.)

Proof: (⇐):

X Y Z

X Y Z

X Y ′ Z

X ′ Y ′ Z

X ′ Y ′ Z

↑

↓
t →⊥

t →⊥
↓

↑

v1

v2

→ s1

→ s2 6= s1

v1

v2

→ s1

→ s2 6= s1

W1 W2 B

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 389 / 424

Additional Topics Error Decodable Secret Sharing

Efficiency of Error Decoding

Generating the shares for any linear secret-sharing scheme is efficient.

There are efficient algorithms for decoding Reed-Solomon codes.

For adversary structures other than the threshold case it is not
generally known whether there exists an error decodable secret
sharing scheme with efficient decoding.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 390 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Error Decodable
Scheme (Generalisation)

Takes any linear Σc-error decodable secret sharing scheme and constructs
a Σc-error decodable secret sharing scheme with polynomial time
decoding∗, but having larger shares.

* polynomial in the total size of the shares. If the total size of the shares is
polynomial in the number of participants, (e.g. for an ideal scheme) then
Kurosawa’s scheme can be decoded in time polynomial in the number of
participants.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 391 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Error Decodable
Scheme (Generalisation)

Takes any linear Σc-error decodable secret sharing scheme and constructs
a Σc-error decodable secret sharing scheme with polynomial time
decoding∗, but having larger shares.

* polynomial in the total size of the shares. If the total size of the shares is
polynomial in the number of participants, (e.g. for an ideal scheme) then
Kurosawa’s scheme can be decoded in time polynomial in the number of
participants.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 391 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Scheme

s

↓
v1 v2 v3 v4 . . . vn level 1

w1 v2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

level 1

level 2

w1w2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

level 1

level 2

w1w2w3w4 . . . wn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

u3
1 u

3
2 u

3
3 u

3
4
. . . u3

n

un1 u
n
2 u

n
3 u

n
4

. . . unn

...

level 1

level 2

M is used to generate share vector
v corresponding to secret s

For i = 1, 2, . . . , n share vi is
converted to new secret vector
wi and M is used to generate
corresponding share vector ui.
Note: wi includes the random-
ness used to generate ui.

Participant j receives share
⋃n
i=1 u

i
j ∪wj , i.e., the jth column of data.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 392 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Scheme

s

↓

v1 v2 v3 v4 . . . vn level 1

w1 v2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

level 1

level 2

w1w2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

level 1

level 2

w1w2w3w4 . . . wn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

u3
1 u

3
2 u

3
3 u

3
4
. . . u3

n

un1 u
n
2 u

n
3 u

n
4

. . . unn

...

level 1

level 2

M is used to generate share vector
v corresponding to secret s

For i = 1, 2, . . . , n share vi is
converted to new secret vector
wi and M is used to generate
corresponding share vector ui.
Note: wi includes the random-
ness used to generate ui.

Participant j receives share
⋃n
i=1 u

i
j ∪wj , i.e., the jth column of data.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 392 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Scheme

s

↓

v1 v2 v3 v4 . . . vn level 1w1 v2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

level 1

level 2

w1w2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

level 1

level 2

w1w2w3w4 . . . wn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

u3
1 u

3
2 u

3
3 u

3
4
. . . u3

n

un1 u
n
2 u

n
3 u

n
4

. . . unn

...

level 1

level 2

M is used to generate share vector
v corresponding to secret s

For i = 1, 2, . . . , n share vi is
converted to new secret vector
wi and M is used to generate
corresponding share vector ui.
Note: wi includes the random-
ness used to generate ui.

Participant j receives share
⋃n
i=1 u

i
j ∪wj , i.e., the jth column of data.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 392 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Scheme

s

↓

v1 v2 v3 v4 . . . vn level 1w1 v2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

level 1

level 2

w1w2 v3 v4 . . . vn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

level 1

level 2

w1w2w3w4 . . . wn

u1
1 u

1
2 u

1
3 u

1
4
. . . u1

n

u2
1 u

2
2 u

2
3 u

2
4
. . . u2

n

u3
1 u

3
2 u

3
3 u

3
4
. . . u3

n

un1 u
n
2 u

n
3 u

n
4

. . . unn

...

level 1

level 2

M is used to generate share vector
v corresponding to secret s

For i = 1, 2, . . . , n share vi is
converted to new secret vector
wi and M is used to generate
corresponding share vector ui.
Note: wi includes the random-
ness used to generate ui.

Participant j receives share
⋃n
i=1 u

i
j ∪wj , i.e., the jth column of data.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 392 / 424

Additional Topics Error Decodable Secret Sharing

Kurosawa’s Polynomial Time Scheme -Efficient
Decoding

1 ∀ i, generate share vector corresponding to secret vector wi, compare
with other participants’ level 2 shares.

2 If the set of positions where they differ is not in Γ, conclude that wi

is corrupted.
Note: This can be done efficiently if Γ = Σc because the scheme is
linear.

3 Use uncorrupted level 1 shares to recover s.

received shares

w1w2w3w4 . . . wn

t11 t12 t13 t14 . . . t1n
t21 t22 t23 t24 . . . t2n =? u2

1 u
2
2 u

2
3 u

2
4
. . . u2

n

w2

↓

...

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 393 / 424

Additional Topics Error Decodable Secret Sharing

Reducing the Storage Requirements of Kurosawa’s
Scheme

How to reduce the size of the level 2 shares:

The level 2 schemes need not be perfect; they are only used to
authenticate the level 1 shares.

It suffices for the level 2 shares to be assigned using any (possibly
non-perfect) secret-sharing scheme with the following properties:

1 Sets of participants in Σc learn no information about the secret.
2 For any two adversary sets W1,W2 ∈ Γ, the participants in
S \ (W1 ∪W2) should be able to recover the secret (this property is
required to ensure that a level 2 share list, corrupted by an adversary
set in Γ, determines a unique level 1 secret).

Often, we can replace M by an appropriate ramp scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 394 / 424

Additional Topics Error Decodable Secret Sharing

Reducing the Storage Requirements of Kurosawa’s
Scheme (cont.)

How to reduce the number of level 2 schemes required:

A ⊆ S := participants whose level 1 shares are shared using level 2
schemes.

Decoding succeeds if we can find an authorised set whose shares are
confirmed to be uncorrupted:

∀W ⊆ A with W ∈ Γ we have A \W ∈ Σ.

Corollary: The number of level 2 schemes required is upper bounded by

1 + max
W∈Γ
|W |+ max

B∈Σc
|B|.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 395 / 424

Additional Topics Error Decodable Secret Sharing

Example
n = 8, Σ : {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {8, 1}}

6 5

7

8

4

3

1 2

Γ: single participants

It suffices to provide level 2 sharings for {1, 2, 3, 4} (given one
adversary in {1, 2, 3, 4}, there is still an uncorrupted authorised set in
{1, 2, 3, 4}).
(This cuts the number of level 2 schemes needed by half.)

We can use a (4, 6, 8)-ramp scheme (|S\(W1 ∪W2)| = 6, and the
maximum size of an unauthorised subset is 4).
(This requires at most half the storage of any perfect scheme.)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 396 / 424

Additional Topics Error Decodable Secret Sharing

One-Round (n, t)-Perfectly Secure Message
Transmission (Dolev, Dwark, Waarts, Yung 1993)

Alice transmits a message s to Bob by sending information over n
channels so that:

Bob recovers s even if Eve corrupts ≤ t of the channels;

Eve learns no information about s from the information Alice sent on
the channels she corrupts.

A (n, t)-PSMT scheme exists iff n ≥ 3t+ 1. (Dolev et al.)

Desmedt, Wang and Burmester (2005):
If Eve corrupts channels corresponding to a set in Γ then one-round
PSMT is possible iff condition Q(Γ,Γ,Γ) holds.

When Γ is a threshold structure, the Dolev et al result is recovered.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 397 / 424

Additional Topics Error Decodable Secret Sharing

One-Round (Γ,Σc)-PSMT

We consider a more general setting:

Bob correctly recovers s if the information sent on a set W ∈ Γ of
channels is changed.

Eve learns nothing about s if she eavesdrops on a set D ∈ Σc of
channels.

Theorem

A one-round (Γ,Σc)-PSMT scheme exists iff condition Q(Γ,Γ,Σc) holds.

Proof: (⇐): Use a Γ-error decodable secret sharing scheme realising Σ,
send a share down each channel!
(⇒): Use the proof technique from the error-decodability theorem.
Corollary: A one-round (Γ,Σc)-PSMT scheme exists iff there exists a
Γ-error decodable secret sharing scheme realising Σ.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 398 / 424

Additional Topics Error Decodable Secret Sharing

So are they really just the same thing?

Not quite...

Theorem

A one-round (Γ,Σc)-PSMT scheme is equivalent to a (not necessarily
perfect) secret-sharing scheme where

the authorised sets are those of the form S \ (W1 ∪W2) with
W1,W2 ∈ Γ,

the unauthorised sets belong to Σc.

Corollary: A one-round (n, t)-PSMT scheme is equivalent to a
(t, n− 2t, n)-ramp scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 399 / 424

Additional Topics Error Decodable Secret Sharing

So are they really just the same thing?

Not quite...

Theorem

A one-round (Γ,Σc)-PSMT scheme is equivalent to a (not necessarily
perfect) secret-sharing scheme where

the authorised sets are those of the form S \ (W1 ∪W2) with
W1,W2 ∈ Γ,

the unauthorised sets belong to Σc.

Corollary: A one-round (n, t)-PSMT scheme is equivalent to a
(t, n− 2t, n)-ramp scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 399 / 424

Additional Topics Error Decodable Secret Sharing

So are they really just the same thing?

Not quite...

Theorem

A one-round (Γ,Σc)-PSMT scheme is equivalent to a (not necessarily
perfect) secret-sharing scheme where

the authorised sets are those of the form S \ (W1 ∪W2) with
W1,W2 ∈ Γ,

the unauthorised sets belong to Σc.

Corollary: A one-round (n, t)-PSMT scheme is equivalent to a
(t, n− 2t, n)-ramp scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 399 / 424

Additional Topics Error Decodable Secret Sharing

So are they really just the same thing?

Not quite...

Theorem

A one-round (Γ,Σc)-PSMT scheme is equivalent to a (not necessarily
perfect) secret-sharing scheme where

the authorised sets are those of the form S \ (W1 ∪W2) with
W1,W2 ∈ Γ,

the unauthorised sets belong to Σc.

Corollary: A one-round (n, t)-PSMT scheme is equivalent to a
(t, n− 2t, n)-ramp scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 399 / 424

Additional Topics Error Decodable Secret Sharing

Efficiency of One-Round PSMT: Number of
Channels

S -set of channels, Γ -active adversary, Σc -passive adversary

The minimum number of channels needed for one-round (Γ,Σc)-PSMT
is |T |, where T ⊆ S is the smallest subset for which Q(ΓT ,ΓT ,Σ

c
T)

holds.
Note: ΓT denotes the restriction of Γ to T , and Σc

T denotes the
restriction of Σc to T .

Corollary:
|T | ≤ 1 + 2max

W∈Γ
|W |+ max

B∈Σc
|B|.

(In the threshold case this reproves the result that one-round (n, t)-PSMT
is possible iff n ≥ 3t+ 1.)

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 400 / 424

Additional Topics Error Decodable Secret Sharing

Efficiency of One-Round PSMT: Transmitted Info

Definition (overhead)

(total information sent over all channels)/(size of message s)

Desmedt et al. describe a construction for a one-round (Γ,Γ)-PSMT
for any Γ satisfying Q(Γ,Γ,Γ) that’s equivalent to a known secret
sharing scheme construction.

Kurosawa points out that in the threshold case this has a worse
overhead than if an ideal threshold scheme is used.

You can do better still if you use a ramp scheme!

Corollary (Fitzi et al): The optimal overhead of a one-round (n, t)-PSMT
scheme is n/(n− 3t).
Proof: Use the equivalence with ramp schemes and the fact that the
optimal information rate of a (t, k, n)-ramp scheme is k − t (Jackson &
Martin).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 401 / 424

Additional Topics Error Decodable Secret Sharing

Open Problems

Do there exist constructions of one-round (Γ,Σc)-PSMT schemes
with polynomial time message recovery for general Γ, Σ with lower
communication overheads?

Is it possible to determine in general which classes of Γ and Σ can be
realised by schemes with efficient decoding/message recovery?

Is it possible to find efficient decoding/message recovery techniques
for specific classes of Γ and Σ?

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 402 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

POR schemes

Alice asks a server to store a (possibly large) file (or message) m
(e.g., using cloud storage).

The message m is divided into message blocks that we view as
elements of a finite field.

Typically, the message m will be encoded as M , using a public
error-correcting code such as a Reed-Solomon code.

The code provides redundancy, enabling erasures or corrupted
message blocks in M to be corrected.

Main problem: How can Alice be convinced that the server is storing
the encoded message M correctly?

Typical solution: A challenge-response protocol is periodically invoked
by Alice.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 403 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Bounded-use schemes

We do not assume that Alice is storing m or M .

Alice must precompute and store a fixed number of
challenge-response pairs, before transmitting M to the server .

Alice gains confidence in the server if it is able to respond to all (or
most of) her challenges.

A server who can respond correctly to a large proportion of challenges
should “know” (or be able to compute) the contents of the
unencoded message m (i.e., all the message blocks).

This idea is formalised in the notion of an extractor, in which case we
have a proof-of-retrievability (or POR) scheme.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 404 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Extractors

The Extractor takes as input a description of the server ’s proving
algorithm, denoted P, and then outputs an unencoded message m̂.

Extraction succeeds if m̂ = m.

The success probability of P, denoted succ(P), is the probability that
P gives a correct response for a randomly chosen challenge.

Definition: the POR scheme is (δ, ε)-secure if the Extractor succeeds
with probability at least δ whenever succ(P) ≥ ε.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 405 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Some previous related work

Blum et al. (1994) introduced memory checking.

Lillibridge et al. (2005) studied internet backup schemes.

Naor and Rothblum (2005) studied online memory checkers and
authenticators and they gave a lower bound on storage requirements
and communication complexity.

Juels and Kaliski (2007) introduced proof of retrievability schemes.

Atieniese et al. (2007) introduced proof of data possession schemes.

Shacham and Waters (2008) gave examples of unbounded-use
schemes along with formal security proofs.

Bowers, Juels, and Oprea (2009) used inner and outer codes to
construct POR schemes.

Dodis, Vadhan and Wichs (2009) gave the first examples of
unconditionally secure POR schemes.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 406 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Three phases in a POR scheme
1 initialisation

Alice server

M = e(m)
M−−−−−→ server constructs P

2 audit
Alice server

ci−−−−−→
ri = P(ci)

ri←−−−−−
Here i = 1, 2,

3 extraction
Alice server Extractor

P−−−−−→
m̂←−−−−−−−−−−−−−−

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 407 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Three phases in a POR scheme
1 initialisation

Alice server

M = e(m)
M−−−−−→ server constructs P

2 audit
Alice server

ci−−−−−→
ri = P(ci)

ri←−−−−−
Here i = 1, 2,

3 extraction
Alice server Extractor

P−−−−−→
m̂←−−−−−−−−−−−−−−

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 407 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Three phases in a POR scheme
1 initialisation

Alice server

M = e(m)
M−−−−−→ server constructs P

2 audit
Alice server

ci−−−−−→
ri = P(ci)

ri←−−−−−

Here i = 1, 2,

3 extraction
Alice server Extractor

P−−−−−→
m̂←−−−−−−−−−−−−−−

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 407 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Our problem setting

We study POR schemes in the setting of unconditional security, where
the adversary is assumed to have unlimited computational capabilities.

We only consider POR schemes where δ = 1, that is, where
extraction is guaranteed to be successful.

The constructions that we utilise for extractors only require black-box
access to the proving algorithm.

In this setting, it turns out that extraction can be interpreted
naturally as nearest-neighbour decoding in a certain code (which we
term a response code).

Error-correcting codes have been used in many constructions of POR
schemes; we propose that error-correcting codes constitute the natural
foundation to construct as well as analyse arbitrary POR schemes.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 408 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Why unconditional security?

Simplicity and mathematical elegance: The schemes are
mathematically elegant as well as easier to understand and analyse
because we are not making use of any additional cryptographic
primitives.

Exact analyses: We can give very simple exact (i.e., non-asymptotic)
analyses of various schemes.

Links with error-correcting codes: The essential role of
error-correcting codes in the design and analysis of POR schemes
becomes clear: codes are not just a method of constructing POR
schemes; rather, every POR scheme gives rise to a code in a natural
way.

Adversarial strength: It is interesting and informative to consider
security against the strongest possible adversary and to prove security
results that do not depend on unproven assumptions.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 409 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Basic Scheme

Initialisation
Given a message m ∈ (Fq)k, encode M as e(m) = M ∈ (Fq)n,
where q is a prime power and n ≥ k. The set of en-
coded messages is the encoded message space. We write
M = (m1, . . . ,mn).
Alice gives M to the server . Alice also generates a random
challenge c ∈ {1, . . . , n} and she stores c and mc.

Challenge-response
Alice gives the challenge c to the server . The server responds
with r = mc. Alice checks that r = mc.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 410 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

The extractor

1 Compute responses to all possible challenges: On input
P, compute the response vector M ′ = (m′1, . . . ,m

′
n),

where m′c = P(c) for all c ∈ {1, . . . , n} (i.e., m′c is the
response from P when it is given the challenge c).

2 Nearest-neighbour decoding: Find an encoded message
M̂ so that dist(M ′, M̂) is minimised, where dist(·, ·)
denotes the hamming distance between two vectors.

3 Output m̂ = e−1(M̂).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 411 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Theorem

Theorem

Suppose that P is a proving algorithm for the Basic Scheme for which

succ(P) > 1− d

2n
,

where the hamming distance of the encoded message space is d. Then the
Extractor will always output m̂ = m.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 412 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Example

Suppose that Alice wants to use the Basic Scheme with q = 210 and
n = 1000 such that the minimum distance of the encoded message
space is 400.

This will guarantee that extraction will be possible whenever
succ(P) > 0.8.

If Alice uses a Reed-Solomon code to encode messages, then
d = n− k + 1, where k is the dimension of the code.

Therefore, k = 601, so the message expansion is

1000

601
≈ 1.67.

The size of a challenge is log2 n = 10 bits and the size of a response
is log2 q = 10 bits.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 413 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Generalisation

We can consider arbitrary challenge-response protocols, where a challenge
will be chosen from a specified challenge space Γ, and the response will be
an element of a response space ∆. The response code consists of all
|Γ|-tuples of elements from ∆ that are obtained as correct responses for
some encoded message M . We can prove a straightforward generalisation
of the previous theorem.

Theorem

Suppose that P is a proving algorithm for a General POR Scheme for
which

succ(P) > 1− d∗

2|Γ|
,

where the hamming distance of the response code is d∗. Then the
Extractor based on nearest neighbour decoding will always output m̂ = m.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 414 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Multiblock Challenge Scheme

Here, a challenge specifies ` indices “all at once”, say i1 < · · · < i`.

|Γ| =
(
n
`

)
.

The response is the `-tuple (mi1 , . . . ,mi`).

If the hamming distance of the encoded message space is d, then the
hamming distance of the response code is

d∗ =

(
n

`

)
−
(
n− d
`

)
.

Therefore, extraction succeeds if

succ(P) >
1

2
+

(
n−d
`

)
2
(
n
`

) .
D.R. Stinson (University of Waterloo) CS 758 Spring 2016 415 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Linear Combination Scheme

A challenge V is a vector in (Fq)n having hamming weight equal to `.

The response is

V ·M =

n∑
i=1

vimi mod q.

|Γ| =
(
n
`

)
(q − 1)` and |∆| = q.

If the hamming distance of the encoded message space is d, then a
very accurate estimate for the hamming distance of the response code
is

d∗ ≈ (q − 1)`+1

q

((
n

`

)
−
(
n− d
`

))
.

Therefore, extraction succeeds if

succ(P) >
1

2
+

1

2

(
1

q
+

(q − 1)
(
n−d
`

)
q
(
n
`

))
.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 416 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Comparison

The Linear Combination Scheme has much smaller responses than the
Multiblock Challenge Scheme (Fq as opposed to (Fq)`).

However, the Linear Combination Scheme has a larger challenge
space than the Multiblock Challenge Scheme (

(
n
`

)
(q − 1)` as opposed

to
(
n
`

)
).

The relative distance of the response codes of the two schemes are
very similar, so the security guarantees of the two schemes are also
very similar.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 417 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Example

Suppose that Alice wants to use the Linear Combination Scheme with
q ≥ 210 and n = 1000.

Her goal is that extraction will be possible whenever succ(P) > 0.8.

Here, d = 50 and ` = 10 will work.

If Alice uses a Reed-Solomon code to encrypt messages, then
k = 951, so the message expansion is

1000

951
≈ 1.05.

The size of a challenge is 178 bits and the size of a response is
log2 q = 10 bits.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 418 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Estimating the success probability of a prover

We have proven that extraction is possible provided that succ(P) is
sufficiently close to 1.

In general, the only way to determine the exact value of succ(P) is to
query P with all the possible challenges (as is done during extraction).

In practice, we would like to be able to estimate succ(P) based on a
relatively small number of challenges.

This can be done using classical statistical techniques such as
hypothesis testing and confidence intervals.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 419 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Hypothesis testing for the Basic Scheme

We know that extraction will be successful in the Basic Scheme if

succ(P) ≥
n− bd2c+ 1

n
.

Denote ω = n− bd2c+ 1.

We wish to distinguish the null hypothesis

H0 : succ(P) ≤ ω − 1

n
;

from the alternative hypothesis

H1 : succ(P) ≥ ω

n
.

If we reject the null hypothesis H0, then we believe that extraction is
possible.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 420 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Hypothesis testing for the Basic Scheme (cont.)

Suppose there are g correct responses in t trials.

For simplicity, assume the challenges are chosen uniformly at random
with replacement.

The condition for rejecting the null hypothesis at a 5% significance
level is

t∑
i=g

(
t

i

)(
ω − 1

n

)i(n− ω + 1

n

)t−i
< 0.05.

If this condition holds, then we are quite confident that successful
extraction is possible.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 421 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Example

Suppose that Alice using the Basic Scheme with n = 1000 and the
minimum distance of the encoded message space is 400.

Then extraction is possible whenever succ(P) > 0.8.

Suppose the server responds to 100 challenges that have been chosen
uniformly with replacement, and that 87 of the responses were correct.

We find that

100∑
i=87

(
100

i

)
0.8i 0.2100−i ≈ 0.047 < 0.05.

There is sufficient evidence to reject the null hypothesis at the 5%
significance level, and so we conclude that the file can be
reconstructed by an extractor.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 422 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

A new lower bound on storage and communication

Suppose that M is a random variable corresponding to a randomly
chosen unencoded message m.

Let V be a random variable denoting any information stored by Alice

Let R be a random variable corresponding to the information
provided by a black-box Extractor .

Suppose that the message can be reconstructed by the Extractor with
probability 1

Then
H(M|V,R) = 0,

from which it follows that

H(M) ≤ H(V) +H(R).

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 423 / 424

Additional Topics Proof-of-retrievability schemes for cloud storage

Lower bound (cont.)

Naor and Rothblum proved a lower bound for a weaker form of
POR-type protocol, termed an an authenticator.

The Naor-Rothblum bound also applies to POR schemes.

Phrased in terms of entropy, their bound states that

H(M) ≤ H(V)×H(R),

which is a weaker bound than the one we proved above.

D.R. Stinson (University of Waterloo) CS 758 Spring 2016 424 / 424

	Course Information
	Goals of Cryptography
	Cryptographic Tools

	Mathematical Background
	Modular arithmetic
	Groups
	Quadratic Residues
	Some Algorithms
	Example: Rabin Decryption
	Computational Problems

	A Formal Model for Security
	Identification
	Formal Model for Identification Schemes
	An Insecure Identification Scheme
	A Secure Identification Scheme
	Mutual Identification
	Public-key Based Schemes
	The Schnorr Identification Scheme
	Two-channel Cryptography and Applications
	Non-interactive Message Authentication Protocols

	Key Management
	Introduction
	The Blom Scheme
	Diffie-Hellman Problems
	Key Predistribution in Wireless Sensor Networks
	Session Key Distribution
	Diffie-Hellman Key Agreement
	The Station-to-station Protocol
	MTI Protocols

	Multicast Security
	Introduction
	Secret Sharing
	Key Distribution Patterns
	Applications of Cover-free Families
	Broadcast Encryption
	Ramp Schemes
	Re-keying and Revocation
	Logical Key Hierarchy
	Copyright Protection

	Additional Topics
	Error Decodable Secret Sharing
	Proof-of-retrievability schemes for cloud storage

