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Text Visualization

Jason Chuang Stanford University

Why visualize text?

Understanding - get the “gist” of a document
Grouping - cluster for overview or classification

Compare - compare document collections, or
inspect evolution of collection over time

Correlate - compare patternsin text to those in
other data, e.g., correlate with social network

Why visualize text?

What is text data?

Documents

- Articles, books and novels
- E-mails, web pages, blogs
- Tags, comments

- Computer programs, logs

Collection of documents
+ Messages (e-mail, blogs, tags, comments)
- Social networks (personal profiles)

- Academic collaborations (publications)




Example: Health Care Reform

Recent history
Initiatives by President Clinton
- Overhaul by President Obama

Text data
News articles
- Speech transcriptions

Legal documents

What questions might you want to answer?

What visualizations might help?

Tag Clouds: Word Count

President Obama’s Health Care Speech to Congress [New York Times]
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A Concrete Example

September 10, 2009
TEXT

Obama’s Health Care Speech to Congress

Following is the prepared text of President Obama's speech to Congress on the need to overhaul health care in the
United States, as released by the White House,

Madame Speaker, Vice President Biden, Members of Congress, and the American people:

‘When I spoke here last winter, this nation was facing the worst economic crisis since the Great Depression. We wer
losing an average of 700,000 jobs per month. Credit was frozen. And our financial system was on the verge of
onllapse.

As any American whe is still looking for work or a way to pay their bills will tell you, we are by no means out of the
woods. A full and vibrant recovery is many months away. And I will not let up until those Americans who seek jobs
can find them; until those businesses that seek capital and credit can thrive; until all responsible homeowners can
stay in their homes, That is our ultimate goal. But thanks to the bold and decisive action we have taken since
January, | can stand here with confidence and say that we have pulled this economy back from the brink.

Twant to thank the members of this body for your efforts and your support in these lust several months, and
especially those whe have taken the difficult votes that have put us on a path to recovery. Lalso want to thank the
American people for their patience and resolve during this trying time for our nation.
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WordTree: Word Sequences

Visualizations : Word Tree President Obama's Address to Congress on Health Care
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A Double Gulf of Evaluation

Many (most?) text visualizations do not represent the
text directly. They represent the output of a language
model (word counts, word sequences, etc.).

Can you interpret the visualization? How well does
it convey the properties of the model?

Do you trust the model? How does the model
enable us to reason about the text?
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Challenges of Text Visualization

- High Dimensionality

+ Where possible use text to represent text...
... which terms are the most descriptive?

+ Context & Semantics
- Provide relevant context to aid understanding.

- Show (or provide access to) the source text.

* Modeling Abstraction

- Determine your analysis task.

- Understand abstraction of your language models.

- Match analysis task with appropriate tools and models.




Topics

Text as Data

Visualizing Document Content
Evolving Documents
Visualizing Conversation

Document Collections

Words are (not) nominal?

High dimensional (10,000+)

More than equality tests

Words have meanings and relations
- Correlations: Hong Kong, San Francisco, Bay Area
* Order: April, February, January, June, March, May

: Membership: Tennis, Running, Swimming, Hiking, Piano

- Hierarchy, antonyms & synonyms, entities, ...

Text as Data

Text Processing Pipeline

Tokenization
+ Segment text into terms.

+ Remove stop words? q, an, the, of, to, be

+ Entities? San Francisco, O'Connor, U.S.A.

2. Stemming
- Group together different forms of a word.
+ Porter stemmer? visualization(s), visualize(s), visually = visual

+ Lemmatization? goes, went, gone = go

3. Ordered list of terms




Tips: Tokenization and Stemming

* Well-formed text to support stemming?
txt u l8r!

* Word meaning or entities?

#berkeley > #berkelei

- Reverse stems for presentation.
Ha appl made programm cool?

Has Apple made programmers cool?

Document-Term Matrix

Each document is a vector of term weights

Simplest weighting is to just count occurrences

Antony and Cleopatra ~ Julius Caesar The Tempest Hamlet Othello Macheth
Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 1 1 1 0

Bag of Words Model

Ignore ordering relationships within the text

A document = vector of term weights
- Each dimension corresponds to a term (10,000+)
- Eachvalue representsthe relevance

- For example, simple term counts

Aggregate into a document-term matrix

- Document vector space model

WordCount (Harris 2004)

1the andioa .

http://wordcount.org
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Keyword Weighting

Term Frequency
tf,, = count(t)in d
Can take log frequency: log(1 + tf,,)
Can normalize to show proportion: tf,,/ Z, tf,,

Tag Clouds

- Strength

- Can help with initial query formation.

* Weaknesses
* Sub-optimal visual encoding (size vs. position)
* Inaccuratessize encoding (long words are bigger)
- May not facilitate comparison (unstable layout)
* Term frequency may not be meaningful

- Does not show the structure of the text

(Difference of Proportions)




Keyword Weighting

Term Frequency
tf,, = count(t)in d

TF.IDF: Term Freq by Inverse Document Freq
tf.idf, = log(n + tf) X log(N/df,)

df, = # docs containing t; N =# of docs

Keyword Weighting

Term Frequency
tf,, = count(t)in d

TF.IDF: Term Freq by Inverse Document Freq
tf.idf, = log(1 + tf,) X log(N/df,)

df, = # docs containing t; N =# of docs

G2 Probability of different word frequency
E, = ldl X (tfy + thycy) / ICI
E2 = |C-C|| X (t{:td + tft(C-d)) / |C|
G?= 2 X (tf,y log(tf,4/E) + thyc o log(tfyc.q)/E,))
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Limitations of Frequency Statistics?

Typically focus on unigrams (single terms)

Often favors frequent (TF) or rare (IDF) terms

- Not clear that these provide best description

A “bag of words” ignores additional information
- Grammar / part-of-speech
* Position within document

* Recognizable entities

§

Bigrams (phrases of 2 words)
are the most common.
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Phrase Length

How do people describe text?

We asked 69 subjects (graduate students) to
read and describe dissertation abstracts.

Students were given 3 documents in sequence;
they then described the collection as a whole.

Students were matched to both familiar and
unfamiliar topics; topical diversity within a
collection was varied systematically.

[Chuang, Heer & Manning, 2010]
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Term Commonness

log(tf,) / log(tfy,.)

The normalized term frequency relative to the
most frequent n-gram, e.g., the word “the”.

Measured across an entire corpus or across the
entire English language (using Google n-grams)

Selected descriptive terms

g 2% have medium commonness.
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‘A fighter jet rain check
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A fighter jet rin check

Stoey anc vices by Chamia Jnvaweers

Have you ever thought about what it
takes to make sure that sea-based fighter
jets stay dry?

When it comes to the FfA-18 Super
Hornet, Boging engineers in St. Louis use
a spedal process called the Water Check
Test to rule out areas where moisture
could seep into the aircraft and its
electronics suite.

Program experts douse the jet with
simulated rain at a 15-inch-per-hour rate
for about 20 minutes inside an enormous
hangar in St. Louils. =
*Our ultimate customers are U.S5. Nawvy
fighter pilots, and we want to ensure thelr  The water ©
safety in flight and on the ground, and =
water-tight integrity of the aircraft also o -
helps increase their effectiveness,” said Boeing's Rich Baxter, F/A-18 Super Hornet final assembly
manager.

To find out moreabout how the process warks and watch the acticn unfold, click above to see the videa
story.

G? Regression Model

fighter Super Hornet

F/IA F/A-18

Hornet fighter jet
Super Boeing engineers

5'1089'”9 special process
rain rain check

st. electronics suite
jet Program experts
Louis simulated rain
15-inch-per-hour ultimate customers
ﬁ::;:r enormous hangar
water-tight water—llght inteqrity
Check Rich Baxter

Baster 15-inch-per-hour rate
:;;:;“d video story

aircraft
LS. Nawvy fighter pilots
Super Homet final assembly manager
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Tips: Descriptive Keyphrases

* Understandthe limitations of your language model.

- Bag of words
+ Easy to compute
- Single words

+ Loss of word ordering

- Select appropriate model and visualization
- Generate longer, more meaningful phrases
- Adjective-noun word pairs for reviews

- Show keyphrases within source text

Information Retrieval

+ Search for documents

* Match query string with documents

- Contextualized search

Visualizing Document Content

[
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Concordance

What is the common local context of a term?
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haveadream

WordTree (Wattenberg et al)
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Glimpses of structure

Concordances show local, repeated structure

But what about other types of patterns?

For example
Lexical: <A> at <B>

Syntactic: <Noun> <Verb> <Object>

wordt s
— mother eyes
) unice T | pre—
wordt e face -body e
wordn Pl father head  pgpp shame
o . hlbdren heir nower
wordi waler flemiag
= [ charles turned rose
. -
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200 )
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o aew —3imBle —S{TANDE orug]
high - 1ew . PN
n.
ot cold
dark uir
L
e
||||| il
Portrait of the Artist as a Young Man - ,
weal
XandY

Phrase Nets [van Ham et al]

Look for specific linking patternsin the text:
‘Aand B, ‘A at B, ‘A of B’, etc

Could be output of regexp or parser.
Visualize extracted patternsin a node-link view

Occurrences 2 Node size

Pattern position = Edge direction

Node Grouping

(a) (b) (c)
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Old Testament lord end
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Tips: Document Contents

- Understand your task, and handle high
dimensionality accordingly...
- Visually: Word position, browsing, brushing+linking
- Semantically: Word sequence, hierarchy, clustering

- Both: Spatial layout reflect semantic relationships

- Role of Interaction:
- Sufficient language model to enable visual analysis cycles

- Allow modifications to the model: custom patterns for
expressing contextual or domain knowledge

Administrivia

17



Final Project

Design a new visualization technique or system

Many options: new system, interaction technique, design study
6-8 page paper in conference paper format

2 Project Presentations

Schedule

Project Proposal: Tuesday, Nov 15 (end of day)
Initial Presentation: Tuesday, Nov 29

Poster Presentation: Tuesday, Dec 13 (5-7o0m)
Final Papers: Thursday, Dec 15 (end of day)

Evolving Documents

Logistics
Groups of up to 3 people, graded individually
Clearly report responsibilities of each member

Tools | Table ‘Window Help AdobePDF Acrobat Comments
Y Spelingand Grammar... F7  \ggep rm—m
. : . o o o o .
- R Visualizing Revision History
il Languags 4
— ‘Word Count...
| speect : How to depict contributions over time?
Shared Workspace... b
B3] Trockchanges_ cuheshircee Example: Wikipedia history log
Lgttars ond Malings ' | Track Changes Icons appear once you
Customize. .. select “Track Changes” from the "Tools Chocolate
i Menu" Rewision history
Optiors... Legend: (cur) = difference with current version, (ast) = difference with preceding version, M = tiner edit

This 15 a test document to demonstrate the use of tracking changes. The characters in . 12:01, 20 Ang 2003 . Dysprosia (peaten to do, rearrange see also)
black font represent the original document while represent the . 11:59, 20 Aug 2003 . Patrick
h which are being tracked|, _—~{ Delet = . 11:52, 20 Aug 2003 . 81 20398 108
4 .
.

.M 1836, 6 Aug 2003 | Manika (rorrected speiling)
L1832, 6 Aug 2003 . Daniel Quinlan (removing obscure heraldry information, belongs on

) paste
¥ Accept Deletion 1521, 6 Aug 2003 Rmhermen
%3 Reject Deletion 1508, 6 Aug 2003 . Cyp (Chacnlate afien has add shapes.)

Track Changes . 1514, 3 Aug 2003 . Daniel C. Bover ("'chocolaie” as shade of gules in heraidry)
= . . M 02:00, 30 Tul 2003 . . Evercat (fut)

8] thyperdink...




Animated Traces [Ben Fry]

http://benfry.com/traces/
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Wikipedia History Flow (IBM)

Tips: Evolving documents

- High-level understanding

* Provide context
- Show text within source document

- Cross reference with other dimensions

Visualizing Conversation

20



Visualizing Conversation

Many dimensions to consider:
- Who (senders, receivers)
- What (the content of communication)

- When (temporal patterns)

Interesting cross-products:

* What x When = Topic “Zeitgeist”

* Who x Who = Social network

* Who x Who x What x When = Information flow

Usenet Visualization (vi¢gas & Smith)

Show correspondence patterns in text forums

Initiate vs. reply; size and duration of discussion

IO :
%

N
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Themail (Viégas et al)

performance

One person over time, TF.IDF weighted terms

FTaT=]

Mountain (Viégas)

Conversation by person over time (who x when).
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Tips: Conversations

- Understand your units of analysis

- Extract entities and relationships relevant to analysis task.

- Cross-reference with other data dimensions.

Enron 'Mastermind’ Pleads Guilty [
SAN FRANCISCO. Oct 17, 2002
[AP) A former top nergy trader
corsicered the masterming of Enven

Corp’s schame o drive up Californi’s  §
i enargy prices. ploaded guisy Thursday

0 ooe
commit wire fraud and promised o
yom  ECOPRrBLA With state and feceral
oty Proscuions as wel &s any non-triminal
o oflort 1o investigate the energy Incusiry. (8

“Idiid It because | was trying to maximize
proft for Enron.” Belcen toid U S,
Distriet Judge hartn Jenking.

Visualizing Document
Collections
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10 x 10 News Map (Harris 2004)

NewsMap: Google News Treemap (Marcos Weskamp) Wadneaday, Dec 20 2004, 11pm EST

& List View

Edit View Bookmarks Lists Options

Named Entity Recognition

1 Bugarov # W
) Calos rime 3 baktan 4
|dentify and classify named entities in text: . e Heterd
1 Cesar Arze 1 Jamaica
. n Charles Wilson 1 Afghanistan
John Smith - PERSON K o vt 8 Fvans
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Soviet Union 2> COUNTRY : ey R —
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1 Farrest Wels 1 Hiinois
1 Fr. Augustin Dominique 1 New Jersey
Entity relations: how do the entities relate? . mEs B el
. . rgory Sizav |OF i
1 Hamid Qatada 1 France
. . 1 Hector Lopsz 1 London
Simple approach: do they co-occur in a small ' Herman Fox 1 Moscow
. 5 1 Igor Kolokov 1 Pais
window of text: : s i
Ly damarSiead - 1 Virginia -




Doc. Similarity & Clustering

In vector model, compute distance among docs
- For TF.IDF, typically cosine distance

- Similarity measure can be used to cluster

Topic modeling approaches
Assume documents are a mixture of topics
Topics are (roughly) a set of co-occurring terms
Latent Semantic Analysis (LSA): reduce term matrix
Latent Dirichlet Allocation (LDA): statistical model

ThemeRiver [Havre et al 99]
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Interpretation and Trust?

* Interpretable topics?
* Trust the topics?
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Challenges of Text Visualization

- High Dimensionality
+ Where possible use text to represent text...

... which terms are the most descriptive?

+ Context & Semantics
- Provide relevant context to aid understanding.

- Show (or provide access to) the source text.

* Modeling Abstraction
- Determine your analysis task.
- Understand abstraction of your language models.

- Match analysis task with appropriate tools and models.

Lessons for Text Visualization

- Align analysis task with appropriate model.

- Provide context and semantics...

+ Apply appropriate text processing: stemming, named entities, etc.

+ Reverse stem for presentation

+ Show text within source document

+ Interaction to enable analysis cycle

+ Allow users to express contextual or domain knowledge

- Cross-reference with other data dimensions

Lessons for Text Visualization

- Align analysis task with appropriate model.

- Handle high dimensionality...

- Semantically
- Interpretation: Longer phrases
* Restaurant reviews: Adjective-noun word pairs
+ Relationships: Word sequences, hierarchy, clustering, ...
+ Topic models: with care

+ Visually
* Word position within document
* High-level structures in document collection

* Visual representation matching semantic relationships
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