CS/ECE 439: Wireless Networking

Fall 2013

Welcome!

Introduction

- Who I am: Robin Kravets
- Where I live: Department of Computer Science
- What I teach: CS 241, CS 438, CS 538 and other grad networking courses
- What I do: Wireless Networking and Mobile Computing research

Who are you?

- Grad/undergrad?
- CS/ECE?
- Taken CS 241 or ECE 391?
- Taken CS/ECE 438?

What will we cover in this class?

- Wireless Networking ... from the ground up
 - Wireless architecture
 - Physical layer
 - MAC layer
 - Transport layer
 - Mobility
 - For diverse technologies
 - Wi-Fi
 - Bluetooth
 - ZigBee
 - ▶ RFID
 - WiMAX
 - Cellular

- In diverse environments
 - Ad hoc networks
 - Sensor networks
 - Vehicular networks
 - Delay tolerant networks
- Supporting diverse applications
 - No one-size-fits-all solution

What will you get out of this course?

- Learn about the unique challenges in wireless networking
 - Starting point is "regular" wired networks
- Gain an understanding of wireless technologies at the physical, MAC, and higher layers
 - Focus is on wireless protocols
- Get experience in working with wireless networks
 - Implementing protocols, algorithms
 - Measurements of wireless networks
- Get a broad view of the ongoing research in the wireless domain
 - Read and present leading edge research papers

Course Contents

- Lectures: unique features of wireless
 - Cover diverse topics from PHY to app!
- Class participation 5%
 - You only get out of this class what you put into it!
- Survey and presentation of advanced research topics – 15%
 - Critical thinking about exciting current research
 - Comparison of proposed solutions
 - Applicability and limitations

- Project: team-based, hands-on – 40%
 - More in-depth study of a particular topic
 - Topic is flexible
 - Organized in multiple phases
- Homework 10%
 - Cover topics we can't implement
- ▶ Exam 30%
 - Only one exam
 - During second half of semester

Planned topics

- History and applications (today)
 - Why is wireless networking so important?
- Challenges of wireless networks (Thursday)
 - Why is wireless networking so hard?
- Physical layer concepts
 - Focus on impact on higher layers
 - Not an in-depth course on the communications field!
- MAC Layer solutions
 - Start with IEEE 802.11
 - Focus in on energy, capacity, security
- Transport Layer challenges
 - What does end-to-end really mean in a mobile environment?
- Deployment in diverse environments
 - Ad hoc networks, PANs, sensor networks, vehicular networks, etc.

Advanced topics

During each topic

- Introduce advanced topics
- Current research in wireless networking

Written survey

- Small teams
- Based on a small set of papers
- Summarize the state of the art
- Apply critical thinking on the applicability and effectiveness of current proposals
- Compare different solutions
- Identify interesting future work
- Presentation in class

Projects

- In-depth study of a particular topic
 - Performance evaluation studies, protocol modifications, applications, measurements, ..
 - Must be wireless, but otherwise flexible
- Strongly prefer hands on projects
 - Real world is quite different from simulation and analysis
- Must carefully consider platform options
 - Real-world experiments
 - Simulator based
 - Emulator
 - Or could compare results in different environments

Academic Honesty

- Your work in this class must be your own.
- If students are found to have cheated (e.g., by copying or sharing answers during an examination or sharing code for a project), **all** involved will at a minimum receive grades of 0 for the first infraction.
- Further infractions will result in failure in the course and/or recommendation for dismissal from the university.
- Department honor code:

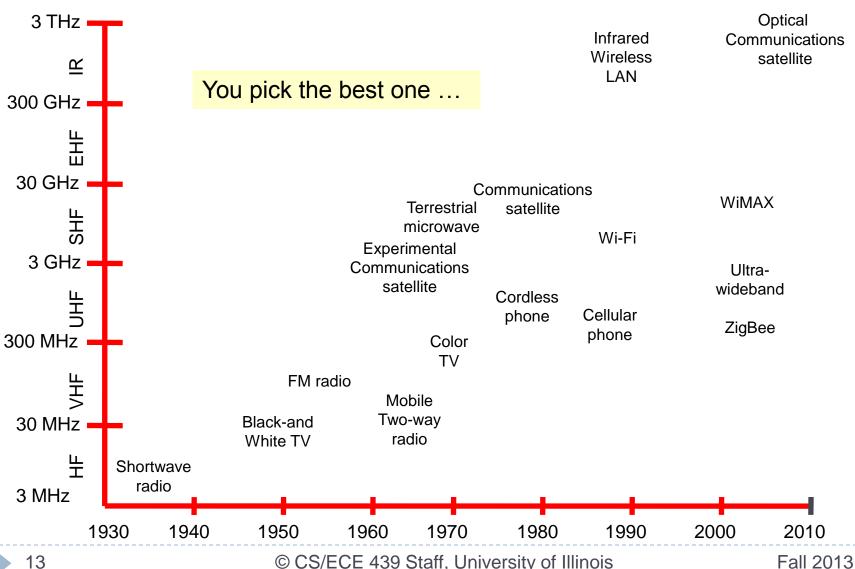
```
https://wiki.engr.illinois.edu/display/undergradProg/Honor+Code
```


Course Material

- Final slides were prepared by the course instructor
- Some slides contain material from other sources
 - Slides from related courses
 - Special thanks to Nitin Vaidya and Romit Roy Choudhury (UIUC) and Peter Steenkiste (CMU)
 - Some figures are taken from textbooks
 - Some lectures contain material from research presentations prepared by the authors

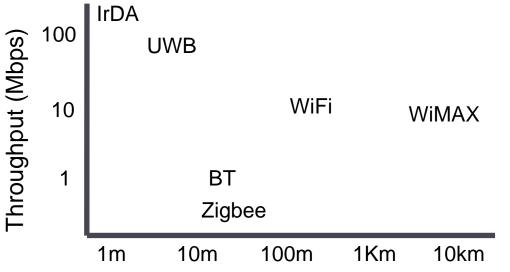
Wireless Technology

A glimpse of the future


1931

- Erich Kästner's children's book: The 35th of May, or Conrad's Ride to the South Seas
- "a science fiction nightmare city with mobile phones and moving walkways"

"A gentleman who rode along the sidewalk in front of them, suddenly stepped off the conveyor belt, pulled a phone from his coat pocket, spoke a number into it and shouted: "Gertrude, listen, I'll be an hour late for lunch because I want to go to the laboratory. Goodbye, sweetheart!" Then he put his pocket phone away again, stepped back on the conveyor belt, started reading a book..."



A broad spectrum

Diversity is king

- Diverse application requirements
 - Energy consumption
 - Range
 - Bandwidth
 - Mobility
 - Cost

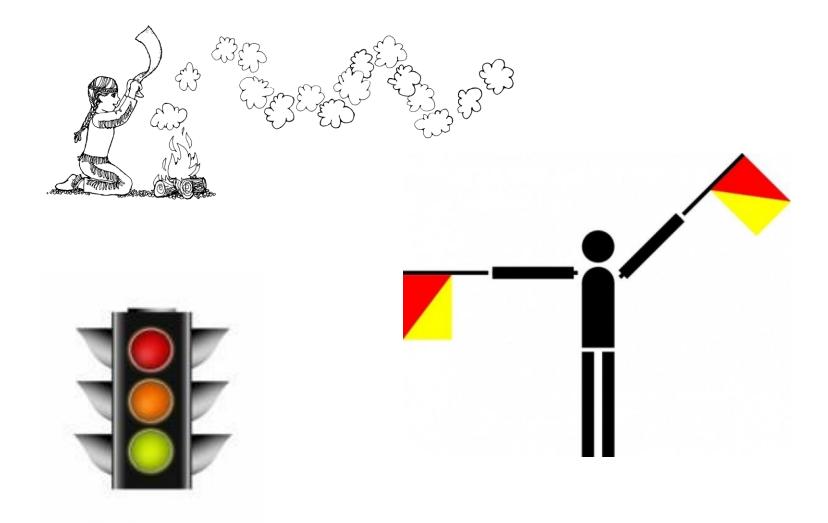
- Diverse deployments
 - Licensed vs. unlicensed
 - Provisioned vs. unprovisioned
- Diverse characteristics
 - Signal penetration
 - Frequency use
 - Cost
 - Market size
 - Age, integration

Radio communication

- Limited spectrum
 - Must be shared among the various applications
- Spectrum access
 - Typically regulated by the government

U.S. Spectrum allocation chart:

http://www.ntia.doc.gov/osmhome/allochrt.pdf


What Makes Wireless Different?

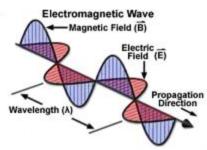
- Absence of wires facilitate mobility
- Signal attenuation
- Spatial reuse
- Diversity
 - Multi-user diversity
 - Antenna diversity
 - Time diversity
 - Frequency diversity

- Wireless devices often battery-powered
 - Need to conserve energy
- Broadcast medium
 - Easier to snoop on, or tamper with, wireless transmissions

Wireless through the ages ...

Birth of modern-day wireless communication

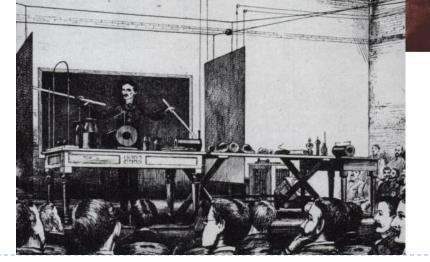
1867


Maxwell predicts
 existence of
 electromagnetic (EM)
 waves

1887

Hertz proves existence of EM waves

Birth of modern-day wireless communication


1896

- Wireless telegraph invented by Guglielmo Marconi
- Awarded the Nobel Prize in 1908!

1893

 Tesla credited with first radio communication

Birth of modern-day wireless communication

1901

- Marconi: First telegraphic signal traveled across the Atlantic ocean (3,500km/2,200mi).
- Took another year for it to be bi-directional
- Used analog signals to transmit alphanumeric characters

1914

- First voice over radio transmission
- **1935**
 - Frequency modulation (FM) demonstrated by Armstrong

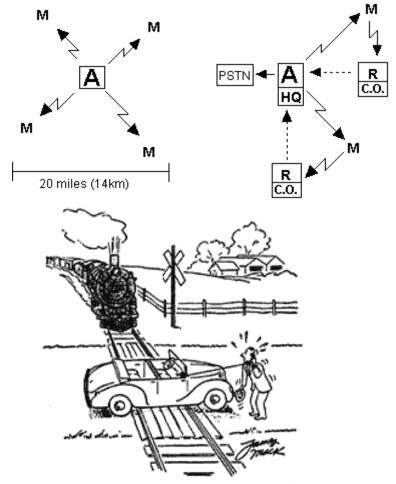
In the beginning ...

1946

- First interconnection of mobile users to public switched telephone network (PSTN)
- Operator assisted with 250 maximum users

Mobile ≠ Portable!

- First mobile phone weighed 40 Kg!
- Very bulky and expensive


Mobile Telephone System (MTS)

1946

- 3 channels for all the users in the metropolitan area
 - Later more licenses were added bringing the total to 32 channels across 3 bands

October 2, 1946

- Motorola communications equipment carried the first calls on Illinois Bell Telephone Company's new car radiotelephone service in Chicago
- Few radio frequencies available → service quickly reached capacity

"Hello, Mr. Bunting, I've changed my mind— April, 1948
I'll take that accident policy!"

Who needs one anyway?

The FCC commissioner Robert E. Lee

- "mobile phones are a status symbol"
- "Every family might someday believe that its car had to have one!"
- "frivolous use of spectrum"
- It's not going to be something you and I put in the car to call home and say we're on the way home for dinner!"

From global to cellular

1947

- Donald H. Ring outlined the idea in a Bell labs memo
- Split an area into cells with their own low power towers
- Each cell would use its own frequency

An idea before its time

- Existing technology could not handle the "extreme" processing needs!
- Handoff for thousands of users
- Rapid switching infeasible maintain call while changing frequency

Almost there ...

1947

William Shockley, John Bardeen, and Walter Brattain invented the transistor

But true mobile coverage was still out of reach

- A mobile phone needs to send a signal not just receive and amplify
- The energy required for a mobile phone transmission still too high for the high power/high tower approach – could only be done with a car battery

The first cell phone!

Prototype

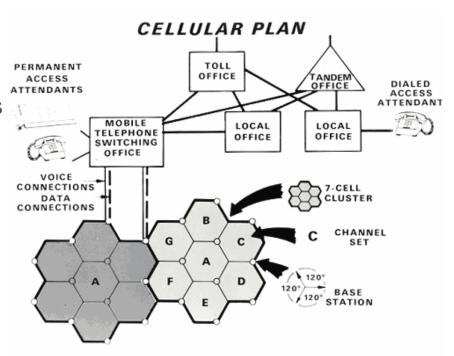
 Dr. Martin Cooper of Motorola made the first publicized handheld mobile phone call on April 4, 1973

Production

10 years (1973-1983) and \$100 million to develop!

DynaTAC8000X

- 2 pounds
- > 30 mins of talk time
- 8 hours of standby
- LED display for dialing or recall 30 phone numbers
- **\$3,995!**


Analog Cellular: 1G

1978

- AMPS Advanced/Analog Mobile Phone System
- First complete cellular system (not handheld) deployed in the suburbs of Chicago
- ▶ 10 1-mile radius cells
- ▶ 135 custom-designed car phones

Limitations

- Unencrypted
- Vulnerable to eavesdropping
- Susceptible to "cloning"
- Frequency-division multiple access (FDMA) required significant amounts of wireless spectrum

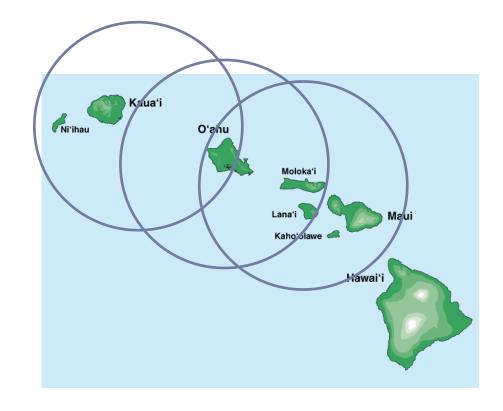
Still used today for On*Star!

Digital Cellular: 2G

- **1991**
 - First GSM network in Finland
 - Digital, circuit-switched network optimized for full duplex voice telephony
 - Expanded to include data communications
 - Circuit-switched transport
 - Packet data transport via GPRS (General Packet Radio Services) and EDGE (Enhanced Data rates for GSM Evolution or EGPRS).

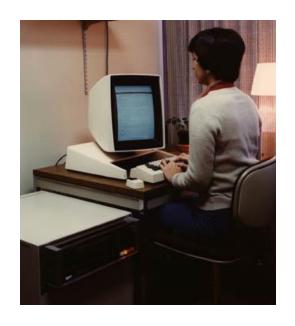
Mobile Broadband and Beyond: 3G & 4G

- ▶ 3G
 - Minimum service: 200 Kbps
 - **2001**
 - First commercial WCDMA network in Japan
 - > 2002
 - First commercial CDMA2000 1xEV-DO network in South Korea
 - Improvements
 - streaming media (radio and television)
 - End of 2007
 - 295 million subscribers on 3G networks worldwide


- 4G
 - Service goal: 100 Mbps
 - **2008**
 - Native IP
 - □ Mobile WiMAX

In the meantime ...

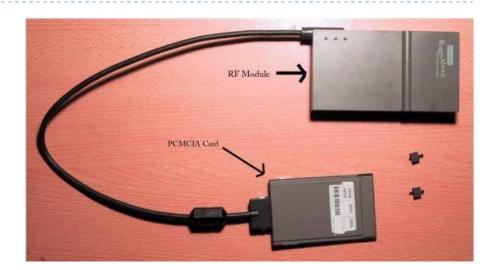
1971: Aloha Packet Radio Network


- Norm Abramson left Stanford to surf
- Set up first data communication system for Hawaiian islands
- Hub at U. Hawaii, Oahu
- Two radio channels:
 - Random access: for sites sending data
 - Broadcast for hub rebroadcasting data

From Aloha comes Ethernet

Ethernet

- Developed by Xerox PARC, 1974
- Standardized by Xerox, DEC and Intel in 1978
- Later, IEEE 802.3 standard
- Fast Ethernet (100 Mbps) -IEEE 802.3u standard
- Switched Ethernet now popular
- Numerous standards with increasing bandwidth over the years
 - 10 Mbps 100 Mbps 1 Gbps– 10 Gbps



Xerox Alto, first machine networked with Ethernet

From Ethernet comes Wi-Fi!

- **1986**
 - Wireless alternative for Ethernet and Token Ring
- **1995**
 - FCC released ISM band for unlicensed use
 - WaveLAN
 - ▶ 900 MHz ISM band
 - ▶ 1 & 2 Mbps
- **1997**
 - ▶ IEEE 802.11
 - DSSS
 - ▶ 2.4 GHz
 - ▶ 1 & 2 Mbps

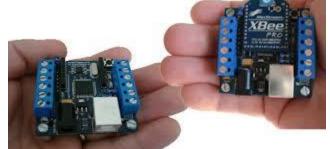
The growth of Wi-Fi

- 1999
 - ▶ IEEE 802.11a
 - ▶ OFDM
 - ▶ 5.8 GHz
 - ▶ 54MBps
- **2003**
 - ▶ IEEE 802.11g
 - ▶ OFDM
 - ▶ 2.4 GHz
 - ▶ 54MBps
- **2009**
 - ▶ IEEE 802.11n
 - ► MIMO
 - > 2.4 GHz and 5 GHz
 - ▶ 54 Mbps to 600 Mbps

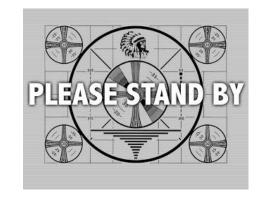
- And more to come
 - ▶ IEEE 802.11 ac, ag ...

Integrated Wi-Fi

- Antennas placed on the frame of the screen
- Mini-PCI format allows for full integration
- Latest radio technology may feature up to 3 antennas


And even more technologies

- Low power wireless
 - Bluetooth
 - ZigBee
- No power wireless
 - ▶ RFID



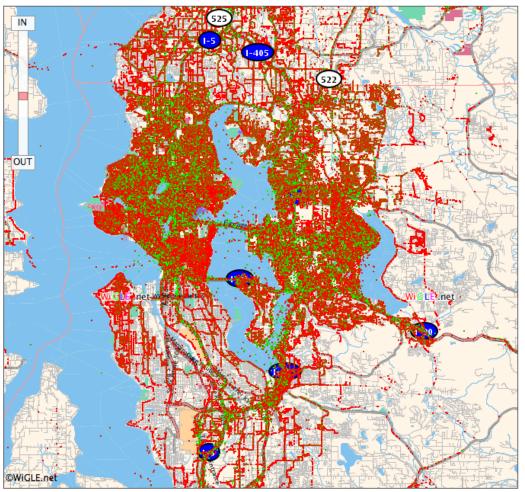
Wireless communication is a tool

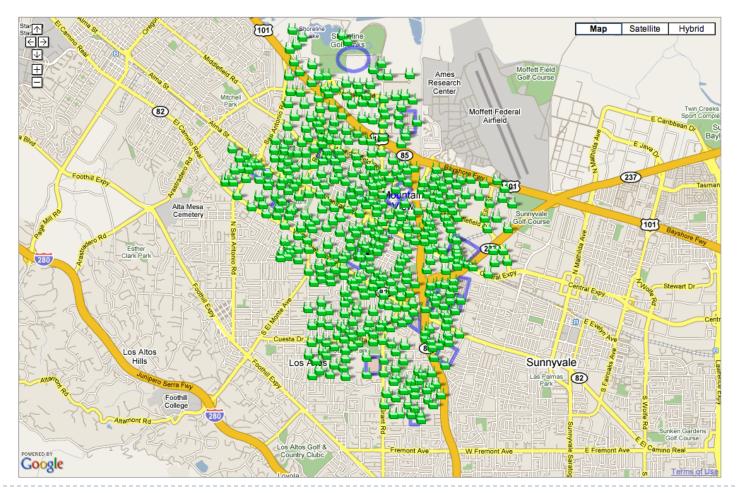
- How do we use it?
- Emergency broadcast systems
 - Restricted communication

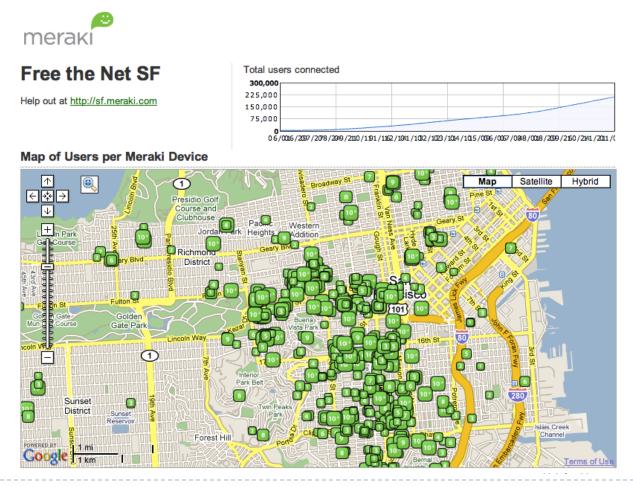
- Device to infrastructure
 - Internet access, phone calls

- Device to device
 - Sensor networks, vehicular networks, mobile social networks

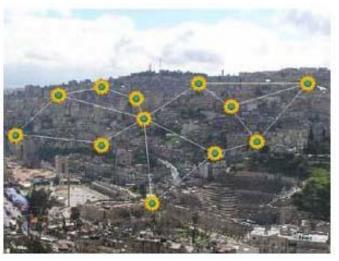
Apps, apps and more apps


- SMS
 - The first killer app
- Ring tones
- Games
- Social networking
- Replacement for landlines


- Data communication now dominant
 - Always-on connectivity...
 - ... while on the move

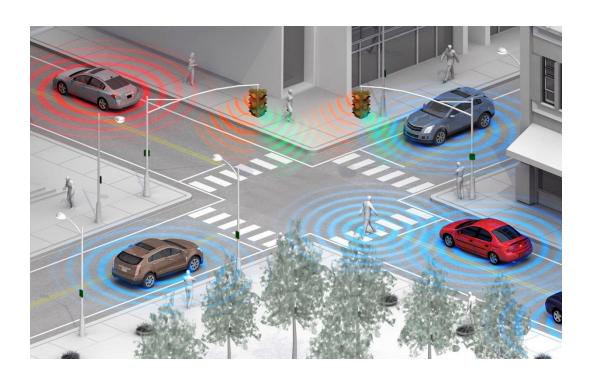

- Wireless access to the Internet!
 - In home
 - Through hotspots
 - While on the move...
- Seattle map through wigle.net

Google Wi-Fi Network in CA



▶ 2007/2008 - Internet access through mesh Wi-Fi

Wi-Fi in developing regions



Vehicle-to-Vehicle Communication

- Sensing
- Safety
- Enhanced coverage

Coming soon ...

- ▶ 60 GHz for in-home entertainment
- Software defined radios

How do we make this all happen

Research!

Ubiquitous Services

Incentives

Loss Discrimination

Energy Savings

Spatial Reuse

Enabling wireless ubiquity.

Showing what is feasible, and what is not ...

Application

Security

Transport

Network

MAC / Link

PHY

Applications that exploit ubiquity and mobility.
Challenges underlying such applications

Privacy

Eavesdropping

Mobility

Interference Mgmt.

Channel fluctuations

How do we make this all happen

Research!

Ubiquitous Services

Incentives

Loss Discrimination

Energy Savings

Spatial Reuse

Wireless Networking **Application**

Security

Transport

Network

MAC / Link

PHY

Mobile Computing

Privacy

Eavesdropping

Mobility

Interference Mgmt.

Channel fluctuations

At the End of this Course ...

You should understand

- Physical layer (radios, rate, antennas, channels)
- MAC protocols (who gets the chance to talk)
- Cross-Layer protocols (interference cancellation, OFDM ...)
- Routing (path selection algorithms and issues)
- Reliability (wireless congestion control, rate control)
- Applications (social networks, personal networks, P2P networks)
- Sensing Systems
 - Localization (extracting the location of a device)
 - Mobility (how it helps and disrupts communication)
 - Interfaces (phones are more than communication devices)
 - Privacy (how to protect a user from being tracked)
- Energy-awareness (how it percolates various network functions)
- Capacity (what is feasible, what are performance bounds)

