
CS/IDS 142: Lecture 3.1
Progress Properties and Metrics

Richard M. Murray
14 October 2019

Goals:
• Define liveness (progress) properties and metrics (variant functions)
• New properties: transient, ensures, leads-to, induction

Reading:
• P. Sivilotti, Introduction to Distributed Algorithms, Section 3.5

Richard M. Murray, Caltech CDSCS/IDS 142, 9 Oct 2019

Summary: Reasoning About Programs

Initial tools for reasoning about program properties
• UNITY approach: assume that any (enabled)

command can be run at any time

• Hoare triple: show that all (enabled) actions satisfying
a predicate P will imply a predicate Q

• “Lift” Hoare triple to define next:

• Stability: stable(P) ≡ P next P

• Invariants:

2

P

1

2

0

3

4

5

6

7

8

9

Q

P

a1 a2

a1

a1

Hoare triple: {P} a {Q}

P next Q stable(P)

invariant(P) ⌘ initially(P) ^ stable(P)

Richard M. Murray, Caltech CDSEECI, Mar 2011

Properties for RoboFlag program

Robots are "far enough" apart.

Safety (Defenders do not collide)

Stability (switch predicate stays false)

Progress (we eventually reach a fixed point)
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment
• Define the metric that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

3

V =
⇤�

n

2

⇥
+ 1

⌅
⇥ + � � =

n⇥

i=1

n⇥

j=i+1

⇥(i, j) where ⇥(i, j) =

�
1 if x�(i) > x�(j)

0 otherwise
� =

n�

i=1

r(i, i)

next ¬switchi,i+1

zi < zi+1 next zi < zi+1

next V < m

Next week

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

The ‘Transient’ Property
Definition
• Informally: “if P becomes true at some point in the computation, it is guaranteed to

become false at some later point ⇒ P is false infinitely often” [not quite accurate]

• Compare to next: use ∃ instead of ∀

• Allowable for P to remain true for one or more actions, 
as long as there is always one action that falsifies P 
for every state for which P is true (strong property!)

Simple example

Which of the following hold (show formally in HW #3):
• Weakening:

• Strengthening:
• Intuition: remember that P’ ⇒ P (formula) is same as P’ ⊆ P (for the program graph)

4

(∃a :a∈G :{P} a {¬P})

True
False

transient(n = 0 _ n = 1) ⌘ false

transient(n = 0) ⌘ true

transient(n = 1) ⌘ true

transient(P) ^ [P 0 =) P] =) transient(P 0)

transient(P) ^ [P =) P 0] =) transient(P 0)

Program Count
var n : natural number
initially n = 0
assign

n := n+ 1

a a

P’

P’

P

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

False (no direct action from n=1 to n=3)

The ‘Ensures’ Property
Definition
• If P holds, it will continue to hold as long as Q doesn’t hold AND eventually Q holds

Example

Some properties
• Weakening: (P ensures Q) ∧ [Q ⇒ R] ⇒ (P ensures R)

• Disjunction: (P ensures Q) ⇒ (P ∨ R) ensures (Q ∨ R)

Remarks
• Ensures is still “low level”: defines properties at the level of single actions

5

Program CountIfSmall
var n : natural number
initially n = 0
assign

n 2 ! n := n+ 1

n = 1 ensures n = 3?

(n = 1 _ n = 2) ensures (n � 2)? True

a
b

b

a

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

The ‘Leads-To’ Property
Definition
• If P is true at some point, Q will be true (at that same  

or a later point) in the computation

Example

Which of the following is true?

Remarks
• Leads-to is key property we will use in proofs (show that program leads to fixed point)

6

True

True

Program CountIfSmall
var n : natural number
initially n = 0
assign

n 2 ! n := n+ 1

True
True (n=1 ⤳ n =2 ⤳ n=3)

(n = 1 _ n = 2) (n � 2)?

(n = 1) (n = 3)?

P’

Q’

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

True (tricky)_____

True_____

Which of the Following Properties are True?
Disjunction

• (P ⤳ Q) ∧ (R ⤳ Q) ⇒ (P ∨ R) ⤳ Q

• (P ⤳ Q) ∧ (P ⤳ R) ⇒ P ⤳ (Q ∧ R)

•

Stable Strengthening
•

Progress-Safety-Progress (PSP)
•

7

True (HW or Fri)

False (imagine going to Q first, then R)

False (choose P = P’)

P Q

R

Q

P • PSP allow us to combine 
a safety proof with a  
progress proof

• Either stay in R and satisfy Q 
or move out of R and satisfy S

• Very useful in progress proofs

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

Induction (and Metrics)
Approach: use metric to show that a property is eventually satisfied
• Definition: a metric (or variant function) is a function from the  

state space to a “well-founded set” (e.g., set with lower bound)

• This theorem gives us a way to prove properties of programs:  
find a metric that shows that we eventually get to a desired  
fixed point (= termination)

Problem: can be hard to find a function that strictly decreases
• Alternative: make sure that P doesn’t increase and eventually decreases

8

P
M=m1

M=m2 < m1

Q

OK for M to remain = m, 
as long as there is some  
action that decreases m

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

Reasoning about Fixed Points
Variant: show that all enabled actions decrease the metric

• Allows you to reason about fixed point (metric at min or all guards disabled)

9

M(s) = 9

M(s) = 8

M(s) = 7

M(s) = 6

M(s) = 5

M(s) = 4

M(s) = 3

M(s) = 10

M(s) = 11

P and not Q

Q

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

Example: FindMax

Specification
• Safety: stable(r = M) [Lecture 2.2]

• Progress: true ⤳ (r = M)

Structure of the proof
• Fixed point:

• Invariant:
- Combined with FP, this means that if we terminate at FP then r = M

• Metric: r
- Never decreases and must increase at some point if r < M

10

Will show on Wed

Richard M. Murray, Caltech CDSEECI, Mar 2011

Safety (Defenders do not collide)

Stability (switch predicate stays false)

Progress (we eventually reach a fixed point)
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment
• Define the metric that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

11

V =
⇤�

n

2

⇥
+ 1

⌅
⇥ + � � =

n⇥

i=1

n⇥

j=i+1

⇥(i, j) where ⇥(i, j) =

�
1 if x�(i) > x�(j)

0 otherwise
� =

n�

i=1

r(i, i)

next ¬switchi,i+1

zi < zi+1 next zi < zi+1

next V < m

Richard M. Murray, Caltech CDSCS 142, 14 Oct 2019

Summary: Progress Properties and Metrics
Establish progress properties
• Transient:

• Ensures:

• Leads-to:

- This is the main property that we care about for
proving that computations terminate correctly

• Metrics:

Next (Wed): show that we can use all of this to do
something useful

12

a a

a
b

b

a

Transient

Ensures

Leads-to

(∃a :a∈G :{P} a {¬P})

