
1

CS Tips

Personal Character

• The personal character of programmers has
received only a little attention
– Dijkstra, 1965: “Programming Considered as a

Human Activity”

– Weinberg, 1971: “The Psychology of Computer
Programming”

• But this should receive more attention
– Electrical Engineer: Knowledge of circuits,

conductivity, how to use an oscilloscope, etc.

– Software Engineer: Primary tool is YOU to design and
construct the system

2

Personal Character Off Topic?

• Inwardness of programming makes personal
character especially important
– Ever program at odd hours? Burned out?

– Programming work is mostly unsupervisable because
nobody really knows what you’re working on unless
looking over your shoulder all day

– Often employer not in a position to judge if you’re
good, it’s up to you to be responsible to be good or
great

– Character makes a difference; if you can’t change
your intelligence at least you can change your
character!

You don’t have to be super

intelligent?
• Nobody is really smart enough to understand everything

• Dijkstra, Turing Award Lecture, 1972. “The Humble
Programmer”
– Most programming compensates for limited size of stuff in our

skulls

– Best programmers realize how small their brains are; they are
humble

– Worst programmers refuse to accept that their brains aren’t
equal to the task; egos keep them from being great programmers

– The more you learn to compensate for your small brain, the
better programmer you will be and the more humble you are the
faster you will improve

3

Compensation Examples

• Decomposing a system
– Makes it easier for humans to comprehend, whether structured,

top-down, or object-oriented

• Conducting reviews, inspections, tests compensates for
human fallibilities
– Originated as part of “egoless” programming

• Keeping routines short helps reduce mental workload

• Using conventions can help free your brain from
relatively mundane aspects of coding

• The humble programmers who compensate for their
fallibilities write code that’s easier for themselves and
others to understand and with fewer errors.

Curiosity

• Ok, so hopefully you admit your brain is too
small to understand most programs and you
need a way to compensate…

• Curiosity about technical subjects is a must to
become a superior programmer

• Technical environment changes every 5-10
years, if you aren’t curious to keep up with the
changes you will go the way of COBOL and
punch cards

4

Actions to exercise curiosity

• Build your awareness of the development process
– From reading, own observations

• Experiment
– With development process and coding, write tests for new

concepts, execute in debugger

• Analyze and plan before you act

• Learn about successful projects (or why projects were
unsuccessful)
– Rarely done, most people wouldn’t use their recreational time to

scrutinize long code listings that work (or don’t work)

– But engineers study the Tacoma Narrows bridge, or architects
study Frank Lloyd Wright

• Read manuals, books, periodicals

Intellectual Honesty

• Maturing as a programming professional is
developing an uncompromising sense of
intellectual honesty. Examples:
– Refusing to pretend you’re an expert when you’re not

– Admitting your mistakes

– Trying to understand a compiler warning rather than
suppressing the message

– Clearly understand your program – not compiling to
see if it works

– Provide realistic status reports

– Provide realistic schedule estimates and holding your
ground when management asks you to change them
(or tricking management to win a project).

5

Communication and Cooperation

• Truly excellent programmers learn how to work and play with others
– This includes writing readable code

• Most good programmers enjoy making programs readable, given
enough time, although there are a few holdouts
– Level 1: Beginner

• Capable of using basic capabilities, e.g. loops, conditionals, write routines

– Level 2: Intermediate
• Capable of basic routines of multiple languages

– Level 3: Specialist
• Expertise in a language or environment or both, many stuck here

– Level 4: Guru
• Level 3 plus recognizes 85% of programming is communicating with other

people

• Only 30% of an programmer’s time is spent working alone, on average

• Guru writes crystal clear code, documents it, results in guru status

Creativity and Discipline

• “When I got out of school, I thought I was the
best programmer in the world. I could write an
unbeatable tic-tac-toe program, use five different
computer languages, and create 1000 line
programs that WORKED. Then I got out into the
Real World. My first task was to read and
understand a 200,000 line Fortran program, then
speed it up by a factor of two. Any Real
Programmer will tell you that all the structured
coding in the world won’t help you solve a
problem like that – it takes actual talent.”
– “Real Programmers Don’t Write Pascal”

6

Creativity and Discipline

• Tools and methods to emphasize human
discipline (e.g. standards, conventions) have
been especially effective
– 15 year NASA study, 1990

• Highly creative people can still have discipline
– Myth that discipline stifles creativity

– Michelangelo divided the Sistine Chapel into
symmetric collections of geometric forms, zones
corresponding to Platonic stages. Self-imposed
structure for human figures

– Software engineers can impose similar discipline for
requirements, design, testing

Laziness

• Laziness manifests itself in several ways
– Deferring an unpleasant task

• E.g. defer data entry, futz on other items first

• True laziness

– Doing an unpleasant task quickly to get it out of the way

• Enlightened laziness – spending smallest possible time on
something unpleasant

– Writing a tool to do the unpleasant task so you never have to do
the task again

• Most productive if you ultimately save time, long-term laziness

• Don’t mask laziness as “hustle” or just doing something
to look busy

7

Characteristics that don’t matter as

much as you think

• Persistence

– Depending on the situation, can be an asset
or a liability

– Stuck on a new piece of code: hardly ever a
virtue, try redesigning or try an alternative
approach, or come back later

– Good idea to take a break if no progress after
15 minutes

– Hard to know when to give up but it’s
essential that you ask

Characteristics that don’t matter as

much as you think

• Experience
– Value of hands-on experience compared to book

learning is smaller in software development compared
to many other fields

• Basic knowledge changes rapidly in SW Dev

• Coding habits effective for COBOL not necessarily effective
for Java

– Easy to draw wrong conclusion from experience
• “Five years of C++” not a big differentiator from a couple of

years of C++, another three years makes little difference

– Advantage goes to the young, hungry programmer!

8

Characteristics that don’t matter as

much as you think
• Gonzo Programming

– “If you haven’t spent at least a month working on the
same program – working 16 hours a day, dreaming
about it during the remaining 8 hours of restless
sleep, working several nights straight through trying to
eliminate that “one last bug” from the program – then
you haven’t really written a complicated computer
program. And you may not have the sense that there
is something exhilarating about programming.”

• Edward Yourden

– Tribute to programming machismo is bunk and even a
recipe for failure. May help your ego but how about
the time spent fixing all the bugs you wrote during
those all nighters?

Habits

• Do you use a version control system for all your
projects?
– Maybe you did not learn about VCS until later so your habit is to

just make a project on your local machine

– Once habits are learned, they are hard to break or question

• Examples
– Adding comments to the code?

– You’re looking for ways to make code readable, or fast, or you’re
not

– You’re regularly testing code incrementally as changes are made

• When you learn something new, it will be to your benefit
to learn it the right way so it becomes an easy good habit
instead of a bad habit

9

Job Advice

• Still CS jobs out there at decent salaries

• National Association of Colleges and
Employers (NACE)

NACE Salary Survey

10

11

12

13

14

Supply of CS Grads Trending Up
• www.cra.org/statistics

Supply of CS Grads Trending Up
• www.cra.org/statistics

15

Job Seeking Advice

• Regularly update your resume

• Internet presence
– Employers will google you, build a web page

– Could include projects you’ve worked on, e.g. expose
your senior project

– Postings to mailing lists, discussion boards

• Learn a hot technology
– Helps marketability, bot resume searches, e.g.

Hibernate, AJAX, etc.

• Learn a hot methodology
– E.g. Agile Development Methodologies

Job Seeking Advice

• Pitch in on an open source project

– Tons of projects out there looking for
programmers

– www.sourceforge.net, www.freshmeat.net

• Statistically, big companies pay more but
don’t forget the little companies or
freelance work

• Learn to use software tools

– Version control, IDE, bug trackers, profilers

http://www.sourceforge.net/
http://www.freshmeat.net/

16

Job Seeking Advice

• Read every day about the field
– Tons of programming and technology based mailing

lists, news services

• Write some code every day
– Or your skills will decline

• Build and rely on your network of people
– Ask for help and give help when you can

• If invited for an interview, do your homework
– Common interview questions

http://maxnoy.com/interviews.html

http://dev.fyicenter.com/interview/

– Research the firm, generate questions

Or…… there’s Graduate School

• MBA

– Good choice to help move up the corporate
ladder, particularly into management

• MS

– Good choice for technical path, potential for
management, higher starting salary

• Ph.D.

– Potentially highest starting salary but fewer
career choices

http://maxnoy.com/interviews.html
http://dev.fyicenter.com/interview/

17

Grad school is not for everyone

– Plenty of smart people go right to industry

• Learn on the job

• Advance within company or hop jobs

• Entrepreneurs cannot afford to wait

– For some, grad school provides

• Personal goal to go as far as possible in a degree

• A fast track to a job (faster than working your way up)

• Unique opportunities (no other way to be professor)

• A great opportunity to focus

• Hopefully not a way to one-up your peers on the resume (degree

as status symbol)

What is Graduate School Like?

• A professor’s perspective…
– At research universities, the professor runs a small

company
• Product: Invents and develops long-range research

• Customer: typically Federal Government (National Science
Foundation, Defense Advanced Research Projects Agency –
DARPA)

• Annual Revenue: $300,000 - $1,000,000

• Employees: Grad students

– At teaching universities, the professor manages a small
department

• Grad students often help teach courses

• Most time spent teaching courses, performing university service
(committees, curriculum, etc.)

• Some of the research university activities but at a smaller scale

18

What is Graduate School

Like?
• M.S. Degree

– 1.5 - 3 years

– Coursework similar to senior-level undergraduate
courses

– Usually provided an opportunity to specialize
• Can easily start degree without selecting area of focus

• Good schools provide opportunity to take many focused
courses in your favorite area

– Research (in form of thesis) may be required
• Can sometimes just take courses or take an exam

– Tuition and stipend are possible
• (full tuition + $15k / 9 mos + summer job)

What is Graduate School Like?

• Ph.D. Degree

– 4 - 7 years

– Usually require a Master’s Degree first but some allow
entry to the Ph.D. straight from a Bachelor’s

– Similar coursework to Master’s Degree plus seminars and
courses related to research

– Usually must pass Ph.D. qualifying exam

– Research required

– Tuition and stipend scholarships are standard
• ($15k / 9 mos + some summer jobs)

– Required to specialize
• Helpful to know research interests from day one to expedite

selection of research focus

• Research focus often included in application letter

19

Is Graduate School for You?

• What are your career goals?

– Sick and tired of school

– Learn on the job (job hopping)

– Entrepreneur

– Technology management (manage

engineers)

– Professor

Is Graduate School for You?

– Do you enjoy learning - becoming an expert?

• PhD makes you world’s expert in foo

– Do you like being a big fish in a small pond?

• Question applies to job and school options

– Do you prefer constancy or change?

• Higher degrees are entree to management and

provide you with more control

– Financial and family situation

20

Is Graduate School for You?

• Degree pros and cons

– Bachelor’s Degree

• Good starting salary ($40-$60k) but peaks early

• More job openings

• Opportunity to swap jobs or move to management

• But many jobs are entry level

• Less control of day-to-day tasks

• Employer usually benefits from not promoting you

• May become bored – have to hop jobs

Is Graduate School for You?

• Master’s Degree Benefits

– Better starting salary ($50k and up)

– Many job openings

– Potential to start at management level

– Opportunity to swap jobs

– More control of day-to-day tasks

21

Is Graduate School for You?

• Master’s Degree Cons

– Often still not in charge of project

– 1.5 - 3 years of lost wages (less if paid during

school)

– More school, might do just as well learning on

the job

– May become frustrated by poor employees

and lack of support from upper-level

management

Is Graduate School for You?

• Ph.D. Degree Benefits

– Potentially higher starting salary ($50k+)

– Large amount of control over work

– Opportunity to teach in a university or

community college

– Management skills assumed

– You’ll be an expert in ________

22

Is Graduate School for You?

• Ph.D. Degree Cons

– Completing Ph.D. dissertation can be

stressful

– 3 - 5 years of income beyond the masters is

lost

– Overqualified to make large jumps between

fields

– It’s a lot of hard work with few career options

Ph.D. Production Way Up

23

CS Ph.D’s by Residency

Ph.D. Pipeline

24

Ph.D. Pipeline

Where do Ph.D.’s Work

25

How Do I Apply?

• Application packet generally consists of the following

– Transcript
• Important, but not much you can do about this now…

– Letters of Recommendation
• Important – make or break marginal cases

• Establish relationships with professors, one might be from employer

– Personal Statement
• Somewhat important – think about what you like

– GREs
• Somewhat important - subject test is hard, but many do poorly.

– Research
• It helps if you have worked on a research project as an undergraduate to

show that you can do research as a graduate student

How Do I Apply?

• Transcript

– Your school’s reputation,

– your grades

– and your courses will speak for themselves

– Schools are sympathetic to GPAs that

improve over time and weaknesses in outside

areas

26

How Do I Apply?

• Letters of Recommendation

– These carry a great amount of weight

– Help your letter writer by reminding him/her of

significant interactions you have had

– Help your letter writer by sharing your

research interests so he/she may find ways to

write a letter that complements your personal

statement

How Do I Apply?

• Contact person at other school sometimes
helpful

– This is very difficult

– Best if you meet at a conference or other
professional venue

– Us profs get many such emails from foreign
students

• Don’t sound desperate

• Ask a reasonable question about the professor’s
research – showcase your qualifications

27

How Do I Apply?

• Personal Statement

– This is a great opportunity to stand out

– Research the schools in which you are

interested

– Ask professors to explain research areas

– Try to sound like a student with experience,

focus, and initiative

– Don’t limit your choices by writing something

that makes you sound too focused (unless

you are)

How Do I Apply?

• GRE’s
– General test always required

• General test is like SAT’s but slightly harder

– Subject test sometimes required
• Subject test is very detail oriented

– Study! Purchase old tests/books for practice!

28

Where Do I Apply

• US News and World Report Top 50

– Try not to worry about the money
• Most schools have similar packages for their

students. Those who want funding can usually find
it.

– Try to upgrade
• CS Grad School List

29

Soapbox (Kenrick’s Opinion)

• A Master’s Degree is most flexible
– On average you’ll earn more over your lifetime with a

MS than with a BS or perhaps even a Ph.D.

– You’ll have more control over your day to day tasks
and have a leg up in management

• Only get the Ph.D. if you are strongly compelled
to get what it provides

• Don’t go to work and think you’ll come back to
school – it’s too hard and almost never happens

• Always remember to consider cost of living
adjustments when comparing salaries
– Silicon Valley is expensive

30

Special Case

• Get employer-paid M.S. while working

– Consider quality of school

• If you weren’t working, is a better school possible?

• A MBA degree from UAA might not be worth much to

you if you are capable of Harvard (won’t open doors)

– Difficult to work and study – but you’re young and

might not have time commitments

– Consider that school will likely pay you too if

working on a research grant

Conclusion

• Lots of opportunities for CS majors today

– Job market

– Graduate school

• If you make it big don’t forget that a nice

donation will result in a UAA building

named after you

