
Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

CS123 - Recap2
& Final Project

Programming Your Personal Robot

Kyong-Sok “KC” Chang, David Zhu
Fall 2015-16

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Calendar

KC
Teaching

David
Teaching

Part 1

Part 2

Part 3

Part 4

Part 5

Part 5

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Syllabus
• Part 1 - Communicating with robot (2 weeks)

• BLE communication and robot API
• Part 2 - Event Driven Behavior (2 weeks)

• Finite State Machine (Behavior Tree)
• Part 3 - Reasoning with Uncertainty (2 weeks)

• Dealing with noisy data, uncertainty in sensing and control
• Part 4 - Extending the robot (1 weeks)

• I/O extensions: digital, analog, servo, pwm, etc
• Part 5 – Putting it together (including UI/UX) (3 weeks)

• Design and implement of final (group) project
• Encourage you to go “above and beyond”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Logistics
• TA sessions (office hours): this week

• Location: Gates B21 (Th: Huang basement)
• Time: M:2~4pm, Tu:2~4pm, W:12:30-2:30pm, Th:2~4pm

• Lab reserved for CS123: this week
• MTuW: 12~6pm @ Gates B21

• My office hours (KC)
• Tues: 1-2pm @ Gates B21(Tu)

•

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

• Apple, Samsung
• Tesla, LG
• Google, Alibaba, Naver
• Softbank, SKT
• Foxconn
• Toyota, Honda
• Amazon
• Disney
• iRobot, reThink
• Aethon, Savioke, Fetch
• Yujin, SimLab, Wonik

Robotics Company: New vs. Old

• ABB
• Fanuc
• Yaskawa
• Adept
• Denso
• Kawasaki
• Kuka
• Mitsubishi
• Schunk
• Staubli
• Yamaha

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Outline
• Logistics
• Future robots: New Robotics Company
• Recap: Part 1~4 (more on Part 2 and 3)
• Part 5: Putting it together (Navigation)
• Final projects

• Mobile Robot Programming
• Event-driven programming: FSM
• Modeling
• Localization
• Planning
• Execution
• UI / UX
• Creative

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Objectives
• Expose to the challenges of robot programming

• Gain a better understanding of the difficulty of programming in the
real (physical) world
• Appreciate the challenges of programming in the real world

• Learn basic concepts and techniques
•Event driven programming: FSM
•Modeling the robot: mapping b/w Real world and Virtual world
•Localization & Planning & Execution

• “Opened” problems
• No 100% guaranteed solution
• You can always do better

• “Not well defined” problems
• Further constraining and decompose the problem

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#05: Event Driven Behavior
• 2.1 Event Driven Programming

• Programming Paradigms and Paradigm Shift
• Event Driven Programming Concept

• Tkinter – as a simple example
• More on threads
• Implementation of a simple event driven behavior for Hamster

• 2.2 Finite State Machine
• Concept of FSM
• Implementation details (a simple FSM for Hamster)
• FSM driven by an event queue

• 2.3 Related Topics and Discussion
• Concept of HFSM and BT
(if time allows, not needed for projects)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Comparing Different Paradigms
Different “axis” to organize/compare these
paradigms

• Declarative vs. Imperative
• What you want vs. How to do it

• Procedural vs. Event-Driven
• Step-by-step vs. Event driven

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Programming Languages

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Programming Paradigm “Shift”

Synchronous

Serial

Procedural

Asynchronous

Parallel

Event Driven

O
bj

ec
t O

rie
nt

ed

C
om

pl
ex

ity

More human interaction
Device programming
Hardware: multicore

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Choosing A Paradigm: What to
Consider?
• Suitable for problem formulation
• Ease of implementation

• clarity
• debugging

• Scalability
• Efficiency

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

How to Characterize Robot
Programming

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

How to Characterize Robot
Programming
• Open-loop Control

• Execute robot actions without feedbacks
• Closed-loop Control

• Adjust robot actions (motion) base on sensor feedbacks, thus
compensate for errors

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Closed-loop Control

Hallway
following

• Adjust robot actions (motion) base on sensor feedbacks,
thus compensate for errors

• Necessary because of incomplete and imperfect model of
the world, and because of control uncertainty

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Driven Programming
•Event Driven (Event-based) Programming is a
programming paradigm is which the flow of the
program is determined by events

•Common examples:
• Games
• Web UI
• Robot

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Driven Programming
• Event Dispatcher

• Monitor events and “dispatch”
to handlers

• Event Handlers
• Program waits for events
• When certain events happen,

the program responds and
does something (or decides to
do nothing)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#06: Event Driven Behavior 2
• Threads

• What are threads?
• Why use threads?
• Communication between threads?

• Queues
• FIFO vs. Priority
• Multi-thread safe

• Implementing an Event System using Threads and Queue
• Dispatcher
• Handlers

• Folder Structure (Behavior Package)
• Assignment#2-1: Escape

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What are Threads
Running several threads is similar to running
several different programs concurrently, but with
the following benefits:

• Multiple threads within a process share the same data
space with the main thread and can therefore share
information or communicate with each other more easily
than if they were separate processes.

• Threads sometimes called light-weight processes and
they do not require much memory overhead; they are
“cheaper” than processes.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What are Threads For?
• Threads are used in cases where the execution of a task
involves some waiting

• So we can execute multiple tasks “at the same time”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Communication Between Threads
• Threads are running asynchronously
• Can communicate through global variables and
parameters

• Queue is often used for communication between threads

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Different “types” of Queue
• FIFO queue:

• class Queue.Queue(maxsize=0): maxsize is an integer that sets
the upperbound limit on the number of items that can be placed in
the queue.

• LIFO queue:
• class Queue.LifoQueue(maxsize=0)¶

• Priority queue:
• class Queue.PriorityQueue(maxsize=0)¶

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Queue

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A Simple Structure Using Queues

Sensing Acting

Draw/Display

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Home Work #2-1: Escape

Avoid
Obstacles

Display Proximity Sensor Information Using Tkinter
(proportional to distance, does not have to be accurate)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#07: Finite State Machine
• Concept: Finite State Machine (FSM)

• What are FSM’s
• Why / When to use FSM

• Implementation of Finite State Machines
• FSM driven by an event queue

• Assignment#2-1: Escape

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What Is A Finite State Machine
• A reactive system whose response to a particular stimulus
(a signal, or a piece of input) is not the same on every
occasion, depending on its current “state”.

• For example, in the case of a parking ticket machine, it
will not print a ticket when you press the button unless you
have already inserted some money. Thus the response to
the print button depends on the previous history of the use
of the system.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

More Precisely (Formally)
• A Finite State Machine is defined by (Σ,S,s0,δ,F), where:

• Σ is the input alphabet (a finite, non-empty set of symbols).
• S is a finite, non-empty set of states.
• s0 is an initial state, an element of S.
• δ is the state-transition function: δ : S x Σ → S
• F is the set of final states, a (possibly empty) subset of S.
• O is the set (possibly empty) of outputs

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A (Simplified) Ticket Machine
• Σ (m, t, r) : inserting money, requesting ticket,

requesting refund
• S (1, 2) : unpaid, paid
• s0 (1) : an initial state, an element of S.
• δ (shown below) : transition function: δ : S x Σ →

S
• F : empty
• O (p/d) : print ticket, deliver refund

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

How To Implement an FSM
• The Finite State Machine class keeps track of the current
state, and the list of valid state transitions.

• You define each transition by specifying :
• FromState - the starting state for this transition
• ToState - the end state for this transition
• condition - a callable which when it returns True means this

transition is valid
• callback - an optional callable function which is invoked when this

transition is executed.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Simplest FSM

A B
Press/click “b”

Press/click “a”

Start

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Why Finite State Machines For
Robot
• Response to an event is dependent on the “state” of the
robot

Turn-left, turn-right

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Home Work #2-2: “Cleaner”
(Push Out “Trash”)

• Trash: small white boxes,
about same size as robot,
very light

• No other obstacles inside
boundary except trash

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#08: HFSM & BT
• HFSM: Hierarchical Finite State Machine
• BT: Behavior Tree

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Hierarchical Finite State Machine
• a.k.a StateCharts (first introduced by David Harel)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Harel’s StateCharts
•Super-states : groups of states.

• These super-states too can have transitions, which allows you to
prevent redundant transitions by applying them only once to super-
states rather than each state individually.

•Generalized transitions : transitions between
Super-states

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Simplest Example
• Clustering / Super State

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Obstacle Avoidance Example

Turn
Left

Turn
Right

Moving
Straight

obs_right

obs_free

obs_free

obs_left

obs_right

obs_left obs_right

obs_left

Turn
Left

Turn
Right

Moving
Straight

obs_right

obs_free

obs_left

obs_right

obs_left

obs_left
obs_right

Note: this algorithm can cause “oscillation” (robot oscillates turning left and right)
in case of concave obstacle. But we discussed in class how to solve that

Avoidance

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

HFSM
• Refinement

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Behavior Trees (BT)
•Mathematical Model of Plan Execution – describe
switching between a finite set of tasks in a
modular fashion

•Originated from Game Industry, as a powerful
way to describe AI for “NPC”
• Halo, Bioshock, Spore

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

More Formally (Precisely)
•Directed Acyclic Graph
•Four types of nodes:

• Root node – no parent, one child (ticks)
• Composite node (“Control flow ”) – one parent, and one
or more children

• Leaf node (“Execution”) – one parent, no child (Leaves)
• Decorator node (“Operator”) – one parent, one child

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

BT Execution
• Depth-First Traversal

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

BT Execution

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Topics For Part 3
3.1 The Robot Programming Problem

• What is “robot programming”
• Challenges
• Real World vs. “Virtual” World

•Mapping and visualizing Hamster’s world
• A decomposition of the “mobile robot programming” problem

3.2 “Modeling” Hamster
• Hamster’s Motion and Sensors

3.3 Localization
• Where am I?
• Sub-goal navigation

3.4 Plan and Execution
• Motion Planning & Control with Uncertainty

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#09: Reasoning w/ Uncertainty
• Part 3-1: Challenges of Robot Programming
• What is robot programming

• Modeling
• Localization
• Planning
• Execution
• Reactive is not enough: better knowledge of environment

• Physical world vs. virtual world
• Modeling of Hamster: physical vs. virtual world
• What does the robot see
• How to make sense of what the robot see

• Graphic toolkit to help you visualize Hamster
• Assignment#3-1: Localization

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What Is Robot Programming

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A Simplified Paradigm

Virtual World Real (Physical) World

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Basic Elements Of Robot Programming

• Model of itself
• Model of the world (mapping virtual world and real world)
• Description of a task
• Description of a “plan” (to achieve task)

• can be given to the robot
• can be generated by robot

• A way to recognize success (task completion)
• and monitoring during plan execution to make sure it’s following
the plan

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Unique Challenges
•Knowledge of the world
incomplete
• Not available
• Impractical (too much details)
• World Changing

•Sensing is imperfect
• And limited

•Control is inaccurate

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Trash Cleaning Example
• Model of itself
• Model of the world
• Description of a task
• Description of a “plan” (to
achieve task)

• can be given to the robot
• can be generated by robot

• A way to recognize
success (task completion)

• monitoring during plan
execution to make sure it’s
following the plan

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Reactive Is Not Enough
So far we have:
• Very limited knowledge of the world (border and
obstacles exist)
• Only “reactive” behaviors

But you can not do too much being completely “reactive”
To do more:
• we need better “knowledge” of the world and
• use this knowledge to generate a “plan”
• ensure “plan” execution

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#10: Localization
• Localization

• Relative (Internal): dead reckoning
• Absolute (External): distance sensors (Geometric feature

detection), IR, Landmark
• Modeling Environment

• Least Square (Fit): minimization
• Assignment＃3-1 – Localization

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Localization Methods
Two General Approaches:
• Relative (Internal) – relative to “self”

• Using Proprioceptive sensors such as:
• odometric (encoder)
• gyroscopic

• Absolute (External)
• using “exteroceptive” sensors such as infrared, sonar,
laser distance sensor – to measure environment
• geometric features
• landmarks

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Relative “Localization”: Dead Reckoning

• What is Dead Reckoning
• Encoder
• Various Drive Mechanisms
• Hamster

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

“Absolute” Localization
• GPS and Beacons
• Use “external” sensors – “measuring”
environment and matching against “map”
• Minimize the difference between measured data
and “expected” (predicted) data (from the map)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Making Sense of Noisy Data

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Linear Least Square (Fit)
• For a given set of points (x_i, y_i)
• Find m,c such that the sum of distances of these
points to the line y = mx +c is minimized

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Localization Of Hamster

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Localization Using Special Landmarks

Patterns on ceiling are often used landmarks

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Hamster “Floor” Sensors

Left and Right Floor Sensors

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Landmark Navigation Using Floor Sensors

• Greyscale
• Patterns

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Combining Relative and Absolute
Localization

Dead reckoning +
Geometric feature based localization

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Mobile Robot Programming:
Problem Decomposition
• Physical -> Virtual World Mapping
• Localization (Hamster knowing “where he is”)
• Local navigation (going to a specific place /
location) : achieving “sub-goal”
• Plan and Plan Execution (execution monitoring)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Homework Part #3-1
• Joystick your robot to face the obstacle on the different
obstacles, and localize with respect to each

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Homework #3-1:
“Local” Localization and Navigation

• Base on local (spatial and temporal) information
• Technique will be discussed on Thursday
• But you can first do the “robot modeling” part

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#11: Motion Planning
• Introduction to Robot Motion Planning

• Configuration Space (C-Space) Approach
• Basic Motion Planning Methods: Discretization

•Visibility Graph, Voronoi Diagrams
•Cell Decomposition: Exact, estimate

• Plan Execution (Control)
• Virtual World (Perfect Control)
• Real World (Uncertainty in control)

• Planning Under Uncertainty
•Landmarks
•Preimage backchaining

• Homework Assignment Part ＃3-2

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What is Motion Planning
• Also known as the Piano Mover’s Problem

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Problem Formulation
• The problem of motion planning can be stated as follows

• A start pose of the robot
• A desired goal pose
• A geometric description of the robot
• A geometric description of the world

• Find a path that moves the robot
• from start to goal while
• never touching any obstacle

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Example of 2D Circular Robot

Work Space Configuration Space

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Motion Planning Methods
• Converting a “continuous” space problem into a discrete
graph search problem (discretization of C-space)
• Decouple “independent” DoF

• mobile vs. manipulation
• We will focus on planning problem of mobile robots
• Visibility Graph
• Voronoi Diagrams
• Cell Decomposition

• Exact
• Approximate

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Motion Planning:
Discretization of Space
• Different methods for “discretizing” space:

• Visibility Graph
• Voronoi Diagram
• Cell Decomposition

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Cell Decomposition : Exact

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Cell Decomposition : Approximate

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

 Search

• Uninformed Search
• Use no information obtained from the environment
• Blind Search

• BFS (Breath First)
• DFS (Depth First)

• Informed Search
• Use evaluation function
• Use “Heuristic” to guide the search:

• Dijkstra’s Algorithm
• A*

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

• Estimate “Distance to Goal” at each node

 Use of Heuristics

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Potential Field Method
• All techniques discussed so far aim at capturing
the connectivity of C_free into a graph
• Potential Field Methods follow a different idea:

• The robot, represented as a point in C, is modeled as a
particle under the influence of a artificial potential
field U which superimposes

• Repulsive forces from obstacles
• Attractive force from goal

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Potential Field Method:
Gradient Descent

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

“Unexpected” Obstacle Avoidance
• Simple Potential Field Method has the drawback
of getting stuck at “local minimum”
• But is good for “local obstacle” avoidance, such
as

• unexpected obstacles in environment (like moving people)
• or known obstacle become “unexpected” due to control
uncertain

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Local Obstacle Avoidance

Detected Unexpected
Obstacle

Goal generates
attractive force

Obstacle generates
repulsive force

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Simplify Hamster’s Simple World
• We approximate Hamster as its Circumscribing Circle
(we assume Hamster is a 40mm x 40 mm Square)
• Approximate the C-space obstacles by their bounding
rectangle

r = 20*sqrt(2)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A Simple Work Space / C-space

StartGoal

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Simple Motion Plan For Hamster
Using Exact Cell Decomposition

StartGoal

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Path in Work Space

StartGoal

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Plan Execution In A Perfect (Virtual) World

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Homework Part #3-2

Goal Condition: Robot facing “obstacle
A” toward the highlighted surface.
 Both sensors detected obstacle A

Start

A

You don’t have to
automatically plan for the
motion path. You can enter
the robot path (a list of
“subgoals”) for the robot to
follow.

B

C

D

E

F

A, B, C, D, E, and F are
obstacles. Robot should not
come in contact with them

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Homework Part #3-2

Goal Start

A
Robot should localize at least 2
times during its travel

Should not rely only on dead
reckoning and “scanning” to
find/reach goal

You can specify in your program
where the robot should localize
(part of the plan)

A

B

C

D

E

F

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Lec#12: Motion Planning & Control
•More on Motion Planning

• Search (A*)
•Uninformed (Blind): BFS, DFS
•Informed (Heuristic): Evaluation function: Dijkstra’s, A*

• Potential Field Method

•More on Control Under Uncertainty
• Motion “Primitives”
• Avoiding “Unexpected” Obstacles

•More on Assignment＃3-2
• student demo (Starbuck reward still good)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

“General” Controller for Hamster

• Separating Planning and Control
• Should not hard-code the controller together with the
planner
• The planner outputs a list of “sub-goals”
• The controller translates the sub-goal list into a
sequence of executable “motion primitives”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

• Perfect World:
• Move to (x, y, a)
• Terminate when getting close enough to (x, y, a)

 Motion Control: Motion Primitives

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

 Motion Primitive: Control Uncertainty

Landmark

• Real World – Control Uncertainty
• Move along d (direction)
• Terminate with some sensor

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Final Project
• Mobile Robot Programming

• Event driven programming: FSM
• Navigation

• modeling: hamster (sensor, effector), environment
• localization: local (IR, floor), global (landmark), vision
• planning: c-space, cell decomposition, search

• local (reactive), global
• execution: motion primitives, completion (fail, success)
• UI/UX: graphics, keyboard, sound, LED, motion, etc

• Creativity: fun factor
• Team of 2+ people with 2+ robots
• 5 min oral presentation + 10 min demo: attendance (full 2 hours)

• Project should be well defined
• Clear objectives (goals), gameplay, completion (win/loss, success/fail)
• Precise definition of “initial state”, “final state” and “transition”
• Assumptions: environment, human intervene, moving objects, etc

• CS 123 Final Project Proposal Guidelines

http://web.stanford.edu/class/cs123/materials/FinalProjectProposal.pdf
http://web.stanford.edu/class/cs123/materials/FinalProjectProposal.pdf

Dave’s run
Mammoth Mt. Ski Resort

CA USA 2014

My Final

