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Syllabus
• Part 1 - Communicating with robot (2 weeks)

• BLE communication and robot API
• Part 2 - Event Driven Behavior (2 weeks)

• Finite State Machine (Behavior Tree)
• Part 3 - Reasoning with Uncertainty (2 weeks)

• Dealing with noisy data, uncertainty in sensing and control
• Part 4 - Extending the robot (1 weeks)

• I/O extensions: digital, analog, servo, pwm, etc 
• Part 5 – Putting it together (including UI/UX) (3 weeks)

• Design and implement of final (group) project
• Encourage you to go “above and beyond”
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Logistics
• TA sessions (office hours): this week

• Location: Gates B21 (Th: Huang basement)
• Time: M:2~4pm, Tu:2~4pm, W:12:30-2:30pm, Th:2~4pm

• Lab reserved for CS123: this week
• MTuW: 12~6pm @ Gates B21

• My office hours (KC)
• Tues: 1-2pm @ Gates B21(Tu)

•
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• Apple, Samsung
• Tesla, LG
• Google, Alibaba, Naver
• Softbank, SKT
• Foxconn
• Toyota, Honda
• Amazon
• Disney
• iRobot, reThink
• Aethon, Savioke, Fetch
• Yujin, SimLab, Wonik

Robotics Company: New vs. Old

• ABB
• Fanuc
• Yaskawa
• Adept
• Denso
• Kawasaki
• Kuka
• Mitsubishi
• Schunk
• Staubli
• Yamaha
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Outline
• Logistics
• Future robots: New Robotics Company
• Recap: Part 1~4 (more on Part 2 and 3)
• Part 5: Putting it together (Navigation)
• Final projects

• Mobile Robot Programming
• Event-driven programming: FSM
• Modeling
• Localization
• Planning
• Execution
• UI / UX
• Creative
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Objectives
• Expose to the challenges of robot programming 

• Gain a better understanding of the difficulty of programming in the 
real (physical) world
• Appreciate the challenges of programming in the real world

• Learn basic concepts and techniques
•Event driven programming: FSM
•Modeling the robot: mapping b/w Real world and Virtual world
•Localization & Planning & Execution

• “Opened” problems
• No 100% guaranteed solution
• You can always do better

• “Not well defined” problems
• Further constraining and decompose the problem
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Lec#05: Event Driven Behavior
• 2.1 Event Driven Programming

• Programming Paradigms and Paradigm Shift
• Event Driven Programming Concept

• Tkinter – as a simple example
• More on threads
• Implementation of a simple event driven behavior for Hamster

• 2.2 Finite State Machine
• Concept of FSM
• Implementation details (a simple FSM for Hamster)
• FSM driven by an event queue

• 2.3 Related Topics and Discussion
• Concept of HFSM and BT
(if time allows, not needed for projects)
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Comparing Different Paradigms
Different “axis” to organize/compare these 
paradigms

• Declarative vs. Imperative
• What you want vs. How to do it

• Procedural vs. Event-Driven
• Step-by-step vs. Event driven
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Programming Languages 
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Programming Paradigm “Shift”

Synchronous

Serial

Procedural

Asynchronous

Parallel

Event Driven

O
bj

ec
t O

rie
nt

ed
 

C
om

pl
ex

ity

More human interaction
Device programming
Hardware: multicore
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Choosing A Paradigm: What to 
Consider?
• Suitable for problem formulation
• Ease of implementation

• clarity
• debugging

• Scalability
• Efficiency
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How to Characterize Robot 
Programming
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How to Characterize Robot 
Programming 
• Open-loop Control

• Execute robot actions without feedbacks
• Closed-loop Control

• Adjust robot actions (motion) base on sensor feedbacks, thus 
compensate for errors
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Closed-loop Control

Hallway 
following

• Adjust robot actions (motion) base on sensor feedbacks, 
thus compensate for errors

• Necessary because of incomplete and imperfect model of 
the world, and because of control uncertainty
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Event Driven Programming
•Event Driven (Event-based) Programming is a 
programming paradigm is which the flow of the 
program is determined by events 

•Common examples: 
• Games
• Web UI
• Robot



Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Driven Programming
• Event Dispatcher

• Monitor events and “dispatch” 
to handlers

• Event Handlers
• Program waits for events
• When certain events happen, 

the program responds and 
does something (or decides to 
do nothing)
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Lec#06: Event Driven Behavior 2
• Threads

• What are threads?
• Why use threads?
• Communication between threads?

• Queues
• FIFO vs. Priority
• Multi-thread safe

• Implementing an Event System using Threads and Queue
• Dispatcher 
• Handlers

• Folder Structure (Behavior Package)
• Assignment#2-1: Escape
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What are Threads
Running several threads is similar to running 
several different programs concurrently, but with 
the following benefits:

• Multiple threads within a process share the same data 
space with the main thread and can therefore share 
information or communicate with each other more easily 
than if they were separate processes.

• Threads sometimes called light-weight processes and 
they do not require much memory overhead; they are 
“cheaper” than processes.
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What are Threads For?
• Threads are used in cases where the execution of a task 
involves some waiting

• So we can execute multiple tasks “at the same time”
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Communication Between Threads
• Threads are running asynchronously
• Can communicate through global variables and 
parameters

• Queue is often used for communication between threads
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Different “types” of Queue
• FIFO queue:

• class Queue.Queue(maxsize=0): maxsize is an integer that sets 
the upperbound limit on the number of items that can be placed in 
the queue.

• LIFO queue:
• class Queue.LifoQueue(maxsize=0)¶

• Priority queue:
• class Queue.PriorityQueue(maxsize=0)¶
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Event Queue
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A Simple Structure Using Queues

Sensing Acting

Draw/Display
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Home Work #2-1: Escape

Avoid 
Obstacles

Display Proximity Sensor Information Using Tkinter 
(proportional to distance, does not have to be accurate)
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Lec#07: Finite State Machine
• Concept: Finite State Machine (FSM)

• What are FSM’s
• Why / When to use FSM

• Implementation of Finite State Machines
• FSM driven by an event queue

• Assignment#2-1: Escape
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What Is A Finite State Machine
• A reactive system whose response to a particular stimulus 
(a signal, or a piece of input) is not the same on every 
occasion, depending on its current “state”. 

• For example, in the case of a parking ticket machine, it 
will not print a ticket when you press the button unless you 
have already inserted some money. Thus the response to 
the print button depends on the previous history of the use 
of the system. 
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More Precisely (Formally)
• A Finite State Machine is defined by (Σ,S,s0,δ,F), where: 

• Σ is the input alphabet (a finite, non-empty set of symbols).
• S is a finite, non-empty set of states.
• s0 is an initial state, an element of S.
• δ is the state-transition function: δ : S x Σ → S 
• F is the set of final states, a (possibly empty) subset of S.
• O is the set (possibly empty) of outputs 
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A (Simplified) Ticket Machine
• Σ (m, t, r) : inserting money, requesting ticket, 

requesting refund
• S (1, 2) : unpaid, paid
• s0 (1) : an initial state, an element of S.
• δ (shown below) : transition function: δ : S x Σ → 

S 
• F : empty
• O (p/d) : print ticket, deliver refund
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How To Implement an FSM
• The Finite State Machine class keeps track of the current 
state, and the list of valid state transitions.

• You define each transition by specifying :
• FromState - the starting state for this transition
• ToState - the end state for this transition
• condition - a callable which when it returns True means this 

transition is valid
• callback - an optional callable function which is invoked when this 

transition is executed.
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Simplest FSM

A B
Press/click “b”

Press/click “a”

Start
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Why Finite State Machines For 
Robot
• Response to an event is dependent on the “state” of the 
robot

Turn-left, turn-right
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Home Work #2-2: “Cleaner”
(Push Out “Trash”)

• Trash: small white boxes, 
about same size as robot, 
very light

• No other obstacles inside 
boundary except trash
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Lec#08: HFSM & BT
• HFSM: Hierarchical Finite State Machine
• BT: Behavior Tree
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Hierarchical Finite State Machine
• a.k.a StateCharts (first introduced by David Harel)
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Harel’s StateCharts
•Super-states : groups of states. 

• These super-states too can have transitions, which allows you to 
prevent redundant transitions by applying them only once to super-
states rather than each state individually.

•Generalized transitions : transitions between 
Super-states
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Simplest Example
• Clustering / Super State
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Obstacle Avoidance Example

Turn 
Left

Turn 
Right

Moving 
Straight

obs_right

obs_free

obs_free

obs_left

obs_right

obs_left obs_right

obs_left

Turn 
Left

Turn 
Right

Moving 
Straight

obs_right

obs_free

obs_left

obs_right

obs_left

obs_left
obs_right

Note: this algorithm can cause “oscillation” (robot oscillates turning left and right)
in case of concave obstacle. But we discussed in class how to solve that

Avoidance
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HFSM
• Refinement
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Behavior Trees (BT)
•Mathematical Model of Plan Execution – describe 
switching between a finite set of tasks in a 
modular fashion

•Originated from Game Industry, as a powerful 
way to describe AI for “NPC”
• Halo, Bioshock, Spore
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More Formally (Precisely) 
•Directed Acyclic Graph
•Four types of nodes: 

• Root node – no parent, one child (ticks)
• Composite node (“Control flow ”) – one parent, and one 
or more children

• Leaf node (“Execution”) – one parent, no child (Leaves) 
• Decorator node (“Operator”) – one parent, one child
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BT Execution
• Depth-First Traversal
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BT Execution
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Topics For Part 3
3.1 The Robot Programming Problem

• What is “robot programming”
• Challenges 
• Real World vs. “Virtual” World

•Mapping and visualizing Hamster’s world
• A decomposition of the “mobile robot programming” problem

3.2 “Modeling” Hamster
• Hamster’s Motion and Sensors

3.3 Localization
• Where am I?
• Sub-goal navigation

3.4 Plan and Execution
• Motion Planning & Control with Uncertainty
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Lec#09: Reasoning w/ Uncertainty
• Part 3-1: Challenges of Robot Programming
• What is robot programming

• Modeling
• Localization
• Planning
• Execution
• Reactive is not enough: better knowledge of environment

•  Physical world vs. virtual world 
•  Modeling of Hamster: physical vs. virtual world
•  What does the robot see
•  How to make sense of what the robot see 

•  Graphic toolkit to help you visualize Hamster
•  Assignment#3-1: Localization
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What Is Robot Programming
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A Simplified Paradigm

Virtual World Real (Physical) World
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Basic Elements Of Robot Programming

• Model of itself
• Model of the world (mapping virtual world and real world)
• Description of a task
• Description of a “plan” (to achieve task)

• can be given to the robot
• can be generated by robot

• A way to recognize success (task completion)
• and monitoring during plan execution to make sure it’s following 
the plan



Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Unique Challenges
•Knowledge of the world 
incomplete
• Not available
• Impractical (too much details) 
• World Changing

•Sensing is imperfect 
• And limited

•Control is inaccurate
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Trash Cleaning Example
• Model of itself
• Model of the world
• Description of a task
• Description of a “plan” (to 
achieve task)

• can be given to the robot
• can be generated by robot

• A way to recognize 
success (task completion)

• monitoring during plan 
execution to make sure it’s 
following the plan
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Reactive Is Not Enough
So far we have:
• Very limited knowledge of the world (border and 
obstacles exist)
• Only “reactive” behaviors

But you can not do too much being completely “reactive” 
To do more: 
• we need better “knowledge” of the world and
• use this knowledge to generate a “plan”
• ensure “plan” execution
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Lec#10: Localization
• Localization

• Relative (Internal): dead reckoning
• Absolute (External): distance sensors (Geometric feature 

detection), IR, Landmark
• Modeling Environment

• Least Square (Fit): minimization
• Assignment＃3-1 – Localization
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Localization Methods
Two General Approaches:
• Relative (Internal) – relative to “self”

• Using Proprioceptive sensors such as: 
• odometric (encoder)
• gyroscopic 

• Absolute (External) 
• using “exteroceptive” sensors such as infrared, sonar, 
laser distance sensor – to measure environment
• geometric features
• landmarks 
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Relative “Localization”: Dead Reckoning

• What is Dead Reckoning
• Encoder
• Various Drive Mechanisms
• Hamster 
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“Absolute” Localization
• GPS and Beacons
• Use “external” sensors – “measuring” 
environment and matching against “map”
• Minimize the difference between measured data 
and “expected” (predicted) data (from the map)
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Making Sense of Noisy Data
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Linear Least Square (Fit)
• For a given set of points (x_i, y_i)
• Find m,c such that the sum of distances of these 
points to the line y = mx +c is minimized
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Localization Of Hamster
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Localization Using Special Landmarks

Patterns on ceiling are often used landmarks
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Hamster “Floor” Sensors

Left and Right Floor Sensors
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Landmark Navigation Using Floor Sensors

• Greyscale
• Patterns
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Combining Relative and Absolute 
Localization

Dead reckoning + 
Geometric feature based localization 
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Mobile Robot Programming: 
Problem Decomposition
• Physical -> Virtual World Mapping
• Localization (Hamster knowing “where he is”)
• Local navigation (going to a specific place / 
location) : achieving “sub-goal”
• Plan and Plan Execution (execution monitoring)
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Homework Part #3-1
• Joystick your robot to face the obstacle on the different 
obstacles, and localize with respect to each 
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Homework #3-1: 
“Local” Localization and Navigation

• Base on local (spatial and temporal) information
• Technique will be discussed on Thursday
• But you can first do the “robot modeling” part 
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Lec#11: Motion Planning
• Introduction to Robot Motion Planning

• Configuration Space (C-Space) Approach
• Basic Motion Planning Methods: Discretization 

•Visibility Graph, Voronoi Diagrams
•Cell Decomposition: Exact, estimate

• Plan Execution (Control)
• Virtual World (Perfect Control)
• Real World (Uncertainty in control)

• Planning Under Uncertainty
•Landmarks
•Preimage backchaining

• Homework Assignment Part ＃3-2
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What is Motion Planning
• Also known as the Piano Mover’s Problem
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Problem Formulation 
• The problem of motion planning can be stated as follows

• A start pose of the robot
• A desired goal pose
• A geometric description of the robot
• A geometric description of the world

• Find a path that moves the robot
• from start to goal while
• never touching any obstacle
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Example of 2D Circular Robot

Work Space Configuration Space 
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Motion Planning Methods
• Converting a “continuous” space problem into a discrete 
graph search problem (discretization of C-space)
• Decouple “independent” DoF

• mobile vs. manipulation
• We will focus on planning problem of mobile robots
• Visibility Graph 
• Voronoi Diagrams
• Cell Decomposition

• Exact
• Approximate
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Motion Planning: 
Discretization of Space
• Different methods for “discretizing” space:

• Visibility Graph
• Voronoi Diagram
• Cell Decomposition
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Cell Decomposition : Exact
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Cell Decomposition : Approximate
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 Search

• Uninformed Search 
• Use no information obtained from the environment
• Blind Search

• BFS (Breath First) 
• DFS (Depth First)

• Informed Search
• Use evaluation function 
• Use “Heuristic” to guide the search:

• Dijkstra’s Algorithm
• A*
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• Estimate “Distance to Goal” at each node

 Use of Heuristics
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Potential Field Method
• All techniques discussed so far aim at capturing 
the connectivity of C_free into a graph 
• Potential Field Methods follow a different idea: 

• The robot, represented as a point in C, is modeled as a 
particle under the influence of a artificial potential 
field U which superimposes 

• Repulsive forces from obstacles
• Attractive force from goal 
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Potential Field Method: 
Gradient Descent 
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“Unexpected” Obstacle Avoidance
• Simple Potential Field Method has the drawback 
of getting stuck at “local minimum” 
• But is good for “local obstacle” avoidance, such 
as

• unexpected obstacles in environment (like moving people)
• or known obstacle become “unexpected” due to control 
uncertain
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Local Obstacle Avoidance

Detected Unexpected 
Obstacle

Goal generates 
attractive force

Obstacle generates 
repulsive force
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Simplify Hamster’s Simple World
• We approximate Hamster as its Circumscribing Circle 
(we assume Hamster is a 40mm x 40 mm Square)
• Approximate the C-space obstacles by their bounding 
rectangle

r = 20*sqrt(2)
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A Simple Work Space / C-space

StartGoal
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Simple Motion Plan For Hamster
Using Exact Cell Decomposition

StartGoal
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Path in Work Space

StartGoal
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Plan Execution In A Perfect (Virtual)  World
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Homework Part #3-2

Goal Condition: Robot facing “obstacle 
A” toward the highlighted surface.
 Both sensors detected obstacle A

Start

A

You don’t have to 
automatically plan for the 
motion path. You can enter 
the robot path (a list of 
“subgoals”) for the robot to 
follow. 

B

C

D

E

F

A, B, C, D, E, and F are 
obstacles. Robot should not 
come in contact with them
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Homework Part #3-2

Goal Start

A
Robot should localize at least 2 
times during its travel

Should not rely only on dead 
reckoning and “scanning” to 
find/reach goal

You can specify in your program 
where the robot should localize 
(part of the plan)

A

B

C

D

E

F
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Lec#12: Motion Planning & Control
•More on Motion Planning 

• Search (A*)
•Uninformed (Blind): BFS, DFS
•Informed (Heuristic): Evaluation function: Dijkstra’s, A*

• Potential Field Method

•More on Control Under Uncertainty
• Motion “Primitives”
• Avoiding “Unexpected” Obstacles

•More on Assignment＃3-2
• student demo (Starbuck reward still good)
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“General” Controller for Hamster

• Separating Planning and Control
• Should not hard-code the controller together with the 
planner
• The planner outputs a list of “sub-goals” 
• The controller translates the sub-goal list into a 
sequence of executable “motion primitives”
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•  Perfect World:
• Move to  (x, y, a) 
• Terminate when getting close enough to (x, y, a) 

 Motion Control: Motion Primitives
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  Motion Primitive: Control Uncertainty

Landmark

•  Real World – Control Uncertainty 
• Move along d (direction)
• Terminate with some sensor 
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Final Project
• Mobile Robot Programming

• Event driven programming: FSM
• Navigation

• modeling: hamster (sensor, effector), environment
• localization: local (IR, floor), global (landmark), vision
• planning: c-space, cell decomposition, search

• local (reactive), global
• execution: motion primitives, completion (fail, success)
• UI/UX: graphics, keyboard, sound, LED, motion, etc

• Creativity: fun factor
• Team of 2+ people with 2+ robots
• 5 min oral presentation + 10 min demo: attendance (full 2 hours)

•  Project should be well defined
• Clear objectives (goals), gameplay, completion (win/loss, success/fail)
• Precise definition of “initial state”, “final state” and “transition”
• Assumptions: environment, human intervene, moving objects, etc

• CS 123 Final Project Proposal Guidelines

http://web.stanford.edu/class/cs123/materials/FinalProjectProposal.pdf
http://web.stanford.edu/class/cs123/materials/FinalProjectProposal.pdf


Dave’s run
Mammoth Mt. Ski Resort 

CA USA 2014

My Final


