
Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

CS123
Programming Your Personal Robot

Part 2: Event Driven Behavior

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

You Survived !

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Smooth Sailing …

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Topics
•  2.1 Event Driven Programming

•  Programming Paradigms and Paradigm Shift
•  Event Driven Programming Concept

•  Tkinter – as a simple example
•  More on threads
•  Implementation of a simple event driven behavior for Hamster

•  2.2 Finite State Machine
•  Concept of FSM
•  Implementation details (a simple FSM for Hamster)
•  FSM driven by an event queue

•  2.3 Related Topics and Discussion
•  Concept of HFSM and BT
(if time allows, not needed for projects)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Class Structure
• Class 1: Basic Concept of Event Driven Programming
• Class 2: Implementation of Event Driven Programming
• Class 3: Concept and Implementation of FSM
• Class 4: Discussion of Related Topics

•  Hierarchical Finite State Machine and Behavior Tree (if time allows)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Objectives
•  Learn Event Driven Programming

•  For develop behavior for Hamster

•  Learn “How To Learn” A New Topic
•  You can find everything online
•  Ability to “Parse” large amount of information
•  Ability to “Synthesize”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.0 Standard Hamster API

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Standard Hamster API
• After homework is handed-in, a Stanford Hamster API will

be given
• With this API, you can use both Mac and PC
•  For PC users, you need to get a dongle

•  With some software installation, instruction available

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Standard Hamster API
• Set

•  Wheel
•  LED
•  Buzzer/musical_node

• Get
•  Proximity
•  Line
•  Light
•  Acceleration
•  ….

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.1 Event Driven Programming

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What is Paradigm?

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Paradigms: Ways of organizing thoughts

Different ways to look at things (the world)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What are Programming Paradigms

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Various Programming Paradigms
•  Procedural Programming

•  Von Neumann
•  Program flow: step-by-step specified

•  Functional Programming
•  Mathematical foundation (return value, not side-effect)

•  Object-Oriented Programming
•  Encapsulation
•  Manage complexity

•  Imperative Programming
•  Specify what you want, not how to do it

•  Declarative (Logic) Programming
•  Inference (Search)
•  Typical languages: Prolog/SQL

•  Event-Driven Programming
•  Program flow driven by events
•  Typical examples: UI, Game, robots

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Comparing Different Paradigms
Different “axis” to organize/compare these
paradigms

•  Declarative vs. Imperative
•  What you want vs. How to do it

•  Procedural vs. Event-Driven
•  Step-by-step vs. Event driven

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Programming Paradigms vs. Languages
• Not 1-to-1 Mapping
• Earlier languages are more “pure”

•  Pascal/C – Procedural/Imperative
•  Prolog/LISP – Declarative

• Newer languages: supports multiple paradigms
•  Language trend: higher level of abstraction, less for the

machine, more for the programmers
•  Earlier languages are closer to hardware
•  Driven by complexity of tasks
•  Enabled by increase hardware power

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Programming Languages

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Programming Paradigm “Shift”

Synchronous

Serial

Procedural

Asynchronous

Parallel

Event Driven

O
bj

ec
t O

rie
nt

ed

C
om

pl
ex

ity

More human interaction
Device programming
Hardware: multicore

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Choosing A Paradigm: What to Consider?
• Suitable for problem formulation
• Ease of implementation

•  clarity
•  debugging

• Scalability
• Efficiency

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

An Example: Declarative Programming

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

How to Characterize Robot Programming

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

How to Characterize Robot Programming
• Open-loop Control

•  Execute robot actions without feedbacks

• Closed-loop Control
•  Adjust robot actions (motion) base on sensor feedbacks, thus

compensate for errors

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Closed-loop Control

Hallway
following

•  Adjust robot actions (motion) base on sensor feedbacks,
thus compensate for errors

•  Necessary because of incomplete and imperfect model of
the world, and because of control uncertainty

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Driven Programming
• Event Driven (Event-based) Programming is a
programming paradigm is which the flow of the
program is determined by events

• Common examples:
• Games
• Web UI
• Robot

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Driven Programming
• Event Dispatcher

•  Monitor events and “dispatch”
to handlers

• Event Handlers
•  Program waits for events
•  When certain events happen,

the program responds and
does something (or decides to
do nothing)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Or Like a Symphony

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A Simple Example Using Tkinter
Tkinter is the de facto standard GUI package
for Python
Two Reasons For Introducing Tkinter
•  Yet another very simple example of event driven

programming
•  Register an event with a callback function

•  Very useful for Part 3
•  Visualizing Hamster’s “world”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A Basic Tkinter Program
•  create a root window
•  create widgets within the root window
•  customize widgets
•  layout the widgets
•  bind event handlers to widget events
•  start the event loop
(see sample)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.2 Event Driven Programming
Implementation

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.3 Finite State Machine (FSM)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.4 Topics and Discussion

