
CS152: Computer Systems Architecture
The Hardware/Software Interface

Sang-Woo Jun

Winter 2019

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson



Course outline

 Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly programming and conventions

 Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

 Part 3: Computer Architecture
o Computer Arithmetic
o Simple and pipelined processors
o Caches and the memory hierarchy

 Part 4: Computer Systems
o Operating systems, Virtual memory



Eight great ideas

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy

today



Great idea: 
Use abstraction to simplify design

 Abstraction helps us deal with complexity by hiding lower-level detail
o One of the most fundamental tools in computer science!

o Examples: 
• Application Programming Interface (API), 

• System calls, 

• Application Binary Interface (ABI), 

• Instruction-Set Architecture



The Instruction Set Architecture

 An Instruction-Set Architecture (ISA) is the abstraction between the 
software and processor hardware
o The ‘Hardware/Software Interface’

o Different from ‘Microarchitecture’, which is how the ISA is implemented

 The ISA allows software to run on different machines of the same 
architecture
o e.g., x86 across Intel, AMD, and various speed and power ratings



Below your program

 Application software
o Written in high-level language

 System software
o Compiler: translates HLL code to machine code

o Operating System: service code
• Handling input/output

• Managing memory and storage

• Scheduling tasks & sharing resources

 Hardware
o Processor, memory, I/O controllers



Levels of program code

 High-level language
o Level of abstraction closer to problem domain

o Provides for productivity and portability 

 Assembly language
o Textual representation of instructions

 Hardware representation
o Binary digits (bits)

o Encoded instructions and data

Instruction Set Architecture (ISA) is 
the agreement on what this will do



A RISC-V Example

 This four-byte binary value will instruct a RISC-V CPU to perform 
o add values in registers x19 x10, and store it in x18

o regardless of processor speed, internal implementation, or chip designer

Source: Yuanqing Cheng, “Great Ideas in Computer Architecture RISC-V Instruction Formats” 



Some history of ISA

 Early mainframes did not have a concept of ISAs (early 1960s)
o Each new system had different hardware-software interfaces

o Software for each machine needed to be re-built

 IBM System/360 (1964) introduced the concept of ISAs
o Same ISA shared across five different processor designs (various cost!)

o Same OS, software can be run on all

o Extremely successful!

 Aside: Intel x86 architecture introduced in 1978
o Strict backwards compatibility maintained even now

o Attempted clean-slate redesign multiple times (iAPX 432, EPIC, …)

(The A20 line… )



IBM System/360 Model 20 CPU

Source: Ben Franske, Wikipedia



What makes a ‘good’ ISA?

 Computer architecture is an art…
o No one design method leads to a ‘best’ computer

o Subject to workloads, use patterns, criterion, operation environment, …

 Important criteria: Given the same restrictions,
o High performance!

o Power efficiency

o Low cost

o …



Performance!



What does it mean to be high-performance?

 In the 90s, CPUs used to compete with clock speed
o “My 166 MHz processor was faster than your 100 MHz processor!”

o Not very representative between different architectures

o 2 GHz processor may require 5 instructions to do what 1 GHz one needs only 2

 Let’s define performance = 1/execution time

 Example: time taken to run a program
o 10s on A, 15s on B

o Execution TimeB / Execution TimeA
= 15s / 10s = 1.5

o So A is 1.5 times faster than B

n XY

YX

time Executiontime Execution

ePerformancePerformanc



Measuring execution time

 Elapsed time
o Total response time, including all aspects

• Processing, I/O, OS overhead, idle time

o Determines system performance

 CPU time
o Time spent processing a given job

• Discounts I/O time, other jobs’ shares

o Comprises user CPU time and system CPU time

o Different programs are affected differently by CPU and system performance

(Focus here for now)



CPU clocking

 Operation of digital hardware governed by a constant-rate clock

 Clock period: duration of a clock cycle
o e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second
o e.g., 4.0GHz = 4000MHz = 4.0×109Hz



CPU time

 Performance improved by
o Reducing number of clock cycles

o Increasing clock rate

o Hardware designer must often trade off clock rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU







Instruction count and CPI

 Instruction Count for a program
o Determined by program, ISA and compiler

 Average cycles per instruction
o Determined by CPU hardware

o If different instructions have different CPI
• Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock










CPI example

 Computer A: Cycle Time = 250ps, CPI = 2.0

 Computer B: Cycle Time = 500ps, CPI = 1.2

 Same ISA

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU















A is faster…

…by this much



CPI in more detail

 If different instruction classes take different numbers of cycles

 Weighted average CPI





n

1i

ii )Count nInstructio(CPICycles Clock














n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

*Not always true with michroarchitectural tricks
(Pipelining, superscalar, …)

Dynamic profiling!



Performance summary

 Performance depends on
o Algorithm: affects Instruction count, (possibly CPI)

o Programming language: affects Instruction count, (possibly CPI)

o Compiler: affects Instruction count, CPI

o Instruction set architecture: affects Instruction count, CPI, Clock speed

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 

A good ISA: Low instruction count, Low CPI, High clock speed



Real-world examples: 
Intel i7 and ARM Cortex-A53

CPI of Intel i7 920 on SPEC2006 Benchmarks CPI of ARM Cortex-A53 on SPEC2006 Benchmarks



Power!



Processor power consumption

FrequencyVoltageload CapacitivePower 2 

×1000×30 5V → 1V

In CMOS IC technology



The power wall

 We can’t reduce voltage further

 We can’t reduce capacitance further

 We can’t remove heat any faster

 We can’t continue to improve frequency

 How do we continue to improve performance?

FrequencyVoltageload CapacitivePower 2 

(Given the same ISA)

A: Better ISA, Lower CPI?



An aside: Moore’s Law

 Typically cast as: 
“Performance doubles every X months”

 Actually closer to: 
“Number of transistors per unit cost doubles every two years”

The complexity for minimum component costs has increased at a rate of roughly a

factor of two per year.

[…] Over the longer term, the rate of increase is a bit more uncertain, although there is

no reason to believe it will not remain nearly constant for at least 10 years.
-- Gordon Moore, Electronics, 1965

Smaller transistors used to mean smaller capacitance, but no more
End of ‘Dennard Scaling’



A performance solution: multiprocessors

 More transistors thanks to Moore’s law!

 A solution: multicore microprocessors
o Requires explicitly parallel programming

o Difficult to do!

 Unfortunately, also hitting a wall
o “Dark silicon wall”: Not all transistors in the chip can’t be working at the same time

o Too much power consumption -> Too much heat!

 What’s next…?
o Accelerators?



Some ISA Classifications



Eight great ideas

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy

today



The RISC/CISC Classification

 Reduced Instruction-Set Computer (RISC)
o Precise definition is debated

o Small number of more general instructions
• RISC-V base instruction set has only dozens of instructions

• Memory load/stores not mixed with computation operations
(Different instructions for load from memory, perform computation in register)

o Complex operations implemented by composing general ones
• Compilers try their best!

o RISC-V, 
ARM (Advanced RISC Machines), 
MIPS (Microprocessor without Interlocked Pipelined Stages), 
SPARC, … 



The RISC/CISC Classification

 Complex Instruction-Set Computer (CISC)
o Precise definition is debated (Not RISC?)

o Many, complex instructions 
• Various memory access modes per instruction (load from memory? register? etc)

• Typically variable-length encoding per instruction

• Modern x86 has thousands!

o Intel x86, 
IBM z/Architecture, 

o …



The RISC/CISC Classification

 RISC paradigm is winning out
o Simpler design allows faster clock

o Simpler design allows efficient microarchitectural techniques
• Superscalar, Out-of-order, …

o Compilers very good at optimizing software

 Most modern CISC processors have RISC internals
o CISC instructions translated on-the-fly to RISC by the front-end hardware

o Added translation overhead from translation


