
CS162
Operating Systems and
Systems Programming

Lecture 4

Abstractions 2: Processes and Files and I/O
A quick programmer’s viewpoint

September 7th, 2021

Prof. Ion Stoica

http://cs162.eecs.Berkeley.edu

Lec 4.29/9/20 CS162 © UCB Fall 2021

Goals for Today: The File Abstraction

• Finish discussion of process management
• High-Level File I/O: Streams
• Low-Level File I/O: File Descriptors

Lec 4.39/9/20 CS162 © UCB Fall 2021

Thread State

• State shared by all threads in process/address space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc)

• State “private” to each thread
– Kept in TCB º Thread Control Block
– CPU registers (including, program counter)
– Execution stack

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing

Lec 4.49/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.59/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.69/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.79/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.89/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.99/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.109/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.119/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.129/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.139/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.149/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.159/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.169/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.179/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 4.189/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

Output: >2 1

Lec 4.199/9/20 CS162 © UCB Fall 2021

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=2
ret=C+1

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1

Stack
Pointer

Lec 4.209/9/20 CS162 © UCB Fall 2021

Memory Layout with Two Threads

• Two sets of CPU registers
• Two sets of Stacks
• Issues:

– How do we position stacks relative to
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?
– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

0x000…

0xFFF…

Lec 4.219/9/20 CS162 © UCB Fall 2021

INTERLEAVING AND NONDETERMINISM
(The beginning of a long discussion!)

Lec 4.229/9/20 CS162 © UCB Fall 2021

Thread Abstraction

• Illusion: Infinite number of processors
• Reality: Threads execute with variable “speed”

– Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors
1 2 3 4 5 1 2

Running
Threads

Ready
Threads

1 2 3 4 5 1 2 3 4 5

Lec 4.239/9/20 CS162 © UCB Fall 2021

Programmer vs. Processor View

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Programmer’s
View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Lec 4.249/9/20 CS162 © UCB Fall 2021

Possible Executions

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

a) One execution b) Another execution

c) Another execution

Lec 4.259/9/20 CS162 © UCB Fall 2021

Correctness with Concurrent Threads

• Non-determinism:
– Scheduler can run threads in any order
– Scheduler can switch threads at any time
– This can make testing very difficult

• Independent Threads
– No state shared with other threads
– Deterministic, reproducible conditions

• Cooperating Threads
– Shared state between multiple threads

• Goal: Correctness by Design

Lec 4.269/9/20 CS162 © UCB Fall 2021

Race Conditions

• Initially x == 0 and y == 0

• What are the possible values of x below after all threads finish?
• Must be 1. Thread B does not interfere

Thread A
x = 1;

Thread B
y = 2;

Lec 4.279/9/20 CS162 © UCB Fall 2021

Race Conditions

• Initially x == 0 and y == 0

• What are the possible values of x below?
• 1 or 3 or 5 (non-deterministically)
• Race Condition: Thread A races against Thread B!

Thread A
x = y + 1;

Thread B
y = 2;
y = y * 2;

Lec 4.289/9/20 CS162 © UCB Fall 2021

Relevant Definitions

• Synchronization: Coordination among threads, usually regarding shared data

• Mutual Exclusion: Ensuring only one thread does a particular thing at a time (one
thread excludes the others)

– Type of synchronization

• Critical Section: Code exactly one thread can execute at once
– Result of mutual exclusion

• Lock: An object only one thread can hold at a time
– Provides mutual exclusion

Lec 4.299/9/20 CS162 © UCB Fall 2021

Locks

• Locks provide two atomic operations:
– Lock.acquire() – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock
– Lock.release() – mark lock as free

» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

• For now, don’t worry about how to implement locks!
– We’ll cover that in substantial depth later on in the class

Lec 4.309/9/20 CS162 © UCB Fall 2021

OS Library Locks: pthreads

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

You’ll get a chance to use these in Homework 1

Lec 4.319/9/20 CS162 © UCB Fall 2021

Our Example

Critical section

Lec 4.329/9/20 CS162 © UCB Fall 2021

Semaphores: A quick look

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX (& Pintos)

• Definition: a Semaphore has a non-negative integer value and supports the
following two operations:
– P() or down(): atomic operation that waits for semaphore to become positive, then

decrements it by 1
– V() or up(): an atomic operation that increments the semaphore by 1, waking up a

waiting P, if any

P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in Dutch

Lec 4.339/9/20 CS162 © UCB Fall 2021

Two Semaphore Patterns

• Mutual Exclusion: (like lock)
– Called a "binary semaphore“ or “mutex”

initial value of semaphore = 1;
semaphore.down();

// Critical section goes here
semaphore.up();

• Signaling other threads, e.g. ThreadJoin

Initial value of semaphore = 0

ThreadJoin {
semaphore.down();

}

ThreadFinish {
semaphore.up();

}

Lec 4.349/9/20 CS162 © UCB Fall 2021

Processes
• Definition: execution environment with

restricted rights
– One or more threads executing in a single

address space
– Owns file descriptors, network connections

• Instance of a running program
– When you run an executable, it runs in its

own process
– Application: one or more processes

working together
• Protected from each other; OS protected from them
• In modern OSes, anything that runs outside of the kernel runs in a process

Lec 4.359/9/20 CS162 © UCB Fall 2021

Creating Processes

• pid_t fork() – copy the current process
– New process has different pid
– New process contains a single thread

• Return value from fork(): pid (like an integer)
– When > 0:

» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Address Space (Memory), File Descriptors (covered later), etc…

Lec 4.369/9/20 CS162 © UCB Fall 2021

fork_race.c
int i;
pid_t cpid = fork();
if (cpid > 0) {

for (i = 0; i < 10; i++) {
printf("Parent: %d\n", i);
// sleep(1);

}
} else if (cpid == 0) {

for (i = 0; i > -10; i--) {
printf("Child: %d\n", i);
// sleep(1);

}
} else { /* ERROR! */ }

• What does this print?
• Would adding the calls to sleep() matter?

Parent Process
Runs HERE!

Child Process
Runs HERE!

Lec 4.379/9/20 CS162 © UCB Fall 2021

Start new Program with exec
…
cpid = fork();
if (cpid > 0) { /* Parent Process */

tcpid = wait(&status);
} else if (cpid == 0) { /* Child Process */

char *args[] = {“ls”, “-l”, NULL};
execv(“/bin/ls”, args);

/* execv doesn’t return when it works.
So, if we got here, it failed! */

perror(“execv”);
exit(1);

}
…

Lec 4.389/9/20 CS162 © UCB Fall 2021

main() {

…

}

exec

wait

Starting New Program (for instance in Shell)

pid=fork();
if (pid==0)

exec(…);
else

wait(&stat)

parent

child

pid=fork();
if (pid==0)

exec(…);
else

wait(&stat)
fork

fork

pid=fork();
if (pid==0)

exec(…);
else

wait(&stat)

Lec 4.399/9/20 CS162 © UCB Fall 2021

Finishing up: Process Management API

• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

Lec 4.409/9/20 CS162 © UCB Fall 2021

fork2.c – parent waits for child to finish
int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
exit(42);

}
…

Lec 4.419/9/20 CS162 © UCB Fall 2021

Finishing up: Process Management API

• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

Lec 4.429/9/20 CS162 © UCB Fall 2021

inf_loop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
printf(“Caught signal!\n”);
exit(1);

}
int main() {

struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}

}

Q: What would happen if the process
receives a SIGINT signal, but does not
register a signal handler?
A: The process dies!

For each signal, there is a default handler
defined by the system

Lec 4.439/9/20 CS162 © UCB Fall 2021

Common POSIX Signals

• SIGINT – control-C
• SIGTERM – default for kill shell command
• SIGSTP – control-Z (default action: stop process)

• SIGKILL, SIGSTOP – terminate/stop process
– Can’t be changed with sigaction
– Why?

Lec 4.449/9/20 CS162 © UCB Fall 2021

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of programs to do some task

• You will build your own shell in Homework 2…
– … using fork and exec system calls to create new processes…
– … and the File I/O system calls we’ll see next to link them together

Lec 4.459/9/20 CS162 © UCB Fall 2021

Process vs. Thread APIs

• Why have fork() and exec() system calls for processes, but just a
pthread_create() function for threads?

– Convenient to fork without exec: put code for parent and child in one executable
instead of multiple

– It will allow us to programmatically control child process’ state
» By executing code before calling exec() in the child

– We’ll see this in the case of File I/O later

• Windows uses CreateProcess() instead of fork()
– Also works, but a more complicated interface

Lec 4.469/9/20 CS162 © UCB Fall 2021

Threads vs. Processes

• If we have two tasks to run concurrently, do we run them in separate threads, or do
we run them in separate processes?

• Depends on how much isolation we want
– Threads are lighter weight [why?]
– Processes are more strongly isolated

Lec 4.479/9/20 CS162 © UCB Fall 2021

Administrivia

• Project 0 due Thursday (9/9)!

– To be done on your own – like a homework!

• Group assignments will be released by Wednesday, EOD

• Discussion section attendance is mandatory (with cameras on if remote).

• Start Planning on how your group will collaborate on projects!

– Virtual Coffee Hours with your group (with camera)

– Regular Brainstorming meetings?

– Try to meet multiple times a week
Hello!

Hi!

Lec 4.489/9/20 CS162 © UCB Fall 2021

The File Abstraction

• High-Level File I/O: Streams
• Low-Level File I/O: File Descriptors
• How and Why of High-Level File I/O
• Process State for File Descriptors
• Common Pitfalls with OS Abstractions [if time]

Next lecture

Lec 4.499/9/20 CS162 © UCB Fall 2021

Unix/POSIX Idea: Everything is a “File”

• Identical interface for:
– Files on disk
– Devices (terminals, printers, etc.)
– Regular files on disk
– Networking (sockets)
– Local interprocess communication (pipes, sockets)

• Based on the system calls open(), read(), write(), and close()
• Additional: ioctl() for custom configuration that doesn’t quite fit
• Note that the “Everything is a File” idea was a radical idea when proposed

– Dennis Ritchie and Ken Thompson described this idea in their seminal paper on UNIX
called “The UNIX Time-Sharing System” from 1974

– I posted this on the resources page if you are curious

Lec 4.509/9/20 CS162 © UCB Fall 2021

Note: What does POSIX stand for?

• POSIX: Portable Operating System Interface (for uniX?)
– Interface for application programmers (mostly)
– Defines the term “Unix,” derived from AT&T Unix
– Created to bring order to many Unix-derived OSes, so applications are portable

» Partially available on non-Unix OSes, like Windows
– Requires standard system call interface

Lec 4.519/9/20 CS162 © UCB Fall 2021

The File System Abstraction
• File

– Named collection of data in a file system
– POSIX File data: sequence of bytes

» Could be text, binary, serialized objects, …
– File Metadata: information about the file

» Size, Modification Time, Owner, Security info, Access control
• Directory

– “Folder” containing files & directories
– Hierachical (graphical) naming

» Path through the directory graph
» Uniquely identifies a file or directory

• /home/ff/cs162/public_html/fa14/index.html
– Links and Volumes (later)

Lec 4.529/9/20 CS162 © UCB Fall 2021

Connecting Processes, File Systems, and Users
• Every process has a current working directory (CWD)

– Can be set with system call:
int chdir(const char *path); //change CWD

• Absolute paths ignore CWD
– /home/john/cs162

• Relative paths are relative to CWD
– index.html, ./index.html

» Refers to index.html in current working directory
– ../index.html

» Refers to index.html in parent of current working directory
– ~/index.html, ~cs162/index.html

» Refers to index.html in the home directory

Lec 4.539/9/20 CS162 © UCB Fall 2021

I/O and Storage Layers

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Lec 4.549/9/20 CS162 © UCB Fall 2021

C High-Level File API – Streams
• Operates on “streams” – unformatted sequences of bytes (wither text or binary

data), with a position:

• Open stream represented by pointer to a FILE data structure
– Error reported by returning a NULL pointer

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
int fclose(FILE *fp);

Mode Text Binary Descriptions

r rb Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write as
append

Lec 4.559/9/20 CS162 © UCB Fall 2021

C API Standard Streams – stdio.h
• Three predefined streams are opened implicitly when the program is executed.

– FILE *stdin – normal source of input, can be redirected
– FILE *stdout – normal source of output, can too
– FILE *stderr – diagnostics and errors

• STDIN / STDOUT enable composition in Unix

• All can be redirected
– cat hello.txt | grep “World!”
– cat’s stdout goes to grep’s stdin

Lec 4.569/9/20 CS162 © UCB Fall 2021

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

Lec 4.579/9/20 CS162 © UCB Fall 2021

C Streams: Char-by-Char I/O
int main(void) {

FILE* input = fopen(“input.txt”, “r”);
FILE* output = fopen(“output.txt”, “w”);
int c;

c = fgetc(input);
while (c != EOF) {

fputc(output, c);
c = fgetc(input);

}
fclose(input);
fclose(output);

}

Lec 4.589/9/20 CS162 © UCB Fall 2021

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

Lec 4.599/9/20 CS162 © UCB Fall 2021

C Streams: Block-by-Block I/O

#define BUFFER_SIZE 1024
int main(void) {

FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
char buffer[BUFFER_SIZE];
size_t length;
length = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (length > 0) {

fwrite(buffer, length, sizeof(char), output);
length = fread(buffer, BUFFER_SIZE, sizeof(char), input);

}
fclose(input);
fclose(output);

}

Lec 4.609/9/20 CS162 © UCB Fall 2021

Aside: System Programming
• Systems programmers should always be paranoid!

– Otherwise you get intermittently buggy code
• We should really be writing things like:

FILE* input = fopen(“input.txt”, “r”);
if (input == NULL) {

// Prints our string and error msg.
perror(“Failed to open input file”)

}

• Be thorough about checking return values!
– Want failures to be systematically caught and dealt with

• I may be a bit loose with error checking for examples in class (to keep short)
– Do as I say, not as I show in class!

Lec 4.619/9/20 CS162 © UCB Fall 2021

C High-Level File API: Positioning The Pointer
int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

• For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):
– SEEK_SET: Then offset interpreted from beginning (position 0)
– SEEK_END: Then offset interpreted backwards from end of file
– SEEK_CUR: Then offset interpreted from current position

• Overall preserves high-level abstraction of a uniform stream of objects
offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)

whence

Lec 4.629/9/20 CS162 © UCB Fall 2021

Conclusion

• Threads are the OS unit of concurrency
– Abstraction of a virtual CPU core
– Can use pthread_create, etc., to manage threads within a process
– They share data → need synchronization to avoid data races

• Processes consist of one or more threads in an address space
– Abstraction of the machine: execution environment for a program
– Can use fork, exec, etc. to manage threads within a process

• POSIX idea: “everything is a file”

