
CS162
Operating Systems and
Systems Programming

Lecture 11

Scheduling 2:
Case Studies, Real Time, and Forward Progress

Lec 11.225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Administrivia

• Happy hour: by Friday 26/2, send us a picture with a beverage of your choice of you
meeting in a group!

• Submit midsemester survey. Extra credit point in the game if 80% of class does it!

• Academic misconduct. More details on Piazza. Please come forward using the form

• Project 1: Project code due tomorrow (26/2). Final report due Sunday (28/2)

• Don’t forget to turn on camera for discussion sections!

Lec 11.325/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Scheduling

• Question: How is the OS to decide which of several tasks to take off
a queue?

• Scheduling: deciding which threads are given access to resources
from moment to moment

– Often, we think in terms of CPU time, but could also think about access
to resources like network BW or disk access

Lec 11.425/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you only maximized
throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

Lec 11.525/2/21 Crooks & Joseph CS162 © UCB Spring 2021

• Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼

– Average completion time = (125+28+153+112)/4 = 104½

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Recall: Example of RR with Time Quantum = 20

Lec 11.625/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: What if we Knew the Future?
• Shortest Job First (SJF):

– Run whatever job has least amount of
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a shorter time to completion than the

remaining time on the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system

– Big effect on short jobs, only small effect on long ones

– Result is better average response time

Lec 11.725/2/21 Crooks & Joseph CS162 © UCB Spring 2021

History of Schedulers in Linux

• O(n) scheduler
– Linux 2.4 to Linux 2.6

• O(1) scheduler
– Linux 2.6 to 2.6.22

• CFS scheduler
– Linux 2.6.23 onwards

Lec 11.825/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Case Study: Linux O(n) Scheduler

• At every context switch:
– Scan full list of processes in the ready queue

– Compute relevant priorities

– Select the best process to run

• Scalability issues:
– Context switch cost increases as number of processes increase

– Single queue even in multicore systems

Lec 11.925/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Case Study: Linux O(1) Scheduler

• Next process to run is chosen in constant time

• Priority-based scheduler with 140 different priorities
– Real-time/kernel tasks assigned priorities 0 to 99 (0 is highest priority)

– User tasks (interactive/batch) assigned priorities 100 to 139 (100 is highest priority)
» Can be set using the nice system call.

Kernel/Realtime Tasks User Tasks

0 100 139

Lec 11.1025/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Case Study: O(1) Scheduler – User tasks

• Per priority-level, each CPU has two ready
queues

– An active queue, for processes which have
not used up their time quanta

– An expired queue, for processes who have

• Timeslices/priorities/interactivity credits all
computed when jobs finishes timeslice

• Timeslice depends on priority – linearly
mapped onto timeslice range

– Like a multi-level queue (one queue per
priority) with different timeslice at each level

– Execution split into “Timeslice Granularity”
chunks – round robin through priority

https://www.ibm.com/developerworks/library/l-scheduler/index.html

Lec 11.1125/2/21 Crooks & Joseph CS162 © UCB Spring 2021

O(1) Scheduler – User tasks – Priority Adjustment

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time

» Higher sleep_avg ⇒ more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in behavior

– However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long…

Lec 11.1225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Case Study: O(1) Scheduler – Real tasks

• Real-Time Tasks
– Always preempt non-RT tasks

– No dynamic adjustment of priorities

– Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority

Lec 11.1325/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Real-Time Scheduling

• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!

– In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

– In conventional systems, performance is:
» System/throughput oriented with post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal fast computing!!!

Lec 11.1425/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Real-Time Scheduling
• Hard real-time: for time-critical safety-oriented systems

– Meet all deadlines (if at all possible)

– Ideally: determine in advance if this is possible

– Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability

– Constant Bandwidth Server (CBS)

Lec 11.1525/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Example: Workload Characteristics
• Tasks are preemptable, independent with arbitrary arrival (=release) times

• Tasks have deadlines (D) and known computation times (C)

• Example Setup:

Lec 11.1625/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Example: Round-Robin Scheduling Doesn’t Work

Time

Lec 11.1725/2/21 Crooks & Joseph CS162 © UCB Spring 2021

• Tasks periodic with period P and computation C in each period: (𝑃𝑃𝑖𝑖 , 𝐶𝐶𝑖𝑖) for each task 𝑖𝑖
• Preemptive priority-based dynamic scheduling:

– Each task is assigned a (current) priority based on how close the absolute deadline is (i.e.
𝐷𝐷𝑖𝑖𝑡𝑡+1 = 𝐷𝐷𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑖𝑖for each task!)

– The scheduler always schedules the active task with the closest absolute deadline

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

Lec 11.1825/2/21 Crooks & Joseph CS162 © UCB Spring 2021

EDF Feasibility Testing
• For 𝑛𝑛 tasks with computation time 𝐶𝐶 and deadline 𝐷𝐷, a feasible schedule exists if:

�
𝑖𝑖=1

𝑛𝑛
𝐶𝐶𝑖𝑖
𝐷𝐷𝑖𝑖

≤ 1

Case 1:

T1: (2,1) T2: (2,1)

½ + ½ = 1

Case 1:

T1: (2,2) T2: (2,1)

1 + ½ = 1.5

Lec 11.1925/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation (this lecture) ≠ Deadlock (next lecture) because starvation
could resolve under right circumstances

– Deadlocks are unresolvable, cyclic requests for resources

• Causes of starvation:
– Scheduling policy never runs a particular thread on the CPU

– Threads wait for each other or are spinning in a way that will never be resolved

• Let’s explore what sorts of problems we might encounter and how to avoid them…

Lec 11.2025/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Strawman: Non-Work-Conserving Scheduler

• A work-conserving scheduler is one that does not leave the CPU idle when there is
work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving (unless stated
otherwise)

Lec 11.2125/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Strawman: Last-Come, First-Served (LCFS)

• Stack (LIFO) as a scheduling data structure
– Late arrivals get fast service

– Early ones wait – extremely unfair

– In the worst case – starvation

• When would this occur?
– When arrival rate (offered load) exceeds service rate (delivered load)

– Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…

Lec 11.2225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Is FCFS Prone to Starvation?

• If a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run

• Problem with all non-preemptive schedulers…
• And early personal OSes such as original MacOS, Windows 3.1, etc

time
Sc

he
du

lin
g

Q
ue

ue

Scheduled Task (process, thread)

arrivals

Lec 11.2325/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Is Round Robin (RR) Prone to Starvation?

• Each of N processes gets ~1/N of CPU (in window)
– With quantum length Q ms, process waits at most

(N-1)*Q ms to run again

– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput…

Lec 11.2425/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Is Priority Scheduling Prone to Starvation?

• Recall: Priority Scheduler always runs the
thread with highest priority

– Low priority thread might never run!

– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Lec 11.2525/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Are SRTF and MLFQ Prone to Starvation?

• In SRTF, long jobs are starved in favor of short ones
– Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same problem

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 11.2625/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Priority Inversion

• At this point, which job does the scheduler choose?

• Job 3 (Highest priority)

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Lec 11.2725/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Lec 11.2825/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Priority Inversion

• At this point, which job does the scheduler choose?

• Job 2 (Medium Priority)

• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire

Lec 11.2925/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Priority Inversion

• Where high priority task is blocked waiting on low priority task

• Low priority one must run for high priority to make progress

• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority

Lec 11.3025/2/21 Crooks & Joseph CS162 © UCB Spring 2021

One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Lec 11.3125/2/21 Crooks & Joseph CS162 © UCB Spring 2021

One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

Lec 11.3225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

• July 4, 1997 – Pathfinder lands on Mars
– First US Mars landing since Vikings in 1976; first rover

• And then…a few days into mission…:
– Multiple system resets occur to realtime OS (VxWorks)

– System would reboot randomly, losing valuable time and progress

• Problem? Priority Inversion!
– Low priority task grabs mutex trying to

communicate with high priority task:

– Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

• Original developers turned off priority donation !

Case Study: Martian Pathfinder Rover

Priority 2
Priority 1
Priority 0 ASI/MET collector: grab lock

Lots of random medium stuff

Data Distribution Task: needs lock

Lec 11.3325/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Cause for Starvation: Priorities?

• The policies we’ve studied so far:
– Always prefer to give the CPU to a prioritized job

– Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs
effectively on common hardware

– Give the I/O bound ones enough CPU to issue their next file operation and wait (on
those slow discs)

– Give the interactive ones enough CPU to respond to an input and wait (on those slow
humans)

– Let the CPU bound ones grind away without too much disturbance

Lec 11.3425/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Changing Landscape…

years

Computers
Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation
PC

Cell

1:1

1:103

Mote!

Bell’s Law: New
computer class every
10 years

The Internet of
Things!

Number
crunching, Data
Storage, Massive
Inet Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8

Lec 11.3525/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Changing Landscape of Scheduling

• Priority-based scheduling rooted in “time-sharing”
– Allocating precious, limited resources across a diverse workload

» CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on networks
– Different machines of different types for different purposes

– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-center-is-the-
computer

– Server consolidation, massive clustered services, huge flashcrowds

– It’s about predictability, 95th percentile performance guarantees

Lec 11.3625/2/21 Crooks & Joseph CS162 © UCB Spring 2021

DOES PRIORITIZING SOME JOBS NECESSARILY
STARVE THOSE THAT AREN’T PRIORITIZED?

Lec 11.3725/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Key Idea: Proportional-Share Scheduling

• The policies we’ve studied so far:
– Always prefer to give the CPU to a prioritized job

– Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally
– Give each job a share of the CPU according to its priority

– Low-priority jobs get to run less often

– But all jobs can at least make progress (no starvation)

Lec 11.3825/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Lottery Scheduling

• Given a set of jobs (the mix), provide each with a share of a resource
– e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

• Idea: Give out tickets according to the proportion each should receive,

• Every quantum (tick): draw one at random, schedule that job (thread) to run

time
Q i Q i+1

Lec 11.3925/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Unfairness

• E.g., Given two jobs A and B of same run time (# Qs)
that are each supposed to receive 50%,

U = finish time of first / finish time of last

• As a function of run time

Lec 11.4025/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Stride Scheduling

• Deterministic proportional fair sharing

• “Stride” of each job is
𝑏𝑏𝑖𝑖𝑏𝑏#𝑊𝑊
𝑁𝑁𝑖𝑖

– The larger your share of tickets, the smaller your stride
– Ex: W = 10,000, A=100 tickets, B=50, C=250
– A stride: 100, B: 200, C: 40

• Each job as a “pass” counter . Scheduler: pick job with lowest pass, runs it, add its
stride to its pass

• Low-stride jobs (lots of tickets) run more often
– Job with twice the tickets gets to run twice as often

Lec 11.4125/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Stride Scheduling

W = 10,000, A=200 tickets, B=100 tickets, C=50 tickets

Strides: 20050 100

Schedule 50

100

200

100

200

100

150

200

100

200

200

150

200

200

200

250

200

200

250

300

200

Ready Queue

Lec 11.4225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux Completely Fair Scheduler (CFS)
• Goal: Each process gets an equal share of CPU

– N threads “simultaneously” execute on
1
𝑁𝑁

of CPU

– The model is somewhat like simultaneous multithreading –
each thread gets

1
𝑁𝑁

of the cycles

• In general, can’t do this with real hardware
– OS needs to give out full CPU in time slices

– Thus, we must use something to keep the threads roughly
in sync with one another

Model: “Perfectly”
subdivided CPU:

C
PU

 Tim
e T1 T2 T3

1
𝑁𝑁

Lec 11.4325/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread

• Scheduling Decision:

– “Repair” illusion of complete fairness

– Choose thread with minimum CPU time

– Closely related to Fair Queueing

• Use red-black tree for this…
– O(log N) to add/remove threads, where N is number of threads

• Sleeping threads don’t advance their CPU time, so they get a boost
when they wake up again…

– Get interactivity automatically!

C
PU

 Tim
e

T1

T2
T3

1
𝑁𝑁

CFS: Average rate of

execution =
1
𝑁𝑁

:

Lec 11.4425/2/21 Crooks & Joseph CS162 © UCB Spring 2021

• In addition to fairness, we want low response time and starvation freedom
– Make sure that everyone gets to run at least a bit!

• Constraint 1: Target Latency
– Period of time over which every process gets service
– Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes
– Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes
– Each process gets 0.1ms time slice (!!!)
– Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Responsiveness/Starvation Freedom

Lec 11.4525/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux CFS: Throughput

• Goal: Throughput
– Avoid excessive overhead

• Constraint 2: Minimum Granularity
– Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
– Each process gets 1 ms time slice

Lec 11.4625/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided priority to enforced desired

usage policies.
– When it was being developed at Berkeley, instead it provided ways to “be nice”.

• nice values range from -20 to 19
– Negative values are “not nice”

– If you wanted to let your friends get more time, you would nice up your job

• Scheduler puts higher nice-value tasks (lower priority) to sleep more …
– In O(1) scheduler, this translated fairly directly to priority (and time slice)

• How does this idea translate to CFS?
– Change the rate of CPU cycles given to threads to change relative priority

Lec 11.4725/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux CFS: Proportional Shares
• How to we achieve proportional fair sharing?

– Allow different threads to have different rates of execution (cycles/time)

• Use weights! Key Idea: Assign a weight wi to each process I to compute the switching
quanta Qi

– Basic equal share: 𝑄𝑄𝑖𝑖 = Target Latency ⋅ 1
𝑁𝑁

– Weighted Share: 𝑄𝑄𝑖𝑖 = �𝑤𝑤𝑖𝑖
∑𝑝𝑝 𝑤𝑤𝑝𝑝

⋅ Target Latency

• Reuse nice value to reflect share, rather than priority,
– Remember that lower nice value ⇒ higher priority
– CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

• So, we use “Virtual Runtime” instead of CPU time

Lec 11.4825/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Example: Linux CFS: Proportional Shares

• Target Latency = 20ms

• Minimum Granularity = 1ms

• Example: Two CPU-Bound Threads
– Thread A has weight 1

– Thread B has weight 4

• Time slice for A? 4 ms

• Time slice for B? 16 ms

Lec 11.4925/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux CFS: Proportional Shares

• Track a thread's virtual runtime rather than its true physical runtime
– Higher weight: Virtual runtime increases more slowly

– Lower weight: Virtual runtime increases more quickly

Virtual
CPU Time

B A

Physical
CPU Time B

A

16 (wB=4)

4 (wA=1)

Lec 11.5025/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux CFS: Proportional Shares

• Scheduler’s Decisions are based on Virtual CPU Time

• Use of Red-Black tree to hold all runnable processes as sorted on vruntime variable
– O(1) time to find next thread to run (top of heap!)

– O(log N) time to perform insertions/deletions
» Cash the item at far left (item with earliest vruntime)

– When ready to schedule, grab version with smallest vruntime (which will be item at the far left).

Lec 11.5125/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to Get
CPU

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

Lec 11.5225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Summary (1 of 2)
• Scheduling Goals:

– Minimize Response Time (e.g. for human interaction)
– Maximize Throughput (e.g. for large computations)
– Fairness (e.g. Proper Sharing of Resources)
– Predictability (e.g. Hard/Soft Realtime)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all ready threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining amount of

computation to do
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Lec 11.5325/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Summary (2 of 2)
• Realtime Schedulers such as EDF

– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens (short tasks⇒more tokens)

• Stride Scheduling
– Always fair, unlike lotter scheduling:

• Linux O(1) scheduler
– Scales as number of processes grows
– Became overly complex because of heuristics

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates an “ideal” multitasking processor
– Practical example of “Fair Queueing”

	CS162�Operating Systems and�Systems Programming�Lecture 11��Scheduling 2: �Case Studies, Real Time, and Forward Progress�
	Administrivia
	Recall: Scheduling
	Recall: Scheduling Policy Goals/Criteria
	Recall: Example of RR with Time Quantum = 20
	Recall: What if we Knew the Future?
	History of Schedulers in Linux
	Case Study: Linux O(n) Scheduler
	Case Study: Linux O(1) Scheduler
	Case Study: O(1) Scheduler – User tasks
	O(1) Scheduler – User tasks – Priority Adjustment
	Case Study: O(1) Scheduler – Real tasks
	Real-Time Scheduling
	Real-Time Scheduling
	Example: Workload Characteristics
	Example: Round-Robin Scheduling Doesn’t Work
	Earliest Deadline First (EDF)
	EDF Feasibility Testing
	Ensuring Progress
	Strawman: Non-Work-Conserving Scheduler
	Strawman: Last-Come, First-Served (LCFS)
	Is FCFS Prone to Starvation?
	Is Round Robin (RR) Prone to Starvation?
	Is Priority Scheduling Prone to Starvation?
	Are SRTF and MLFQ Prone to Starvation?
	Priority Inversion
	Priority Inversion
	Priority Inversion
	Priority Inversion
	One Solution: Priority Donation/Inheritance
	One Solution: Priority Donation/Inheritance
	Case Study: Martian Pathfinder Rover
	Cause for Starvation: Priorities?
	Recall: Changing Landscape…
	Changing Landscape of Scheduling
	Does prioritizing some jobs necessarily starve those that aren’t prioritized?
	Key Idea: Proportional-Share Scheduling
	Recall: Lottery Scheduling
	Unfairness
	Stride Scheduling
	Stride Scheduling
	Linux Completely Fair Scheduler (CFS)
	Linux Completely Fair Scheduler (CFS)
	Linux CFS: Responsiveness/Starvation Freedom
	Linux CFS: Throughput
	Aside: Priority in Unix – Being Nice
	Linux CFS: Proportional Shares
	Example: Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Choosing the Right Scheduler
	Summary (1 of 2)
	Summary (2 of 2)

