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Administrivia

• Happy hour: by Friday 26/2, send us a picture with a beverage of your choice of you 
meeting in a group!

• Submit midsemester survey. Extra credit point in the game if 80% of class does it!

• Academic misconduct. More details on Piazza. Please come forward using the form

• Project 1: Project code due tomorrow (26/2). Final report due Sunday (28/2)

• Don’t forget to turn on camera for discussion sections!
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Recall: Scheduling

• Question: How is the OS to decide which of several tasks to take off 
a queue?

• Scheduling: deciding which threads are given access to resources 
from moment to moment  

– Often, we think in terms of CPU time, but could also think about access 
to resources like network BW or disk access
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Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you only maximized 
throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
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• Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼

– Average completion time = (125+28+153+112)/4 = 104½
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Recall: Example of RR with Time Quantum = 20
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Recall: What if we Knew the Future?
• Shortest Job First (SJF):

– Run whatever job has least amount of 
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a shorter time to completion than the 

remaining time on the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system

– Big effect on short jobs, only small effect on long ones

– Result is better average response time
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History of Schedulers in Linux

• O(n) scheduler
– Linux 2.4 to Linux 2.6

• O(1) scheduler
– Linux 2.6 to 2.6.22

• CFS scheduler
– Linux 2.6.23 onwards
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Case Study: Linux O(n) Scheduler

• At every context switch:
– Scan full list of processes in the ready queue

– Compute relevant priorities

– Select the best process to run

• Scalability issues:
– Context switch cost increases as number of processes increase

– Single queue even in multicore systems
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Case Study: Linux O(1) Scheduler

• Next process to run is chosen in constant time

• Priority-based scheduler with 140 different priorities
– Real-time/kernel tasks assigned priorities 0 to 99 (0 is highest priority)

– User tasks (interactive/batch) assigned priorities 100 to 139 (100 is highest priority)
» Can be set using the nice system call. 

Kernel/Realtime Tasks User Tasks

0 100 139
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Case Study: O(1) Scheduler – User tasks

• Per priority-level, each CPU has two ready 
queues

– An active queue, for processes which have 
not used up their time quanta

– An expired queue, for processes who have

• Timeslices/priorities/interactivity credits all 
computed when jobs finishes timeslice

• Timeslice depends on priority – linearly 
mapped onto timeslice range

– Like a multi-level queue (one queue per 
priority) with different timeslice at each level

– Execution split into “Timeslice Granularity” 
chunks – round robin through priority

https://www.ibm.com/developerworks/library/l-scheduler/index.html
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O(1) Scheduler – User tasks – Priority Adjustment

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time

» Higher sleep_avg ⇒ more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in behavior

– However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long…
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Case Study: O(1) Scheduler – Real tasks

• Real-Time Tasks
– Always preempt non-RT tasks

– No dynamic adjustment of priorities

– Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority
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Real-Time Scheduling

• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!

– In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

– In conventional systems, performance is:
» System/throughput oriented with post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal fast computing!!!
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Real-Time Scheduling
• Hard real-time: for time-critical safety-oriented systems

– Meet all deadlines (if at all possible)

– Ideally: determine in advance if this is possible

– Earliest Deadline First (EDF), Least Laxity First (LLF), 
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability

– Constant Bandwidth Server (CBS)
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Example: Workload Characteristics
• Tasks are preemptable, independent with arbitrary arrival (=release) times

• Tasks have deadlines (D) and known computation times (C) 

• Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work

Time
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• Tasks periodic with period P and computation C in each period:  (𝑃𝑃𝑖𝑖 , 𝐶𝐶𝑖𝑖) for each task 𝑖𝑖
• Preemptive priority-based dynamic scheduling:

– Each task is assigned a (current) priority based on how close the absolute deadline is (i.e. 
𝐷𝐷𝑖𝑖𝑡𝑡+1 = 𝐷𝐷𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑖𝑖for each task!)

– The scheduler always schedules the active task with the closest absolute deadline

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T
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EDF Feasibility Testing
• For 𝑛𝑛 tasks with computation time 𝐶𝐶 and deadline 𝐷𝐷, a feasible schedule exists if:

�
𝑖𝑖=1

𝑛𝑛
𝐶𝐶𝑖𝑖
𝐷𝐷𝑖𝑖

≤ 1

Case 1:

T1: (2,1) T2: (2,1)

½ + ½ = 1

Case 1:

T1: (2,2) T2: (2,1)

1 + ½ = 1.5
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Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation (this lecture) ≠ Deadlock (next lecture) because starvation 
could resolve under right circumstances

– Deadlocks are unresolvable, cyclic requests for resources

• Causes of starvation:
– Scheduling policy never runs a particular thread on the CPU

– Threads wait for each other or are spinning in a way that will never be resolved

• Let’s explore what sorts of problems we might encounter and how to avoid them…
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Strawman: Non-Work-Conserving Scheduler

• A work-conserving scheduler is one that does not leave the CPU idle when there is 
work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving (unless stated 
otherwise)
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Strawman: Last-Come, First-Served (LCFS)

• Stack (LIFO) as a scheduling data structure 
– Late arrivals get fast service

– Early ones wait – extremely unfair

– In the worst case – starvation

• When would this occur?
– When arrival rate (offered load) exceeds service rate (delivered load)

– Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…



Lec 11.2225/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Is FCFS Prone to Starvation?

• If a task never yields (e.g., goes into an infinite loop), then other tasks 
don’t get to run

• Problem with all non-preemptive schedulers…
• And early personal OSes such as original MacOS, Windows 3.1, etc

time
Sc

he
du

lin
g 

Q
ue

ue

Scheduled Task (process, thread)

arrivals
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Is Round Robin (RR) Prone to Starvation?

• Each of N processes gets ~1/N of CPU (in window)
– With quantum length Q ms, process waits at most

(N-1)*Q ms to run again

– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput…
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Is Priority Scheduling Prone to Starvation?

• Recall: Priority Scheduler always runs the
thread with highest priority

– Low priority thread might never run!

– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4
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Are SRTF and MLFQ Prone to Starvation?

• In SRTF, long jobs are starved in favor of short ones
– Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same problem

Long-Running Compute
Tasks Demoted to 

Low Priority
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Priority Inversion

• At this point, which job does the scheduler choose?

• Job 3 (Highest priority)

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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Priority Inversion

• At this point, which job does the scheduler choose?

• Job 2 (Medium Priority)

• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire
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Priority Inversion

• Where high priority task is blocked waiting on low priority task

• Low priority one must run for high priority to make progress

• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

lock.acquire(…)
…
lock.release(…)

Low Priority

while (try_lock) {
…
}

High Priority
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One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()
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• July 4, 1997 – Pathfinder lands on Mars
– First US Mars landing since Vikings in 1976; first rover

• And then…a few days into mission…:
– Multiple system resets occur to realtime OS (VxWorks)

– System would reboot randomly, losing valuable time and progress

• Problem? Priority Inversion!
– Low priority task grabs mutex trying to 

communicate with high priority task:

– Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

• Original developers turned off priority donation !

Case Study: Martian Pathfinder Rover

Priority 2
Priority 1
Priority 0 ASI/MET collector: grab lock

Lots of random medium stuff

Data Distribution Task: needs lock
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Cause for Starvation: Priorities?

• The policies we’ve studied so far:
– Always prefer to give the CPU to a prioritized job

– Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs 
effectively on common hardware

– Give the I/O bound ones enough CPU to issue their next file operation and wait (on 
those slow discs)

– Give the interactive ones enough CPU to respond to an input and wait (on those slow 
humans)

– Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape…

years

Computers
Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation
PC

Cell

1:1

1:103

Mote!

Bell’s Law: New 
computer class every 
10 years

The Internet of 
Things!

Number 
crunching, Data 
Storage, Massive 
Inet Services,
ML, …

Productivity,
Interactive

Streaming 
from/to the 
physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8
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Changing Landscape of Scheduling

• Priority-based scheduling rooted in “time-sharing”
– Allocating precious, limited resources across a diverse workload

» CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on networks
– Different machines of different types for different purposes

– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-center-is-the-
computer

– Server consolidation, massive clustered services, huge flashcrowds

– It’s about predictability, 95th percentile performance guarantees



Lec 11.3625/2/21 Crooks & Joseph CS162 © UCB Spring 2021

DOES PRIORITIZING SOME JOBS NECESSARILY
STARVE THOSE THAT AREN’T PRIORITIZED?
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Key Idea: Proportional-Share Scheduling

• The policies we’ve studied so far:
– Always prefer to give the CPU to a prioritized job

– Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally
– Give each job a share of the CPU according to its priority

– Low-priority jobs get to run less often

– But all jobs can at least make progress (no starvation)
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Recall: Lottery Scheduling

• Given a set of jobs (the mix), provide each with a share of a resource
– e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

• Idea: Give out tickets according to the proportion each should receive, 

• Every quantum (tick): draw one at random, schedule that job (thread) to run

time
Q i Q i+1
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Unfairness

• E.g., Given two jobs A and B of same run time (# Qs) 
that are each supposed to receive 50%, 

U = finish time of first / finish time of last

• As a function of run time
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Stride Scheduling

• Deterministic proportional fair sharing

• “Stride” of each job is 
𝑏𝑏𝑖𝑖𝑏𝑏#𝑊𝑊
𝑁𝑁𝑖𝑖

– The larger your share of tickets, the smaller your stride
– Ex: W = 10,000,  A=100 tickets, B=50, C=250
– A stride: 100, B: 200, C: 40

• Each job as a “pass” counter . Scheduler: pick job with lowest pass, runs it, add its 
stride to its pass

• Low-stride jobs (lots of tickets) run more often
– Job with twice the tickets gets to run twice as often
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Stride Scheduling

W = 10,000,  A=200 tickets, B=100 tickets, C=50 tickets

Strides: 20050 100

Schedule 50

100

200

100

200

100

150

200

100

200

200

150

200

200

200

250

200

200

250

300

200

Ready Queue
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Linux Completely Fair Scheduler (CFS)
• Goal: Each process gets an equal share of CPU

– N threads “simultaneously” execute on 
1
𝑁𝑁

of CPU

– The model is somewhat like simultaneous multithreading –
each thread gets 

1
𝑁𝑁

of the cycles 

• In general, can’t do this with real hardware
– OS needs to give out full CPU in time slices

– Thus, we must use something to keep the threads roughly 
in sync with one another

Model: “Perfectly” 
subdivided CPU:

C
PU

 Tim
e T1 T2 T3

1
𝑁𝑁
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Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread

• Scheduling Decision:

– “Repair” illusion of complete fairness

– Choose thread with minimum CPU time

– Closely related to Fair Queueing

• Use red-black tree for this…
– O(log N) to add/remove threads, where N is number of threads

• Sleeping threads don’t advance their CPU time, so they get a boost 
when they wake up again…

– Get interactivity automatically!

C
PU

 Tim
e

T1

T2
T3

1
𝑁𝑁

CFS: Average rate of 

execution = 
1
𝑁𝑁

:
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• In addition to fairness, we want low response time and starvation freedom
– Make sure that everyone gets to run at least a bit!

• Constraint 1: Target Latency
– Period of time over which every process gets service
– Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes
– Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes
– Each process gets 0.1ms time slice  (!!!)
– Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Responsiveness/Starvation Freedom



Lec 11.4525/2/21 Crooks & Joseph CS162 © UCB Spring 2021

Linux CFS: Throughput

• Goal: Throughput
– Avoid excessive overhead

• Constraint 2: Minimum Granularity
– Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
– Each process gets 1 ms time slice
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Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided priority to enforced desired 

usage policies.
– When it was being developed at Berkeley, instead it provided ways to “be nice”.

• nice values range from -20 to 19
– Negative values are “not nice”

– If you wanted to let your friends get more time, you would nice up your job

• Scheduler puts higher nice-value tasks (lower priority) to sleep more …
– In O(1) scheduler, this translated fairly directly to priority (and time slice)

• How does this idea translate to CFS?
– Change the rate of CPU cycles given to threads to change relative priority
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Linux CFS: Proportional Shares
• How to we achieve proportional fair sharing?

– Allow different threads to have different rates of execution (cycles/time)

• Use weights! Key Idea: Assign a weight wi to each process I to compute the switching 
quanta Qi

– Basic equal share: 𝑄𝑄𝑖𝑖 = Target Latency ⋅ 1
𝑁𝑁

– Weighted Share: 𝑄𝑄𝑖𝑖 = �𝑤𝑤𝑖𝑖
∑𝑝𝑝 𝑤𝑤𝑝𝑝

⋅ Target Latency

• Reuse nice value to reflect share, rather than priority,
– Remember that lower nice value ⇒ higher priority
– CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

• So, we use “Virtual Runtime” instead of CPU time
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Example: Linux CFS: Proportional Shares

• Target Latency = 20ms

• Minimum Granularity = 1ms

• Example: Two CPU-Bound Threads
– Thread A has weight 1

– Thread B has weight 4

• Time slice for A? 4 ms

• Time slice for B? 16 ms
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Linux CFS: Proportional Shares

• Track a thread's virtual runtime rather than its true physical runtime
– Higher weight: Virtual runtime increases more slowly

– Lower weight: Virtual runtime increases more quickly

Virtual
CPU Time

B A

Physical
CPU Time B

A

16 (wB=4)

4 (wA=1)
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Linux CFS: Proportional Shares

• Scheduler’s Decisions are based on Virtual CPU Time

• Use of Red-Black tree to hold all runnable processes as sorted on vruntime variable
– O(1) time to find next thread to run (top of heap!)

– O(log N) time to perform insertions/deletions 
» Cash the item at far left (item with earliest vruntime)

– When ready to schedule, grab version with smallest vruntime (which will be item at the far left).
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Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to Get 
CPU

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority
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Summary (1 of 2)
• Scheduling Goals:

– Minimize Response Time (e.g. for human interaction)
– Maximize Throughput (e.g. for large computations)
– Fairness (e.g. Proper Sharing of Resources)
– Predictability (e.g. Hard/Soft Realtime)

• Round-Robin Scheduling: 
– Give each thread a small amount of CPU time when it executes; cycle between all ready threads
– Pros: Better for short jobs 

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining amount of 

computation to do
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF
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Summary (2 of 2)
• Realtime Schedulers such as EDF

– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens (short tasks⇒more tokens)

• Stride Scheduling
– Always fair, unlike lotter scheduling:

• Linux O(1) scheduler
– Scales as number of processes grows
– Became overly complex because of heuristics

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates an “ideal” multitasking processor
– Practical example of “Fair Queueing”
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