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Goals for Today

- TLBs
* Paging
- SLAB allocator

Interactive is important!
Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2013
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Recall: two-level page table

10 bits 10 bits 12 bits

Virtual
Address:

PageTablePtr

—> 4 bytes «—

* Tree of Page Tables

+ Tables fixed size 1024 en‘rr'les)

- On context-switch: save single B
PageTablePtr r'eglster'

* Valid bits on Page Table Entries I—

- Don't need every 2"-level table T

- Even when exist, 2m-level tables_, ;1o

can reside on disk if not in use
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Recall: Multi-level Translation: Segments + Pages

* What about a tree of tables?
- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual
Address: l
page #0 |V.R

BaseO| Limi page #1 |V,R
Basel | L#fitl |V

Physical Address

Base3| Limit3{ N

Base4| Limit4

Base5| Limits page #5 |V.R.\ Check Pe

Base6| Limité6 | N

Base7| Limit7 |V ,AcceSs Access
Error

Err
- What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table (page table)
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Recall:
X86 Memory model with segmentation (16/32-bit)

Logical Address
{or Far Pointer)
\J
Segment \l
Selector Offset Linear Address
' ] pace
Linear Address
Global Descriptor - ]
j’ah!e (GDT) Dir | Table Offset itﬂ\g?g;:;
Space
Segment

Segment _Page Table Page

» | Descriptor |
| Page Directory | Phy. Addr.
™ Lin, Addr. | | 1ot By >
| A - Entry |l gl

Segment 4

Base Address
Page
Segmentation Paging
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Recall: X86 Segment Descriptors
(32-bit Protected Mode)

+ Segments are either implicit in the instruction (say for code
segments) or actually part of the instruction
- There are 6 registers: SS, CS, DS, ES, FS, 65
* What is in a segment register?

- A pointer to the actual segment description:

e

Segment selector [13 bits] 3 RPL

G/L selects between 6DT and LDT tables (global vs local
descriptor tables)

+ Two registers: GDTR and LDTR hold pointers to the global and
local déscriptor tables in memory

- Includes length of table (for < 2!3) entries
Descriptor format (64 bits): |

T rrruTrT -I LI ) T ‘i L] Iv rrrrrrha

Base address (24-31) GH IA Limet {16-15) PIBH. Is Type Base address (16-23)

L NP B LY LI T 0T lambesdant LT UL BT L L L L L
Base address (B 0-15) Segment Limi (Ba 0-15)

Granularity of segment (0: 16bit, 1: 4KiB unit
Default ot;;/.erand dize (0;( 16bit, 1: 32bit) )
Freely available for use by software

¢ Segment present

: DeScriptor Privilege Level

System Segment {0: System, 1: code or data)
: Code, Datd, Segment

3/03/14 Kubiatowicz €5194-24 ©UCB Fall 2014 Lec 11.6

o
200

39
L )

Recall: How are segments used?
* One set of global segments (6DT) for everyone, different
set of local segments (LDT) for every process
+ In legacy applications (16-bit mode):
- Segments provide protection for different components of user
programs
- Separate segments for chunks of code, data, stacks
- Limited to 64K segments
* Modern use in 32-bit Mode:
- Segments “flattened”, i.e. every segment is 4GB in size

- One exception: Use of 65 (or FS) as a pointer to "Thread Local
Storage”

» A thread can make accesses to TLS like this:
mov eax, gs(0x0)

* Modern use in 64-bit ("long”) mode
- lMo.s.rf segments (SS, €S, DS, ES) have zero base and no length
imits
- Only FS and 6S retain their functionality (for use in TLS)
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Slightly More than 4GB RAM: PAE mode on x86

dres

w18 Jh) ]

-

ts abgnad to & 12fyte boundary -

PAE with 4K pages PAE with 2MB pages
+ Physical Address Extension (PAE)
- Poor-man's large memory extensions
- More than 4GB physical memory
- Every process still can have only 32-bit address space
3-Level page table
- 64-bit PTE format
How do processes use more than 4GB memory?

- OS Support for mapping and unmapping physical memory into virtual
address’ space

- Application Windowing Extensions (AWE)
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What about 64-bit x86-64 ("long mode”)?

+ X86 long mode: 64 bit virtual addresses, 40-52 bits of
physical memory R i SR R

Canaonical *higher half®

. o = ical
- Not all 64-bit virtual FFFRGR80 00986900 picher half !
addresses translated . 0 Higher haif
FFEE0B00 AoaB0a0R
- ‘\‘llr'Tual Adciresses rI'\l:IST be Noncanonical Noncanonical
cannonical”: top n bits of addresses addresses
must be equal QTFFFFF FFFFFEFF
» n here mighT be 48 _ooa07FFF FrFFrree)  Canonical Lowerl

. il “lower h:
» Non-cannonical addresses Canonkolokl

will cause a Pl"O"’eCﬂOﬂ fault o0 40808000 09980000 00990800 9800909 §8GBIA0D

* Using PAE scheme with 64-bit PTE can map 48-bits of
virtual memory (9x4 + 12 = 48)

* As mentioned earlier, segments other than FS/6S
disabled in long mode
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Inverted Page Table

* With all previous examples ("Forward Page Tables™)

- Size of page table is at least as large as amount of
virtual memory allocated to processes

- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- Often in hardware!
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Recall: Caching Concept

g,;gv.,,
=[*]

-
% P G"’:‘]ﬁ@%\%ﬁ
* Cache: a repository for copies that can be accessed
more quickly than the original
- Make frequent case fast and infrequent case less dominant

+ Caching underlies many of the techniques that are used
today o make computers fast

- Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc...

* Only good if:
- Frequent case frequent enough and
- Infrequent case not too expensive
* Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Why does caching matter for Virtual Memory?

Virtual Offset
Address:
page #0 |V.R y
Basel | Liffiitl | V page #2 TV.R, Physical Add
==>Base?] Limi page #3 |V.R ysica ress
Base3 Lim”‘ N page #4 N
Base4| Limit4
Base5| Limit5 page #5 |[V.R.W  (Check Pegn
Baseb| Limit6 | N ‘
Base7| Limit7 |V —Access Access

Error Error
+ Cannot afford to translate on every access
- At least three DRAM accesses per actual DRAM access
- Or: perhaps I/0 if page table partially on disk!

- Even worse: What if we are using caching to make
memory access faster than DRAM access???

+ Solution? Cache translations!
- Translation Cache: TLB ("Translation Lookaside Buffer”)
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Caching Applied to Address Translation
N

Physical

Physical
Memory

Translate
MMU)

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?
- Sure: multiple levels at different sizes/speeds
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What Actually Happens on a TLB Miss?

* Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system
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What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

+ Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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What TLB organization makes sense?

TLB Cache Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!

- This arqgues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?
» TLB mostly unused for small programs
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TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”
* Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid |AccessASID
O0xFAO00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
3/03/14 Kubiatowicz €5194-24 ©UCB Fall 2014 Lec 11.17

Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline

| Inst Fetch | Dcd/ Reg IALU | EA | Memory

|Write Reg |

|TLB | I-Cache | RF | Operation | | WB |
| EA.| TLB | D-Cache |

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

|ASID || I I I V. Page Number | Offset |
6

LW_J 20 12

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush
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Reducing translation time further

+ As described, TLB lookup is in serial with cache lookup:

Virtual Address

[Vpageno. | offset |
|

TLB Lookup

Accesﬁf
\ Rights | PA

[Ppageno. | offset |

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early
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Overlapping TLB & Cache Access

* Here is how this might work with a 4K cache:

[ assoc

Iookup index

32 | TLB 4K Cache

1K

10 2 ——4bytes—

|page # | disp |od
Hit/
Miss
FN Data Hit/

Miss

* What if cache size is mcr'eased to 8KB?

- Overlap not complete

- Need to do something else. See €5152/252
* Another option: Virtual Caches

- Tags in cache are virtual addresses

- Translation only happens on cache misses
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Modern Pipelines: SandyBridge Pipeline

=

D-TLB I 32KB Data Cache

Fetch and Branch Prediction

6 instructions

To Decoder
Queue

+ x86 instructions turned into micro-ops
- Cached translations are reused
* Branch prediction

- Not entirely clear, but seems to have some combination of
bi-mode, multi-level BTB, stack-based prediction for
CALL/RETURN

*+ Predecoder
- Finds instruction boundaries
- Passes at least 6 instructions onto decoding infrastructure
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Out-of -Order execution: Data TLB (DTLB) Use of Mapping as a Cache: Demand Paging
* Modern programs require a lot of physical memory
C S 2y Uililes) e usr ) - Memory per system growing faster than 25%-30%/year
* But they don't use all their memory all of the time
- 90-10 rule: programs spend 90% of their time in 10%
of their code
- Wasteful to require all of user's code to be in memory
+ Solution: use main memory as cache for disk
T 3 0 Processor 4
* Unified Reservation Unit Control @m
- Full OO0 execution
- Pick 6 ready pops/cycle
- Can have two loads or stores/cycle Datapath
» 2 address generation units (AGUs) + store data
- Simultaneous 256-bit Multiply and Add
- Can have 3 regular integer ops/cycle
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........... Illusion of Infinite Memory

_-l

@ @) © =

—

Page

E— Table Physical Disk
Virtual Memory 50068
Memory 512 MB
4 GB

- Disk is larger than physical memory =
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than
physical memory
» More programs fit into memory, allowing more concurrency
* Principle: Transgarenf Level of Indirection (page table)
- Supports flexible placement of physical data
» Data could be on disk or somewhere across network
- Variable location of data transparent to user program

» Performance issue, not correctness issue
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Review: What is in a PTE?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free 3z
(Physical Page Number) (0s) O|L|D|A|lo _5_' vlw P
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable

U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
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Demand Paging Mechanisms

* PTE helps us implement demand paging
- Valid = Page in memory, PTE points at physical page
- Not Valid = Page not in memory: use info in PTE to find
it on disk when necessary
* Suppose user references page with invalid PTE?
- Memory Management Unit (MMU) traps to OS

» Resulting trap is a "Page Fault” : LLr
- What does OS do on a Page Fault?: /
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
- TLB for new page will be loaded when thread continued!
- While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue
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Demand Paging Example
- Since Demand Paging like caching, can compute
average access timel ("Effective Access Time")
- EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
- EAT = Hit Time + Miss Rate x Miss Penalty
+ Example:
- Memory access time = 200 nanoseconds
- Average page-fault service time = 8 milliseconds
- Suppose p = Probability of miss, 1-p = Probably of hit
- Then, we can compute EAT as follows:
EAT =200ns + p x 8 ms
= 200ns + p x 8,000,000ns
+ If one access out of 1,000 causes a page fault, then
EAT = 8.2 ps:
- This is a slowdown by a factor of 40!
* What if want slowdown by less than 10%?
- 200ns x 1.1 < EAT = p < 2.5 x 10-¢
- This is about 1 page fault in 400000!
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Implementing LRU

* Perfect:
- Timestamp page on each reference
- Keep list of pages ordered by time of reference
- Too expensive to implement in reality for many reasons
* Clock Algorithm: Arrange physical pages in circle with
single clock hand
- Approximate LRU (approx to approx to MIN)
- Replace an old page, not the oldest page
+ Details:
- Hardware “use” bit per physical page:
» Hardware sets use bit on each reference
» If use bit isn't set, means not referenced in a long time

» Nachos hardware sets use bit in the TLB: you have to copy
this back to page table when TLB entry gets replaced
- On page fault:
» Advance clock hand (not real time)
» Check use bit: 1—>used recently; clear and leave alone
O—selected candidate for replacement
- Will always find a page or loop forever?
» Even i}l all use bits set, will eventually loop around=FIFO
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Clock Algorithm: Not Recently Used
~ T~
/7 S . Advances only on page fault!
/ \ Check for pages not used recently
Mark pages as not used recently

l Set of all pages \
in Memory ]
\

N L/
\ [r— ’
* What if hand moving slowly?
- 6ood sign or bad sign?
» Not many page faults and/or find page quickly
* What if hand is moving quickly?
- Lots of page faults and/or lots of reference bits set
* One way to view clock algorithm:
- Crude partitioning of pages into two groups: young and old
- Why not partition into more than 2 groups?
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Nth Chance version of Clock Algorithm

* N™ chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:
» 1=clear use and also clear counter (used in last sweep)
» O=increment counter: if count=N, replace page
- Means that clock hand has to sweer by N times without
page being used before page is replaced
* How do we pick N?
- Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
- Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
* What about dirty pages?

- Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

- Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
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Clock Algorithms: Details

* Which bits of a PTE entry are useful to us?

- Use: Set when page is referenced. cleared by clock
algorithm

- Modified: set when page is modified, cleared when page
written to disk

- Valid: ok for program to reference this page
- Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
* Do we really need hardware-supported “modified” bit?
- No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit,
and marks page as read-write.

» Whenever page comes back in from disk, mark read-only
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Clock Algorithms Details (continued)

* Do we really need a hardware-supported “use” bit?
- No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only
- Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write
- When clock hand passes by, reset use and modified bits
and mark page as invalid again
* Remember, however, that clock is just an
approximation of LRU

- Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

- Need to identify an old page, not oldest pagel!
- Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

Y L " LRU victim

Directly & Second
Mapped Pages |:| /% Chance List
Marked: RW I:I Marked: Invalid
List: FIFO [ List: LRU
r'4

. New New
Page-in . .
From disk Active Sc

Pages icti
- Split memory in fwo: Active Ii‘é?t{ﬁfl\/), SC list (Invalid)
+ Access pages in Active list at full speed
+ Otherwise, Page Fault
- Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid
- Desired Page On SC List: move to front of Active list,
mark R
- Not on SC list: page in to front of Active list, mark RW:;
page out LRU victim at end of SC list
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Second-Chance List Algorithm (con't)

* How many pages for second chance list?

- If 0 = FIFO

- If all = LRU, but page fault on every page reference
* Pick intermediate value. Result is:

- Pro: Few disk accesses (page only goes to disk if unused
for a long time)

- Con: Increased overhead trapping to OS (software /
hardware tradeoff)

+ With page translation, we can adapt to any kind of
access the program makes

- Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

* Question: why didn't VAX include “use” bit?

- Strecker (architect) asked OS people, they said they
didn't need it, so didn't implement it

- He later got blamed, but VAX did OK anyway
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Free List

4 \ Advances as needed to keep

/ freelist full ("background”)
Set of all pages

in Memory l

/

N /
N _ -

——pFree Pages

For Processes
* Keep set of free pages ready for use in demand paging
- Freelist filled in background by Clock algorithm or other
technique ("Pageout demon”)
- Dirty pages start copying back to disk when enter list
+ Like VAX second-chance list
- If page needed before reused, just return to active set
* Advantage: Faster for page fauf*r
- Can always use page (or pages) immediately on fault
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Summary: Examples of how to exploit a PTE

* How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
» OS can use other (say) 31 bits for location info
* Usage Example: Demand Paging
- Keep only active Joa es in memory
- Place others on disk and mark their PTEs invalid
* Usage Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent’'s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
* Usage quample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background
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Reverse Page Mapping (Sometimes called "Coremap”)

* Physical page frames often shared by many different
address spaces/page tables

- All children forked from given process
- Shared memory pages between processes

* Whatever reverse mapping mechanism that is in
place must be very fast

- Must hunt down all page tables pointing at given page
frame when freeing a page

- Must hunt down all PTEs when seeing if pages “active”
+ Implementation options:

- For every page descriptor, keep linked list of page
table emyr'ig.sgthat poir?‘l' to it P Pag

» Management nightmare - expensive
- Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much
coarser granularity)
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Linux Memory Details?

* Memory management in Linux considerably more complex
that the previous indications

* Memory Zones: physical memory categories
- ZONE_DMA: < 16MB memory, DMAable on ISA bus
- ZONE_NORMAL: 16MB = 896MB (mapped at 0xCO000000)
- ZONE_HIGHMEM: Everything else (> 896MB)
+ Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
* Many different types of allocation
- SLAB allocators, per-page allocators, mapped/unmapped
* Many different types of allocated memory:
- Anonymous memory (not backed by a file, heap/stack)
- Mapped memory (backed by a file)
+ Allocation priorities
- Is blocking allowed/etc
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Recall: Linux Virtual memory map

_/\OxFFFFFFFF A\OXFFFFFFFFFFRFRFRT
@ Kernel e Kernel
S 896MB Addresses @ 64 TiB Addresses
<7 Physical = Physical
0xC0000000 4
OxFFFF800000000000
“Canonical Hole" Empty
S Space
5 User
- Addresses 0x00007FFFFFFFFFFF
b @
Eg User
N Addresses
VXOOOOOOOO 0x0000000000000000

32-Bit Virtual Address Space 64-Bit Virtual Address Space
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Virtual Map (Details)

+ Kernel memory not generally visible to user

- Exception: special VDSO facility that maps kernel code into user
space to aid in system calls (and to provide certain actual
system calls such as gettimeofday().

+ Every physical page described by a “page” structure
- Collected together in lower physical memory
- Can be accessed in kernel virtual space
- Linked together in various "LRU" lists
* For 32-bit virtual memory architectures:
- When physical memory < 896MB
» All physical memory mapped at 0xCO000000
- When physical memory >= 896MB
» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000
* For 64-bit virtual memory architectures:
- All physical memory mapped above OxFFFF800000000000
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Internal Interfaces: Allocating Memory

* One mechanism for requesting pages: everything else
on top of this mechanism:

- Allocate contiguous group of pages of size 2°rder bytes
given the specified mask:

struct page * alloc_pages(gfp_t gfp_mask,
unsigned int order)

- Allocate one page:

struct page * alloc_page(gfp_t gfp_mask)

- Convert page to logical address (assuming mapped):

void * page_address(struct page *page)
* Also routines for freeing pages

+ Zone allocator uses "buddy” allocator that trys to
keep memory unfragmented

+ Allocation routines pick from proper zone, given flags
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Allocation flags

* Possible allocation type flags:

- GFP_ATOMIC: Allocation high-priority and must never
sleep. Use in interrupt handlers, top
halves, while holding locks, or other times
cannot sleep

- GFP_NOWAIT: Like GFP_ATOMIC, except call will

not fall back on emergency memorr
pools. Increases likely hood of failure

- GFP_NOIO: Allocation can block but must not
initiate disk I/0.
- GFP_NOFS: Can block, and can initiate disk I/O,

but will not initiate filesystem ops.

- GFP_KERNEL: Normal allocation, might block. Use in
g_rocess context when safe to sleep.
his should be default choice

- GFP_USER: Normal allocation for processes
- GFP_HIGHMEM: Allocation from ZONE_HIGHMEM

- GFP_DMA Allocation from ZONE_DMA. Use in
combination with a previous flag

3/03/14 Kubiatowicz €C5194-24 ©UCB Fall 2014 Lec 11.43

Page Frame Reclaiming Algorithm (PFRA)

- Several entrypoints:

- Low on ,Memorj¥_ Reclaiming: The kernel detects a “low on
memory” condition

- Hibernation reclaiming: The kernel must free memory because
it is entering in the suspend-to-disk state

- Periodic reclaiming: A kernel thread is activated periodically
to perform memory reclaiming, if necessary

* Low on Memory reclaiming:
- Start flushing out dirty pages to disk
- Start looping over all memory nodes in the system
» try_to_free_pages()
» shrink_slab()
» pdflush kenel thread writing out dirty pages
* Periodic reclaiming:
- Kswapd kernel threads: checks if number of free page
frames in some zone has fallen below pages_high wa?ermar'k
- Each zone keeps two LRU lists: Active and Inactive
» Each page has a last-chance algorithm with 2 count

» Active page lists moved to inactive list when they have been
idle for two cycles through the list

» Pages reclaimed from Inactive list
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SLAB Allocator

* Replacement for free-lists that are hand-coded by users
- Consolidation of all of this code under kernel control
- Efficient when objects allocated and freed frequently

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

+ Objects segregated into “caches”
- Each cache stores different type of object

- Data inside cache divided into “slabs”, which are continuous
groups of pages (often only 1 page)

- Key idea: avoid memory fragmentation
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SLAB Allocator Details

* Based on algorithm first introduced for SunOS

- Observation: amount of time required to initialize a
regular object in the kernel exceeds the amount of time
required to allocate and deallocate it

- Resolves around object caching
» Allocate once, keep reusing objects
+ Avoids memory fragmentation:
- Caching of similarly sized objects, avoid fragmentation
- Similar to custom freelist per object
* Reuse of allocation
- When new object first allocated, constructor runs

- On subsequent free/reallocation, constructor does not
need to be reexecuted

3/03/14 Kubiatowicz €5194-24 ©UCB Fall 2014 Lec 11.46

SLAB Allocator: Cache Construction

* Creation of new Caches:
struct kmem_cache * kem_cache_create(const char *name,
size_t size,
size_t align,
unsigned long flags,
void (*ctor)(void *));

name: name of cache
size: size of each element in the cache
align: alignment for each object (often 0)
flags: possible flags about allocation
» SLAB_HWCACHE_ALIGN: Align objects to cache lines

» SLAB_POISON: Fill slabs to known value (Oxa5a5a5ab) in
order to catch use of uninitialized memory

» SLAB_RED_ZONE: Insert empty zones around objects to
help detect buffer overruns

» SLAB_PANIC: Allocation layer panics if allocation fails
» SLAB_CACHE_DMA: Allocations from DMA-able memory
» SLAB_NOTRACK: don't track uninitialized memory

- ctor: called whenever new pages are added to the cache
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SLAB Allocator: Cache Use

+ Example:
task_struct_cachep =
kmem_cache_create(‘““task_struct”,
sizeof(struct task_struct),
ARCH_MIN_TASKALIGN,
SLAB_PANIC | SLAB_NOTRACK,
NULL);

* Use of example:
struct task struct *tsk;

tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
it (1tsk)
return NULL;

kmem_free(task_struct_cachep,tsk);
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SLAB Allocator Details (Con't)

* Caches can be later destroyed with:
int kmem_cache_destroy(struct kmem_cache *cachep);
- Assuming that all objects freed
- No one ever tries to use cache again

+ All caches kept in global list

- Including global caches set up with objects of powers of
2 from 25 to 217

- General kernel allocation (kmalloc/kfree) uses least-fit
for requested cache size

* Reclamation of memory
- Caches keep sorted list of empty, partial, and full slabs

» Easy to manage - slab metadata contains reference count
» Objects within slabs linked together

- Ask individual caches for full slabs for reclamation
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Recall: Kmalloc/Kfree: The “easy interface” to memory

* Simplest kernel interface to manage memory:
kmalloc()/kfree()

- Allocate chunk of memory in kernel's address space (will
be physically contiguous and virtually contiguous):

void * kmalloc(size_t size, gfp_t flags);

- Example usage:

struct dog *p;
p = kmalloc(sizeof(struct dog), GFP_KERNEL);
it (Ip)

/* Handle error! */

- Free memory: void kfree(const void *ptr);
- Important restrictions!

» Must call with memorY previously allocated through
kmalloc() interfacelll

» Must not free memory twicel
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Alternatives for allocation

* According to Robert Love, "SLAB" has become a name
for any allocator with a similar API

- Kinda like “Kleenex” has become a generic noun

* A number of options in the kernel for object allocation:

- SLAB: original allocator based on Bonwick's paper from
SunOS

- SLUB: Newer allocator with same interface but better
use of metadata (Default since Linux 2.6.23)

» Keeps SLAB metadata in the page data structure (for pages
that happen to be in kernel caches)

» Debugging options compiled in by default, just need to be

enabled
- SLOB: low-memory footprint allocator for embedded
systems
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Summary (1/2)

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate
- Translation: Change Virtual Addresses into Physical Addresses
- Protection: Prevent unauthorized Sharing of resources
- Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
* Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual number from virtual address mapped through
pcllreqragfeg ?ro phrseir;:alrgagg"r‘lurﬁb:r re appe rots

- Offset of virtual address same as physical address
- Large page tables can be placed into virtual memory
. MulTi-?_eve Tables
- Virtual address mapped to series of tables
- Permit sparse population of address space
+ Inverted page table

- Size of page table related to physical memory size
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Summary (2/2)

* PTE: Page Table Entries
- Includes physical page number
- Control info (valid bit, writeable, dirty, user, etc)

+ A cache of translations called a “"Translation Lookaside
Buffer” (TLB)

- Relatively small number of entries (< 512)
- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID
* On TLB miss, page table must be traversed
- If located PTE is invalid, cause Page Fault
+ On context switch/change in page table
- TLB entries must be invalidated somehow
* TLB is logically in front of cache

- Thus, needs to be overlapped with cache access to be
really fast
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