
CS194-24
Advanced Operating Systems

Structures and Implementation
Lecture 11

TLBs, SLAB allocator
File Systems

March 3st, 2014
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs194-24

Lec 11.23/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Goals for Today

• TLBs
• Paging
• SLAB allocator

Interactive is important!
Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2013

Lec 11.33/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Physical
Address:

OffsetPhysical
Page #

4KB

Recall: two-level page table
10 bits 10 bits 12 bits

Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables
can reside on disk if not in use 4 bytes

Lec 11.43/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• What about a tree of tables?
– Lowest level page tablememory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Recall: Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Perm

Access
Error

Lec 11.53/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall:
X86 Memory model with segmentation (16/32-bit)

Lec 11.63/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: X86 Segment Descriptors
(32-bit Protected Mode)

• Segments are either implicit in the instruction (say for code
segments) or actually part of the instruction
– There are 6 registers: SS, CS, DS, ES, FS, GS

• What is in a segment register?
– A pointer to the actual segment description:

G/L selects between GDT and LDT tables (global vs local
descriptor tables)

• Two registers: GDTR and LDTR hold pointers to the global and
local descriptor tables in memory
– Includes length of table (for < 213) entries

• Descriptor format (64 bits):

G: Granularity of segment (0: 16bit, 1: 4KiB unit)
DB: Default operand size (0; 16bit, 1: 32bit)
A: Freely available for use by software
P: Segment present

DPL: Descriptor Privilege Level
S: System Segment (0: System, 1: code or data)

Type: Code, Data, Segment

Segment selector [13 bits] G/
L RPL

Lec 11.73/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: How are segments used?
• One set of global segments (GDT) for everyone, different

set of local segments (LDT) for every process
• In legacy applications (16-bit mode):

– Segments provide protection for different components of user
programs

– Separate segments for chunks of code, data, stacks
– Limited to 64K segments

• Modern use in 32-bit Mode:
– Segments “flattened”, i.e. every segment is 4GB in size
– One exception: Use of GS (or FS) as a pointer to “Thread Local

Storage”
» A thread can make accesses to TLS like this:

mov eax, gs(0x0)
• Modern use in 64-bit (“long”) mode

– Most segments (SS, CS, DS, ES) have zero base and no length
limits

– Only FS and GS retain their functionality (for use in TLS)

Lec 11.83/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Slightly More than 4GB RAM: PAE mode on x86

• Physical Address Extension (PAE)
– Poor-man’s large memory extensions
– More than 4GB physical memory
– Every process still can have only 32-bit address space

• 3-Level page table
– 64-bit PTE format

• How do processes use more than 4GB memory?
– OS Support for mapping and unmapping physical memory into virtual

address space
– Application Windowing Extensions (AWE)

PAE with 4K pages PAE with 2MB pages

Lec 11.93/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

What about 64-bit x86-64 (“long mode”)?

• X86 long mode: 64 bit virtual addresses, 40-52 bits of
physical memory
– Not all 64-bit virtual
addresses translated

– Virtual Addresses must be
“cannonical”: top n bits of
must be equal
» n here might be 48
» Non-cannonical addresses

will cause a protection fault
• Using PAE scheme with 64-bit PTE can map 48-bits of

virtual memory (94 + 12 = 48)
• As mentioned earlier, segments other than FS/GS

disabled in long mode

Lec 11.103/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of
virtual memory allocated to processes

– Physical memory may be much less
» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Lec 11.113/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Caching Concept

• Cache: a repository for copies that can be accessed
more quickly than the original
– Make frequent case fast and infrequent case less dominant

• Caching underlies many of the techniques that are used
today to make computers fast
– Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Lec 11.123/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make
memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Why does caching matter for Virtual Memory?

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

Lec 11.133/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 11.143/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

What Actually Happens on a TLB Miss?
• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

Lec 11.153/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

What happens on a Context Switch?

• Need to do something, since TLBs map virtual
addresses to physical addresses
– Address Space just changed, so TLB entries no
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

Lec 11.163/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 11.173/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 11.183/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 11.193/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Lec 11.203/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 11.213/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Modern Pipelines: SandyBridge Pipeline

Lec 11.223/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Fetch and Branch Prediction

• x86 instructions turned into micro-ops
– Cached translations are reused

• Branch prediction
– Not entirely clear, but seems to have some combination of

bi-mode, multi-level BTB, stack-based prediction for
CALL/RETURN

• Predecoder
– Finds instruction boundaries
– Passes at least 6 instructions onto decoding infrastructure

Lec 11.233/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

54 Entry Unified Scheduler

Out-of-Order execution: Data TLB (DTLB)

• Unified Reservation Unit
– Full OOO execution
– Pick 6 ready ops/cycle
– Can have two loads or stores/cycle

» 2 address generation units (AGUs) + store data
– Simultaneous 256-bit Multiply and Add
– Can have 3 regular integer ops/cycle

Lec 11.243/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Use of Mapping as a Cache: Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching

Lec 11.253/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory
» More programs fit into memory, allowing more concurrency

• Principle: Transparent Level of Indirection (page table)
– Supports flexible placement of physical data

» Data could be on disk or somewhere across network
– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB

Lec 11.263/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U W P

01234567811-931-12

Lec 11.273/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 11.283/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Demand Paging Example
• Since Demand Paging like caching, can compute

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!

Lec 11.293/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO
Lec 11.303/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Lec 11.313/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 11.323/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock
algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit,

and marks page as read-write.
» Whenever page comes back in from disk, mark read-only

Lec 11.333/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU
– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 11.343/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC
Victims

Lec 11.353/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes
– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 11.363/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 11.373/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Summary: Examples of how to exploit a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

Lec 11.383/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Reverse Page Mapping (Sometimes called “Coremap”)
• Physical page frames often shared by many different

address spaces/page tables
– All children forked from given process
– Shared memory pages between processes

• Whatever reverse mapping mechanism that is in
place must be very fast
– Must hunt down all page tables pointing at given page
frame when freeing a page

– Must hunt down all PTEs when seeing if pages “active”
• Implementation options:

– For every page descriptor, keep linked list of page
table entries that point to it
» Management nightmare – expensive

– Linux 2.6: Object-based reverse mapping
» Link together memory region descriptors instead (much

coarser granularity)

Lec 11.393/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Linux Memory Details?

• Memory management in Linux considerably more complex
that the previous indications

• Memory Zones: physical memory categories
– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB  896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

• Allocation priorities
– Is blocking allowed/etc

Lec 11.403/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Linux Virtual memory map

Kernel
Addresses

Empty
Space

User
Addresses

User
Addresses

Kernel
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3G
B

To
ta

l

12
8T

iB

1G
B

12
8T

iB

896MB
Physical 64 TiB

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”

Lec 11.413/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Virtual Map (Details)

• Kernel memory not generally visible to user
– Exception: special VDSO facility that maps kernel code into user

space to aid in system calls (and to provide certain actual
system calls such as gettimeofday().

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000

Lec 11.423/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Internal Interfaces: Allocating Memory
• One mechanism for requesting pages: everything else

on top of this mechanism:
– Allocate contiguous group of pages of size 2order bytes
given the specified mask:

struct page * alloc_pages(gfp_t gfp_mask,unsigned int order)
– Allocate one page:

struct page * alloc_page(gfp_t gfp_mask)

– Convert page to logical address (assuming mapped):

void * page_address(struct page *page)
• Also routines for freeing pages
• Zone allocator uses “buddy” allocator that trys to

keep memory unfragmented
• Allocation routines pick from proper zone, given flags

Lec 11.433/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Allocation flags
• Possible allocation type flags:

– GFP_ATOMIC: Allocation high-priority and must never
sleep. Use in interrupt handlers, top
halves, while holding locks, or other times
cannot sleep

– GFP_NOWAIT: Like GFP_ATOMIC, except call will
not fall back on emergency memory
pools. Increases likely hood of failure

– GFP_NOIO: Allocation can block but must not
initiate disk I/O.

– GFP_NOFS: Can block, and can initiate disk I/O,
but will not initiate filesystem ops.

– GFP_KERNEL: Normal allocation, might block. Use in
process context when safe to sleep.
This should be default choice

– GFP_USER: Normal allocation for processes
– GFP_HIGHMEM: Allocation from ZONE_HIGHMEM
– GFP_DMA Allocation from ZONE_DMA. Use in

combination with a previous flag

Lec 11.443/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Page Frame Reclaiming Algorithm (PFRA)
• Several entrypoints:

– Low on Memory Reclaiming: The kernel detects a “low on
memory” condition

– Hibernation reclaiming: The kernel must free memory because
it is entering in the suspend-to-disk state

– Periodic reclaiming: A kernel thread is activated periodically
to perform memory reclaiming, if necessary

• Low on Memory reclaiming:
– Start flushing out dirty pages to disk
– Start looping over all memory nodes in the system

» try_to_free_pages()
» shrink_slab()
» pdflush kenel thread writing out dirty pages

• Periodic reclaiming:
– Kswapd kernel threads: checks if number of free page

frames in some zone has fallen below pages_high watermark
– Each zone keeps two LRU lists: Active and Inactive

» Each page has a last-chance algorithm with 2 count
» Active page lists moved to inactive list when they have been

idle for two cycles through the list
» Pages reclaimed from Inactive list

Lec 11.453/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

SLAB Allocator
• Replacement for free-lists that are hand-coded by users

– Consolidation of all of this code under kernel control
– Efficient when objects allocated and freed frequently

• Objects segregated into “caches”
– Each cache stores different type of object
– Data inside cache divided into “slabs”, which are continuous

groups of pages (often only 1 page)
– Key idea: avoid memory fragmentation

Cache

SLAB

SLAB

Obj 1

Obj 2

Obj 3

Obj 5

Obj 4

Lec 11.463/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

SLAB Allocator Details

• Based on algorithm first introduced for SunOS
– Observation: amount of time required to initialize a
regular object in the kernel exceeds the amount of time
required to allocate and deallocate it

– Resolves around object caching
» Allocate once, keep reusing objects

• Avoids memory fragmentation:
– Caching of similarly sized objects, avoid fragmentation
– Similar to custom freelist per object

• Reuse of allocation
– When new object first allocated, constructor runs
– On subsequent free/reallocation, constructor does not
need to be reexecuted

Lec 11.473/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

SLAB Allocator: Cache Construction
• Creation of new Caches:
struct kmem_cache * kem_cache_create(const char *name,size_t size,size_t align,unsigned long flags,void (*ctor)(void *));
– name: name of cache
– size: size of each element in the cache
– align: alignment for each object (often 0)
– flags: possible flags about allocation

» SLAB_HWCACHE_ALIGN: Align objects to cache lines
» SLAB_POISON: Fill slabs to known value (0xa5a5a5a5) in

order to catch use of uninitialized memory
» SLAB_RED_ZONE: Insert empty zones around objects to

help detect buffer overruns
» SLAB_PANIC: Allocation layer panics if allocation fails
» SLAB_CACHE_DMA: Allocations from DMA-able memory
» SLAB_NOTRACK: don’t track uninitialized memory

– ctor: called whenever new pages are added to the cache
Lec 11.483/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

SLAB Allocator: Cache Use

• Example:
task_struct_cachep =

kmem_cache_create(“task_struct”,
sizeof(struct task_struct),
ARCH_MIN_TASKALIGN,
SLAB_PANIC | SLAB_NOTRACK,
NULL);

• Use of example:
struct task_struct *tsk;
tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
if (!tsk)

return NULL;
kmem_free(task_struct_cachep,tsk);

Lec 11.493/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

SLAB Allocator Details (Con’t)

• Caches can be later destroyed with:
int kmem_cache_destroy(struct kmem_cache *cachep);
– Assuming that all objects freed
– No one ever tries to use cache again

• All caches kept in global list
– Including global caches set up with objects of powers of
2 from 25 to 217

– General kernel allocation (kmalloc/kfree) uses least-fit
for requested cache size

• Reclamation of memory
– Caches keep sorted list of empty, partial, and full slabs

» Easy to manage – slab metadata contains reference count
» Objects within slabs linked together

– Ask individual caches for full slabs for reclamation

Lec 11.503/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Kmalloc/Kfree: The “easy interface” to memory
• Simplest kernel interface to manage memory: kmalloc()/kfree()

– Allocate chunk of memory in kernel’s address space (will
be physically contiguous and virtually contiguous):

void * kmalloc(size_t size, gfp_t flags);
– Example usage:
struct dog *p;p = kmalloc(sizeof(struct dog), GFP_KERNEL);if (!p) /* Handle error! */

– Free memory: void kfree(const void *ptr);
– Important restrictions!

» Must call with memory previously allocated through kmalloc() interface!!!
» Must not free memory twice!

Lec 11.513/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Alternatives for allocation

• According to Robert Love, “SLAB” has become a name
for any allocator with a similar API
– Kinda like “Kleenex” has become a generic noun

• A number of options in the kernel for object allocation:
– SLAB: original allocator based on Bonwick’s paper from
SunOS

– SLUB: Newer allocator with same interface but better
use of metadata (Default since Linux 2.6.23)
» Keeps SLAB metadata in the page data structure (for pages

that happen to be in kernel caches)
» Debugging options compiled in by default, just need to be

enabled
– SLOB: low-memory footprint allocator for embedded
systems

Lec 11.523/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Summary (1/2)
• Memory is a resource that must be shared

– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical Addresses
– Protection: Prevent unauthorized Sharing of resources

• Segment Mapping
– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through

page table to physical page number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted page table
– Size of page table related to physical memory size

Lec 11.533/03/14 Kubiatowicz CS194-24 ©UCB Fall 2014

Summary (2/2)
• PTE: Page Table Entries

– Includes physical page number
– Control info (valid bit, writeable, dirty, user, etc)

• A cache of translations called a “Translation Lookaside
Buffer” (TLB)
– Relatively small number of entries (< 512)
– Fully Associative (Since conflict misses expensive)
– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed
– If located PTE is invalid, cause Page Fault

• On context switch/change in page table
– TLB entries must be invalidated somehow

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be
really fast

