
CS202 1-1

CS202: Programming Systems

Karla Steinbrugge Fant

www.cs.pdx.edu/~karlaf

CS202 1-2

What to expect this term?

Object Oriented Programming!

• The majority of the term
will be spent introducing
you to object-oriented
programming while
learning advanced C++
syntax.

• Experience object oriented
design and programming

• Learn the difference between

procedural abstraction and

object oriented solutions

• Spend the term designing and

programming with inheritance

hierarchies, with the goal of

solving problems efficiently:

producing high quality, robust,

maintainable as well as

efficient object oriented

solutions

CS202 1-3

What to expect this term?

Object Oriented Programming!

• Programming assignments

will focus on advanced

data structures while at the

same time accomplishing

these other goals.

• Learn about C++'s

function overloading,

operator overloading,

copy constructors, and be

introduced to inheritance

• Then, the rest of the term
compares Java to C++,
where we will work
through example projects
in both languages

• Course requirements
consist of five
programming assignments
in C++ and Java

CS202 1-4

What to expect of Programs

• Programming assignments

will focus on advanced

data structures and OOP

• 20% of each program's

grade is based on the

program style, comments,

and documentation

provided with the program

• 10% of each program's grade

is based on a written

discussion of how the unix

debuggers (gdb, xxgdb, or

ddd) assisted them in their

development. Each

assignment must have an

accompanying one full page

(8 1/2 x 11) debugger write

up of your experiences!

CS202 1-5

Your programming assignments

• 10% of each

program’s grade is

based on a written

discussion of the

major design

consideration

encountered when

solving the specified

problem.

• Think in terms of

analyzing your

solution! This means

discussing the

efficiency of the

approach as well as

the efficiency of the

resulting code.

CS202 1-6

A term paper is part….

• In addition, each student will
be required to submit a typed
term paper.

• The paper must explore how
well your C++ programs
have met our objectives to
become object oriented
programmers!

• Discuss how the designs
meet the criteria set out for
OOP, and how they can be
improved

• The paper must be a
minimum length of 4 pages
and a maximum of 7 pages
(double spaced, 12 point
font).

• Tables and sample code
should be attached as
exhibits and should not be
part of the 4-7 page count

CS202 1-7

Group Project…

• • Teams will be used in
this class to become
familiar and master the
object oriented
programming techniques.

• Teams, formed the second
week of the term, are
expected to meet together
outside of class to
critically analyze their
designs

• Teams will present their

best object-oriented

solution to the class in 20

minute presentations,

where each member of the

team must verbally

participate.

• Presentations will be

graded on the depth of

material presented

CS202 1-8

Object Oriented Programming

• Programs are populated by objects, which
communicate with each other

• By delegating specific and narrow
responsibilities to each object, the
programmer can break down the
programming problem into chunks and thus
manage complexity easier

• Objects are characterized as having: state,
operations and identity

CS202 1-9

Object Oriented Programming

• An object can store information that is a result of
prior operations

• That information may determine how the object
carries out operations in the future

• The colleciton of all information held by an object
is the object’s state

• An object’s state may change over time, but not
spontaneously

• State changes must be the consequence of
operations performed on the object

CS202 1-10

Object Oriented Programming

• Objects permit certain operations and do not
support others

• OO programs contain statements in which objects
are asked to carry out certain operations

• It is possible for two or more objects to support
the same operations and to have the same state,
yet to be different from each other – each object
has its own identity

• A class then describes a collection of related
objects

• Question: Consider a word processor. Find at
least five classes of objects that it manipulates.

CS202 1-11

Object Oriented Programming
• A very important aspect of OOP is to exploit

similarities between classes.

• This often happens when one class is a
specialized version of another class – where most
operations are identical or similar, but a few
differences do exist.

• For example, a system administrator of an
electronic mail system. They receive messages
and manage their message collections in the
same way as all other users do. In addition, they
have special ability to create new accounts (and
remove accounts). The set of all administrators is
a subset of the set of all users

CS202 1-12

Object Oriented Programming

• Inheritance is the way to model this “subset” relationship.

• A class, called a subclass or derived class inherits from a class
(a superclass, parent, or base class), if its objects form a
subset of the base class objects

• The objects in the subclass must support all operations that
are supported by the superclass, but they may carry out
these operations in a special way.

• They may also support additional operations

• Think about bank accounts – do checking and savings
accounts differ in any way? Are they separate classes or
instances of the same class? Is there anything common
between them?

CS202 1-13

Object Oriented Design
• At the foundation of OOP is object oriented design

• The goal of object oriented design is to decompose a
programming task into different data types or classes
and to define the functionality of these classes

• Clearly, a structured approach to finding classes
and their features will be helpful. Three helpful
goals are:
• Identify classes

• Identify functionality between these classes

• Identify the relationships between these classes

• This should be an iterative process. Understanding
on aspect of a class may force changes to others

CS202 1-14

Object Oriented Design: ideas

• Remember, a class is simply a data type

• It corresponds to an “abstract data type” from
CS163

• So, identify classes by looking for nouns

• For example, for a message system nouns are:
mailbox, message, user, passcode, extension,
administrator, mailsystem, menu

• BUT, just because you find “nouns” doesn’t
mean they are good choices for your classes!
And, you may need others that provide
functionality behind the scenes

CS202 1-15

Object Oriented Design: ideas
• A central role of object oriented design is to group

each operation with one class

• Each operation must have exactly one class that is
responsible for carrying it out

• This means you must be careful to not have one class
act on the data of another class.

• For example, if we had a message class which
allowed a message to be left, erased, or played.
What would be wrong with adding this message to
a mailbox of messages? How could a message add itself
to a mailbox? A mailbox, instead could add a message!
This would have required a message to know the internal
mailbox structure

CS202 1-16

Object Oriented Design: ideas

• Always assume that an object has no insight into
the internal structure of another object
• Play close attention to this!

• All activities on objects other than itself must be
achieved by performing an operation, not by
direct manipulation of the internal data

• Always ask yourself “how can an object of this
class carry out an operation on another class’
data?

• This is a hard question – especially since you
may not be aware at the design phase of all of the
implementation details

CS202 1-17

Object Oriented Question

• Take the bank account situation, where you have
checking and savings accounts

• For an automated bank teller program, describe
all of the operations that should be supported
and describe how these relate to the classes you
are designing

• Should there be a “transfer to account”
operation?

• If not – what other class might take on the
responsibility of managing transfers

CS202 1-18

Finding Class Relationships
• Three relationships are common between classes:

• Use or awareness
• Creating/using objects of another class, passing objects of

another class as arguments

• Minimize the number of these relationships

• One class should be as unaware as possible of the existance
of another class! Eases future modification!

• Aggregation or containment
• “has a” relationship, a special case of usage

• One object contains another object (a rectangle has 4 points)

• Inheritance or specialization
• “is a” relationship (a rectangle is a polygon)

• Can lead to very powerful and extensivle designs

CS202 1-19

Hints to Follow!
• You should not use a class to describe a single object

• Every noun should not be a class

• Classes should collect objects with similar behavior

• Classes should be large enough to describe a significant
set of objects, but, they should not be too large either
• You may find it tempting to design classes that are very general,

but that usually is not helpful

• Avoid public data and cluttered interfaces

• Operations in a class should be consistent with each other
in regard to their: names, arguments, return values, and
behavior

• Good use of inheritance requires finding a “common” set
of data and/or functionality to all classes

CS202 1-20

Hints to Follow!

• Sometimes inheritance is difficult to see because
you do not see what is common
• Look for classes that have shared responsibilities and

see if it is possible to define a base class that can
assume those responsibilities

• Recognizing common base classes is particularly
important for OOP. Common code need only be
provided once in the base class and is automatically
inherited by the derived class (inheritance)

• Consider dropping classes that are not coupled
with any other classes (coupled: using “is a”,
“has a” “uses” relationships)

CS202 1-21

Hints to Follow!

• On the other hand, classes that are coupled with
too many other classes are a sign of trouble
ahead.
• Classes that are “highly” coupled with other classes

will force changes to other classes when you update
the class in question

• Of course, reducing coupling can require major
reorganization! So, make EVERY effort at design time
to minimizing coupling

• It should be as easy to create multiple objects of a
class as it is to create one object
• Question any design where there are single

aggregations!

CS202 1-22

Hints to Follow!

• Split up classes with too much responsibility
• Sometimes a top level class ends up with far too many operations

because all commands are simply added to it

• Eliminate classes with too few responsibilities
• A class with no operations is not useful. What would you do with

its objects?

• A class with only one or two operations may be useful, but you
should convince yourself that there is really no better way of
distributing the responsibilities

• If another class can meaningfully carry out the task – move the
operations there and eliminate the class

• Eliminate unused responsibilities (operations)

• Reorganize unrelated responsibilities – move it to a
different class or add it to a new class

CS202 1-23

Hints to Follow!

• Express repeated functionality with inheritance
• Is the same responsibility carried out by multiple classes?

• Check whether you can recognize this commonality by finding a
common base class and have the other classes inherit from it

• Keep class responsibilities at a single abstraction level
• Every project exhibits a layering of abstractions

• The responsibilities of a single class should stay at one abstraciton
level and should not go to a higher or lower level

• Class names should be nouns
• Don’t use object is a class name – it adds no value

• Operations should be verbs or short sequence of words
that contain a verb
• There should be unique identifiers in the first 1-2 words of a name

• Keep names consistent “don’t mix “get” and “give”

CS202 1-24

Hints to Follow!

• Minimize operations that return pointers to new
heap objects
• Doing so would require the caller to (1) capture the

returned pointer and (2) eventually deallocate the
memory

• Never return a reference to a local stack object
• The object is gone when the function exits

• Never return a reference to a newly allocated
heap object
• Deleting the memory is not intuitive

• Therefore, only return a reference to an object
that exists prior to the function call

CS202 1-25

Hints to Follow!

• Elegance does pay off!
• This term spend time with your design before

throwing code at the problem. Each program will be
building inheritance hierarchies – look for
commonalities – resist the urge to hurry (it will only
slow you down!)

• Break it down!
• If the problem you are looking at is too confusing, try

to imagine what the basic operation of the program
would be (divide and conquer), given the existence of
“black box” that handles the hard parts. That “black
box” then can be a class that encapsulates the intended
functionality

CS202 1-26

Hints to Follow!

• Remember CS163? Keep the philosophy of separating the
class creator, from the client programmer (the class user).
• The client should never know the internal data structures of how

operations perform

• Write your classes so that they are useable by others but still work
well within the application’s domain

• Make classes as atomic as possible
• Give each class a single clear purpose

• If your classes grow too complicated, break them into simpler ones

• Avoid complicated switch statements – use polymorphism

• Avoid a large number of operations that cover many different
types of operations – consider using several classes

CS202 1-27

Hints to Follow!

• Watch for long argument lists
• Break it down into using relationships passing objects

(as const references whenever possible) to functions

• Don’t repeat yourself!
• If a piece of code is recurring in many operations, pull

it out to be in a common base class

• Don’t extend functionality by building derived
classes
• If an interface element is essential to a class it should be

in the base class – not added onto the end

• If you are adding operations by inheriting, you might
want to rethink your design!

CS202 1-28

Hints to Follow!

• Realize the inheritance will complicate your design
• Use it only if it is required by your design

• Use it to express differences in behavior of classes that are derived
from a common base class

• The clearest designs add new capabilities to inherited ones

• Poor designs remove old capabilities during inheritance without
adding new ones

• Implementation rules for this course:
• No global objects

• Avoid magic numbers (hardwired into the code)

• No string classes allowed

• Use comments liberally

• Remember your code is read much more than it is written!!

