CS224v

Conversational Virtual Assistants with Deep Learning

Monica Lam

CAs: Ethan Chi & Surabhi Mundada PhD students: Giovanni Campagna, Mehrad Moradshahi, Sina Semnani, Silei Xu, Jackie Yang

My Background

The New York Times Stanford Team Aims at Alexa and Siri With a Privacy-Minded Alternative

- Compiler expert; author of the Dragon book
- Started research on privacy (2008)
- Research on conversational virtual assistants (2015)
- Focus: deep learning + programming languages
 - Natural language (NL) is a human artifact to communicate, not a natural phenomenon
 - Need to understand new, long-tail sentences
 - Problem: Natural language programming
- Leading an open virtual assistant initiative
 - Goal: 20M+ voice developers (non AI experts)

Project Status

The Genie assistant is running on:

The first assistant that uses a contextual neural parser for dialogues Leading the standardization of dialogue semantics representation

Lecture Outline

1. Motivation of the Course

- 2. Core Concept: Understanding Task-Oriented Dialogues
- 3. Technology to Address Ethical Considerations
- 4. This Course

Voice

3rd-Generation Computer Interface

World Wide Voice Web

Access knowledge in natural language

Which restaurant serves paella, with a rating over 4.2 that is quickest to get to?

Web Transactions

Social media

Book a Covid vaccine appointment at the nearest Safeway, as soon as possible.

Find me all the photos from my friends taken at Halloween.

The Internet of Things

Let my dad monitor my security camera for motion, when I am not home.

WWW: Browser WWvW: Voice Assistant

Voice

- Not limited like GUI: WIMP (Windows, Icons, Menus, Pointers)
- Advantages and Key Challenges
 - Scale: The entire web
 - Expressiveness: Interactive expression of users' intention
 - Power: Function composition, over multiple websites
 - Personalized: A long-tail of personalized operations
 - Universal: Multi-lingual, even the preliterate, the illiterate

Computer is now learning the human language!

The key is Natural Language Understanding!

Commercial Agents

- Commercial assistants are not conversational today
 - We will change that!
- Customer support uses dialogues, using Dialogue Trees
 - Handcraft each turn of the dialogue
 - Predict what the user says
 - Use an intent classifier

Dialogue Trees & Intent Classification

A: Hello, how can I help you?

Status of Chatbot Technology

- Brittle: Unexpected sentences cause the assistant to fail
- Laborious:
 - Requires continuous refinement
 - Every chatbot is custom built:
 Work is repeated for the workflow of each domain

Traditional Deep-Learning

- Annotate what users say and train a neural network
- In academia: MultiWOZ
 - 5 domains restaurants, hotels, taxis, trains, attractions (slots only)
 - Hand-annotate simulated dialogues 3 times!
 - Error-prone: 15% error rate!
 - Best result with this approach: 61% accuracy
- In industry: Alexa has 10,000 employees

Too expensive; Too inaccurate; Too limited

Cannot Rely on Manual Annotation!

- Scale: The entire web
- Expressiveness: Interactive expression of users' intention
- Power: Function composition, over multiple websites
- Personalized: A long-tail of personalized operations
- Universal: Multi-lingual, even the preliterate, the illiterate

Cannot annotate and train one domain at a time!

How about Pretrained Language Models? Unsupervised learning on internet data

Model	Objective Functions	Params	Year
BERT	Mask model	340M	2018
BART	Denoising seq2seq	406M	2019
MBART	25 languages BART	680M	2020
GPT	Next word prediction	110M	2018
GPT-2	Next word prediction	1.5B	2019
GPT-3	Next word prediction	175B	2020

Can predict the next word, sentence, paragraph given a paragraph

GPT-3

- User supplies a preamble, GPT generates follow-on text
- Recipe generator Resume generator Medical Q&A Podcasts, Creative Friction

Medical Q&A

Question: A 10 year old boy presents with recurrent episodes of dyspnoea, cough and wheeze triggered by cold air and allergens. After performing tests he is diagnosed with an obstructive disease and given medication. Which receptor is the medication most likely to work on:

A) muscarinic receptor B) G-protein coupled receptor C) Era D) Erb E) a-1 receptor

Correct answer is **B**

Explanation: The patient is suffering from asthma, a disease of the airways. The drugs used to treat asthma are bronchodilators. The bronchodilators act on the beta-2 receptors. The beta-2 receptors are G-protein coupled receptors

Does GPT-3 Understand?

Question: "Who is the Director of Stanford AI Lab?" Answer: Chris Manning, since 2018

GPT3: "Fei-Fei Li"

GPT-3 has lots of statistical language knowledge

We need to ground Pretrained Models in Semantics

WWvW: Research Questions

- Scale: How to put the web on voice efficiently?
- Completeness: How to understand all possible operations?
- Multi-linguality: How to handle low-resourced languages?
- Dialogues: How to understand and carry out dialogues?

WWvW Needs a New Deep-Learning Approach

Key Takeaway

- WWvW Needs a New Deep-Learning Approach
 - To ground pretrained language models with semantics

Lecture Outline

- 1. Motivation of the Course
- 2. Core Concept: Understanding Task-Oriented Dialogues
- 3. Technology to Address Ethical Considerations
- 4. This Course

WWvW Needs a New Deep-Learning Approach

Open Pretrained Virtual Assistants

- Pretrained
 - Can handle specific tasks when given specific info e.g. instructions, data tables. web forms (like a human agent)
 - Leverages pretrained models
- Open-source, crowdsourced
 - Open, multilingual voice interfaces for music, news, TV, ...
 - Need world-wide contributions (like Wikipedia)

Senie: An open-source toolkit to make voice a commodity

Senie: Open Pretrained Assistant

Agents	Customer Support
Generic Dialogue Models	
	Read Form-Filling Instructions
Grounding Primitives	Fill Web Forms
	Pretrained Language Models

From Web Instructions in NL

Customer Service Web Page

Your Account > Your Gift Card Balance > Redeem a gift card

Redeem a gift card

Enter claim code (dashes not required)

Apply to your balance

How do I find the claim code? ~

Help instructions

A Pretrained Customer Service Agent

- Trained once, run on any web service instructions
- Read instructions \rightarrow answer calls immediately
- Experiment: 80 customer services (741 instructions)
- 76.7% accuracy
- 69% of users prefer Genie over following web instructions

Grounding Open-Domain Instructions to Automate Web Support Tasks Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, Monica S Lam Proceedings of the NAACL-HLT, June 2021.

Senie: Open Pretrained Assistant

Senie: Schemas to Dialogue Agents

Senie: Schemas to Dialogue Agents

STANFORD

Senie: Schemas to Dialogue Agents

Natural Language

Neural Semantic Parser (Pretrained Language Model)

ThingTalk

Execution Databases + API calls ThingTalk:
 Programming language
 Covers everything that a

computer can do

• Neural semantic parser:

leverage pretrained models for natural language knowledge

- 1. Completeness: everything a computer can do
 - ThingTalk: 1st programming language for virtual assistants
 - Database query
 - API Invocation
 - Composition
 - Event-driven
 - Access control

Natural Language

Neural Semantic Parser

ThingTalk

Execution Databases + API calls 1. Completeness: ThingTalk

- 2. Coverage of training data: Synthesis
 - Don't just annotate, synthesize
 - Generate training data samples
 automatically
 - Use PL grammar:
 - relational algebra (Join, project, ...) control constructs
 - from databases, APIs

Yushi Wang, Jonathan Berant, and Percy Liang (2015). "Building a Semantic Parser Overnight". In ACL

Natural Language

Neural Semantic Parser

ThingTalk

Execution Databases + API calls

- 1. Completeness: ThingTalk
- 2. Coverage of training data: Synthesis
- 3. NL knowledge: pretrained models
- Use a pretrained model
 to paraphrase synthetic data
- Use neural translator for multi-lingual data

Natural Language

Neural Semantic Parser (Pretrained Language Model) ThingTalk Execution Databases + API calls

- 1. Completeness: ThingTalk
- 2. Coverage of training data: Synthesis
- 3. NL knowledge: pretrained models
- 4. Effectiveness: contextual semantic parsing
 - Formal context in ThingTalk
 - Fine-tune a pretrained language model

Synthesize Variety in Training Data

ThingTalk in a Virtual Assistant

- The first agent with a contextual neural semantic parser
- 2. Direct execution made possible by ThingTalk
- 3. Agent policy to control the response

Comparison with Commercial Assistants

Examples of Long-Tail Questions		Google	Siri	Genie
Show me restaurants rated at least 4 stars with at least 100 reviews				✓
Show restaurants in San Francisco rated higher than 4.5		✓		✓
What is the highest rated Chinese restaurant near Stanford?			✓	✓
How far is the closest 4 star restaurant?				✓
Who works for W3C and went to Oxford?				✓
Who worked for Google and lives in Palo Alto?				✓
Who graduated from Stanford and won a Nobel prize?		✓		✓
Who worked for at least 3 companies?				√
Show me hotels with checkout time later than 12PM				✓
Which hotel has a pool in this area?		✓	✓	✓

Long-tail Restaurant Questions

Multi-Lingual Assistants

Language	Restaurant Queries with Localized Entities	
	look for 5 star restaurants that serve burgers	
1943/2490,000	ابحث عن مطاعم 5 نجوم التي تقدم الشاور ما	
	suchen sie nach 5 sterne restaurants, die maultaschen servieren	
	busque restaurantes de 5 estrellas que sirvan paella valenciana	
¢له ا	به دنبال رستوران های 5 ستاره باشید که جوجه کیاب سر و می کنند	
	etsi 5 tähden ravintoloita, joissa tarjoillaan karjalanpiirakkaa	
	cerca ristoranti a 5 stelle che servono bruschette	
	寿司を提供する5つ星レストランを探す	
	poszukaj 5 gwiazdkowych restauracji, które serwują kotlet	
C*	köfte servis eden 5 yıldızlı restoranları arayın	
*:	搜索卖北京烤鸭的5星级餐厅	

Multi-Lingual Question Answering with Local Entities in 1 Day

Dialogue Accuracy MultiWOZ 3.0 Annotated in ThingTalk

Created by Adrien Coquet from Noun Project

Manual Annotations: 2% of original Turn-by-turn accuracy: 80%

State-Machine-Based Dialogue Agents with Few-Shot Contextual Semantic Parsers

Giovanni Campagna, Sina J. Semnani, Ryan Kearns, Lucas Jun Koba Sato, Monica S. Lam ArXiv Preprint, 2021

Senie: Open Pretrained Assistant

Key Takeaways

- WWvW Needs a New Deep-Learning Approach
 - To ground pretrained language models with semantics
- Scaling WWvW
 - **Completeness**: ThingTalk programming language
 - **Coverage** of training data: Synthesis
 - NL knowledge: pretrained models
 - Effectiveness: contextual semantic parsing

Lecture Outline

- 1. Motivation of the Course
- 2. Core Concept: Understanding Task-Oriented Dialogues
- 3. Technology to Address Ethical Considerations
- 4. This Course

On Stanford Daily Today

Concerns over ethics, diversity lead some Stanford students to say no to Silicon Valley

Stanford Daily, Matthew Turk on September 19, 2021

Emerging Smart Speaker Duopoly

- Alexa (70% of the US market), Google Assistant
- Alexa's first-party skills cover the top functions
 - Play music, news, reminders, timers, answer questions
 - Generic IoT control (60K compatible IoTs)
 - Purchase from Amazon
- Alexa has 100K 3rd-party skills (chatbots)
 - Ask Capitol One for bank balance
 .
 - Ask Pizza Hut to place an order
 A
- Ask Anova to help me cook steak
 - Ask The Bartender what's in a Manhattan
- Alexa is building an open but proprietary voice web.

Threat of the Assistant Duopoly

- Proprietary web: Walled garden
 - Disallow services
 - Charge fees
 - e.g. 15-30% on Apple app store or Google Play store
 - Companies lose user relationships to the platform
 - e.g. Media companies in Facebook
- Privacy: Personal information across many accounts in 2 large companies
- Society: Innovation, privacy, low-resource languages, non-profit causes

Solution (1): Decentralized WWvW

- Democratize technology with tools to create agents easily
- Encourage collaboration in the open through standards
- Pretrained agents to be attached to websites (www.x.com/well-known/wwvw)

The WWvW cannot be built by a single company

Solution (2): Private Decentralized Assistant

Key Takeaways

- WWvW Needs a New Deep-Learning Approach
 - To ground pretrained language models with semantics
- Scaling WWvW
 - **Completeness**: ThingTalk programming language
 - **Coverage** of training data: Synthesis
 - NL knowledge: pretrained models
 - Effectiveness: contextual semantic parsing
- Technology for Ethics
 - Decentralized WWvW
 - Private decentralized assistant

Lecture Outline

- 1. Motivation of the Course
- 2. Core Concept: Understanding Task-Oriented Dialogues
- 3. Technology to Address Ethical Considerations
- 4. This Course

This Course

• The most recent research results in conversational virtual assistants

- The best ideas in the field: Not a survey on who did what
 - Genie: the first virtual assistant with a contextual dialogue semantic parser
 - Key ideas related to conversation agents in the latest literature
 - Ongoing research topics and ideas
- Commercial practice
- The first NLP lecture course to use the Genie toolset
 - You can build a new assistant in a homework (1 week) without a large annotated data set
 - You can do a state-of-the-art conversational agent project in a course project (4 weeks)
- Will scale to a full audience next year

Learning Goals of This Course

- 1. Understand the theory and practice of the state of the art of dialogue agents
 - Written assignments for the theory
 - 3 programming assignments to build a fully working dialogue agent (groups of 2)
 - Learn the tools and workflow
 - Assess the performance of the state of the art
 - Get inspirations for your own project

Learning Goals of This Course

- 1. Understand the theory and practice of the state of the art of dialogue agents
- 2. Active learning: a research project you propose (groups of 2) Examples:
 - Improve the data synthesis pipeline, neural model
 - Propose a representation extension
 - Propose a new dialogue state machine
 - Improve response generation, internalizational, ...
 - Create a challenging dialogue agent

Learning Goals of This Course

- 1. Understand the theory and practice of the state of the art of dialogue agents
- 2. Active learning: a research project you propose
- 3. Technology for positive social impact: privacy, open access

Tentative Schedule (Part 1)

Introduction	This lecture	
	Anatomy of a virtual assistant	
	Seq2seq neural models for NLP	
DUSIC INLF	Pretrained networks	
Semantic parsers for	Question-answering agents	
questions	Training data synthesis	
	Dialogue semantics	
Semantic parsers for dialogues	Data acquisition for dialogues	
	Transactional agent generation	

Tentative Schedule (Part 2)

	Multi-lingual assistants	
	Response generation	
Other components in a virtual assistant	Error recovery	
	Named entity disambiguation	
	Multimodal assistants	
Privacy & Fair competition	Decentralized assistants with interoperability	
	Free-text question answering	
Related technologies	Chatty dialogues	
	Speech-to-text, text-to-speech	

Grading

- Participation: 10%
- Homeworks: 25%
- Examination: 30%
- Final project: 35%

You have two grace days for late homeworks in the quarter.