Mining Data Streams (Part 1)

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University http://cs246.stanford.edu

New Topic: Infinite Data

Data Streams

- In many data mining situations, we know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
- Google queries
- Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
- We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- In Machine Learning we call this: Online Learning
- Allows for modeling problems where we have a continuous stream of data
- We want an algorithm to learn from it and slowly adapt to the changes in data
- Idea: Do slow updates to the model
- SGD (SVM, Perceptron) makes small updates
- So: First train the classifier on training data.
- Then: For every example from the stream, we slightly update the model (using small learning rate)

General Stream Processing Model

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll do these today)
- Sampling data from a stream
- Construct a random sample
- Queries over sliding windows
- Number of items of type \boldsymbol{x} in the last \boldsymbol{k} elements of the stream

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll do these on Thu)
- Filtering a data stream
- Select elements with property \boldsymbol{x} from the stream
- Counting distinct elements
- Number of distinct elements in the last \boldsymbol{k} elements of the stream
- Estimating moments
- Estimate avg./std. dev. of last \boldsymbol{k} elements
- Finding frequent elements

Applications (1)

- Mining query streams
- Google wants to know what queries are more frequent today than yesterday
- Mining click streams
- Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
- E.g., look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
- Many sensors feeding into a central controller
- Telephone call records
- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
- Gather information for optimal routing
- Detect denial-of-service attacks

Sampling from a Data Stream

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample
- Two different problems:
- (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
- (2) Maintain a random sample of fixed size over a potentially infinite stream
- At any "time" \boldsymbol{k} we would like a random sample of \boldsymbol{s} elements
- For all time steps \boldsymbol{k}, each of \boldsymbol{k} elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
- Stream of tuples: (user, query, time)
- Answer questions such as: How often did a user run the same query in a single days
- Have space to store $\mathbf{1 / 1 0}{ }^{\text {th }}$ of query stream
- Naïve solution:
- Generate a random integer in [0..9] for each query
- Store the query if the integer is $\mathbf{0}$, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
- Suppose each user issues \boldsymbol{x} queries once and \boldsymbol{d} queries twice (total of $x+2 d$ queries)
- Correct answer: $d /(x+d)$
- Proposed solution: We keep 10\% of the queries
- Sample will contain $\mathbf{x / 1 0}$ of the singleton queries and $\mathbf{2 d} / \mathbf{1 0}$ of the duplicate queries at least once
- But only d/100 pairs of duplicates

$$
\mathrm{d} / 100=1 / 10 \cdot 1 / 10 \cdot d
$$

- Of d "duplicates" 18d/100 appear once
- $18 \mathrm{~d} / 100=((1 / 10 \cdot 9 / 10)+(9 / 10 \cdot 1 / 10)) \cdot d$
- So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10}+\frac{d}{100}+\frac{18 d}{100}}=\frac{d}{10 x+19 d}$

Solution: Sample Users

Solution:

- Pick $\mathbf{1 / 1 0}{ }^{\text {th }}$ of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

- Stream of tuples with keys:
- Key is some subset of each tuple's components
- e.g., tuple is (user, search, time); key is user
- Choice of key depends on application
- To get a sample of a / b fraction of the stream:
- Hash each tuple's key uniformly into \boldsymbol{b} buckets
- Pick the tuple if its hash value is at most \boldsymbol{a}

Hash table with \mathbf{b} buckets, pick the tuple if its hash value is at most \mathbf{a}.
How to generate a 30\% sample?
Hash into $b=10$ buckets, take the tuple if it hashes to one of the first 3 buckets

Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
- E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time \boldsymbol{n} we have seen \boldsymbol{n} items
- Each item is in the sample \boldsymbol{S} with equal prob. $\boldsymbol{s} / \boldsymbol{n}$ How to think about the problem: say s=2
Stream: a x c y zlk gd e g...
At $n=5$, each of the fist 5 tuples is included in the sample \mathbf{S} with equal prob.
At $\mathbf{n}=7$, each of the first 7 tuples is included in the sample \mathbf{S} with equal prob. Impractical solution would be to store all the n tuples seen so far and out of them pick s at random

Solution: Fixed Size Sample

- Algorithm (aka Reservoir Sampling)

- Store all the first s elements of the stream to \boldsymbol{S}
- Suppose we have seen \boldsymbol{n}-1 elements, and now the $\boldsymbol{n}^{\text {th }}$ element arrives ($\boldsymbol{n}>\boldsymbol{s}$)
- With probability $\boldsymbol{s} / \boldsymbol{n}$, keep the $\boldsymbol{n}^{\text {th }}$ element, else discard it
- If we picked the $\boldsymbol{n}^{\text {th }}$ element, then it replaces one of the \boldsymbol{s} elements in the sample \boldsymbol{S}, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property

Proof: By Induction

- We prove this by induction:
- Assume that after \boldsymbol{n} elements, the sample contains each element seen so far with probability s / n
- We need to show that after seeing element $\boldsymbol{n + 1}$ the sample maintains the property
- Sample contains each element seen so far with probability $s /(n+1)$
- Base case:
- After we see $\mathbf{n}=\mathbf{s}$ elements the sample \mathbf{S} has the desired property
- Each out of $\mathbf{n}=\mathbf{s}$ elements is in the sample with probability $s / s=1$

Proof: By Induction

- Inductive hypothesis: After \boldsymbol{n} elements, the sample \boldsymbol{S} contains each element seen so far with prob. $\boldsymbol{s} / \boldsymbol{n}$
- Now element $n+1$ arrives
- Inductive step: For elements already in S, probability of remaining in S is:

$$
\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)=\frac{n}{n+1}
$$

Element n+1 discarded
Element $\mathbf{n + 1}$ Element in the not discarded sample not picked

- So, at time \boldsymbol{n}, tuples in S were there with prob. \mathbf{s} / \mathbf{n}
- Time $\boldsymbol{n} \boldsymbol{\rightarrow} \boldsymbol{n + 1}$, tuple stayed in \boldsymbol{S} with prob. $\mathbf{n} /(\mathbf{n + 1})$
- So prob. tuple is in S at time $n+1=\frac{s}{n} \cdot \frac{n}{n+1}=\frac{s}{n+1}$

Announcement:

-- You can check your HW/Gradiance grades/late days at http://cs246.stanford.edu/studentcenter.html Queries over a (long) Sliding Window

Sliding Windows

- A useful model of stream processing is that queries are about a window of length \boldsymbol{N} - the \mathbf{N} most recent elements received
- Interesting case: \boldsymbol{N} is so large it cannot be stored in memory, or even on disk
- Or, there are so many streams that windows for all cannot be stored

Sliding Window: 1 Stream

- Sliding window on a single stream: $\quad N=6$

$$
\begin{aligned}
& \text { quertyuiopasdfghjkIzxcvbnm } \\
& \text { quertyuiopasdfghjkIzxcvbnm } \\
& \text { quertyuiopas dfghjklzxcvbnm } \\
& \text { qwertyuiopasdfghjkIzxcvbnm } \\
& \text { Future } \longrightarrow
\end{aligned}
$$

Counting Bits (1)

- Problem:
- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1 s are in the last \boldsymbol{k} bits? where $\boldsymbol{k} \leq \boldsymbol{N}$
- Obvious solution:

Store the most recent \mathbf{N} bits

- When new bit comes in, discard the $\mathbf{N + 1} \mathbf{1}^{\text {st }}$ bit

$$
\begin{array}{r}
010011011101010110110110 \\
\text { Future } \longrightarrow
\end{array} \quad \text { Suppose } \mathrm{N}=6
$$

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store N bits?

- E.g., we're processing 1 billion streams and $\boldsymbol{N}=1$ billion 01001101110101011010 \longleftarrow Past Future \longrightarrow
- But we are happy with an approximate answer

An attempt: Simple solution

- How many 1s are in the last N bits?
- Simple solution that does not really solve our problem: Uniformity assumption
- Maintain 2 counters:
- \boldsymbol{S} : number of 1 s from the beginning of the stream
- Z: number of 0 s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{s}{S+Z}$
- But, what if stream is non-uniform?
- What if distribution changes over time?

DGIM Method

- DGIM solution that does not assume uniformity
- We store $\boldsymbol{O}\left(\log ^{2} N\right)$ bits per stream
- Solution gives approximate answer, never off by more than 50\%
- Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point window of as a larger region width $16-$
has 61 s

010011100010100100010110110111001010110011010
We can construct the count of the last \boldsymbol{N} bits, except we are not sure how many of the last $61 s$ are included in the \boldsymbol{N}

What's Good?

- Stores only O($\log ^{2} N$) bits
- $\boldsymbol{O}(\log N)$ counts of $\log _{2} N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1 s in the "unknown" area

What's Not So Good?

- As long as the 1 s are fairly evenly distributed, the error due to the unknown region is small - no more than 50\%
- But it could be that all the 1 s are in the unknown area at the end
- In that case, the error is unbounded!

Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1 s :
- Let the block sizes (number of 1s) increase exponentially
- When there are few 1 s in the window, block sizes stay small, so errors are small

100101011000101161010101010101101010101110101011010100010110010 \longleftarrow ـ N

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo \mathbf{N} (the window size), so we can represent any relevant timestamp in $\boldsymbol{O}\left(\boldsymbol{\operatorname { l o g }}_{2} N\right)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:

1. The timestamp of its end [$\mathrm{O}(\log N$) bits]
2. The number of $1 s$ between its beginning and end $[0(\log \log N)$ bits]

- Constraint on buckets:

Number of $1 \mathbf{s}$ must be a power of 2

- That explains the $\mathbf{O}(\log \log N)$ in 2 .

10010101100010116101010101010110101010101110101011010100010110010

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1 s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
- Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is $\boldsymbol{>} \boldsymbol{N}$ time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to \mathbf{N} time units before the current time
- $\mathbf{2}$ cases: Current bit is $\mathbf{0}$ or $\mathbf{1}$
- If the current bit is 0 : no other changes are needed

Updating Buckets (2)

If the current bit is 1 :

- (1) Create a new bucket of size $\mathbf{1}$, for just this bit - End timestamp = current time
- (2) If there are now three buckets of size 1 , combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream:
100101011000101101010101010101101010101010111010101011010100010110010
Bit of value 1 arrives
0010101100010110101010101010110101010101011101010101110101000101100101
Two orange buckets get merged into a yellow bucket
00101011000101010101010101011010101010101110101011010100010110011
Bit 1 arrives, new orange bucket is created, then 0 comes, then 1 :
010110001011 ©10101010101011 610101010101110101011101010001011001 Q1101
Buckets get merged...
01011000101010101010101011 Q101010101011101010101110101000101100101101.
State of the buckets after merging
0101100010110101010101010110101010101011 Q10101011101010001011001 d11 1

How to Query?

To estimate the number of 1 s in the most recent N bits:

1. Sum the sizes of all buckets but the last
(note "size" means the number of $1 s$ in the bucket)
2. Add half the size of the last bucket

- Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

\qquad

Error Bound: Proof

- Why is error 50\%? Let's prove it!
- Suppose the last bucket has size $\mathbf{2}^{r}$
- Then by assuming $\mathbf{2}^{r-1}$ (i.e., half) of its $\mathbf{1 s}$ are still within the window, we make an error of at most $\mathbf{2}^{r-1}$
- Since there is at least one bucket of each of the sizes less than $\mathbf{2}^{r}$, the true sum is at least

$$
1+2+4+. .+2^{r-1}=2^{r}-1
$$

- Thus, error at most 50\% At least 16 1s
$111111100000000=110101010101101010101011101010100101010010$

Further Reducing the Error

- Instead of maintaining 1 or $\mathbf{2}$ of each size bucket, we allow either $\boldsymbol{r}-\mathbf{1}$ or \boldsymbol{r} for $\boldsymbol{r}>\mathbf{2}$
- Except for the largest size buckets; we can have any number between $\mathbf{1}$ and r of those
- Error is at most $1 /(r)$
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we use the same trick to answer queries How many 1 's in the last k ? where $k<N$?
- A: Find earliest bucket \mathbf{B} that at overlaps with \boldsymbol{k}. Number of 1 s is the sum of sizes of more recent buckets $+1 / 2$ size of B
$1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 \longdiv { 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 }$ $\longleftarrow<k$ k
- Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?

Extensions

- Stream of positive integers
- We want the sum of the last k elements
- Solution:
- (1) If you know all integers have at most m bits
- Treat \boldsymbol{m} bits of each integer as a separate stream
- Use DGIM to count 1 s in each integer $c_{i} \ldots$ estimated count for i i-th bit
- The sum is $=\sum_{i=0}^{m-1} c_{i} 2^{i}$
- (2) Use buckets to keep partial sums
- Sum of elements in size b bucket is at most 2^{b}

Idea: Sum in each bucket is at most $2^{\text {b }}$ (unless bucket has only 1 integer) Bucket sizes:

16	8	4	2

