
CS 296—Getting Started in Clojure
Version 0.6

Mattox Beckman

Contents

1 AboutClojure 2
1.1 Purpose . 2
1.2 History ofClojure . 2
1.3 GettingClojure . 2
1.4 Typographic Conventions . 3

2 Numerics, Arithmetic, and Function Calls 3
2.1 Function Calls . 3
2.2 Mathematics . 4
2.3 Exercises . 4

3 Creating and Using Variables 4
3.1 Define . 4
3.2 Let . 4
3.3 Exercises . 4

4 Built-in Data Structures 4
4.1 Sequences . 4
4.2 Lists . 5
4.3 Vectors . 6
4.4 Hash Maps . 6

5 Creating Functions 8
5.1 Lambda . 8
5.2 Another Shortcut . 8
5.3 Defn . 9

6 Conditionals 9
6.1 What is truth? . 9
6.2 cond . 9

7 Records 10

8 Mutation 10

9 Looping 10
9.1 You don’t need to do it. 10
9.2 But I really want to use a loop! . 11
9.3 List Comprehensions . 11

10 Namespaces 12

11 Solutions to exercises 12

12 Colophon 131

1 AboutClojure

1.1 Purpose

The purpose of this document is to help a program-
mer get up to speed using Clojure. It is not meant
to be comprehensive, but to serve as a starting point
so that other reference materials will make more
sense.

I assume that the reader has programmed before,
and thus will be familiar with variables, function
calls, loops, and the like. I do not assume that the
reader’s experience is extensive.

This document is organized by sections. Each sec-
tion will introduce an aspect of Clojure. Included
will be discussion, sample code, and some exercises.
There are many code examples. You should read
this with a running Clojure environment so you
can type them in and play with them yourself. This
is the fastest way to learn.

When you are finished with these sections you
should be ready to start programming!

1.2 History ofClojure

Clojure is a dialect of Lisp. Lisp is best under-
stood as a family of languages. This language family
is ancient, one of the oldest languages still in use to-
day. The fact that it is still in use is a testimony to
its expressive power and its ability to be modified to
the will of the programmer. Today there are many
dialects of Lisp in use, some quite new. These in-
clude Common Lisp, Scheme, Racket, Guile,
and of course, Clojure.

In 1958, John McCarthy created the Lisp pro-
gramming language at MIT. It was meant to be a
theoretical exercise, but then one of his graduate stu-
dents converted it to assembly language, and thus
the first Lisp interpreter came into being.

In 1962, the first Lisp compiler was written in
Lisp. A language is usually considered a “toy” lan-
guage until it can compile itself.

In the early 1970’s, Sussman and Steele developed
Scheme to study a programming concept called the
actor.1 In 1975, the first paper on Scheme was
published.

1Actors are entities that have their own threads and states,
and can communicate with other actors. They are an early
attempt to understand distributed computing, and are still in
use today.

In the mid 1990’s, Matthias Felleisen founded
PLT, a group of researchers interested in Scheme.
They produced their own dialect of Scheme called,
appropriately enough, PLT Scheme. In 2010, they
renamed PLT Scheme version 5.0 to Racket.
Lisp was very influential for a long time, until the

dreaded AI Winter. Researchers began to doubt the
ability of symbolic logic to mimic human intelligence,
and AI (Artificial Intelligence) became less popular.
Because Lisp was considered an “AI language,” it
also became less popular.

In spite of this, people continued to work with
Lisp, writing production code and creating new di-
alects. We will ignore them all except for the one
that concerns us now. In 2009, Rich Hickey released
Clojure publicly. Because it could run on the
JVM and have access to all of Java’s libraries, it
generated a lot of excitement, and is quickly finding
its way into industry.

1.3 GettingClojure

The very short version is “get Leinengen”. Leinen-
gen, or lein as the command is called, is a Clo-

jure build tool. It can run Clojure programs,
but it can also manage Clojure packages very eas-
ily. We will be using this extensively in the course.
It can be found at http://leiningen.org.

You will definitely want a Clojure-aware editor.
If you want to get started quickly, the IDE called
LightTable is very promising. It’s a simple .jar
file, and runs almost everywhere. It can use the vim
keybindings, for those of you who know what those
are. This is one of our recommended environments.
Visit http://www.lighttable.com to try it.

The eclipse package has a plugin called
CounterClockwise that supports Clojure, and I
am told that it is good. You can find it at
http://code.google.com/p/counterclockwise.

There are two editors also worth mentioning. The
learning curve on them is much higher, but the ben-
efit is also greater once you are familiar with them.
The course web site has some resources for both of
these.

The first is an ancient editor called vim. It is a
modal editor, with keybindings optimized for touch-
typists. You can edit very quickly with vim. You
will want to get some plugins to vim to work with
Clojure: the details can be found on the course
web site.

2

The second is another ancient editor called emacs.
The author of this guide started learning it 25 years
ago (and it was already considered old then), though
still in constant development. It is likely the most
common environment for Clojure programmers.

For a best-of-all-worlds approach, someone has
even written a vim emulator in emacs. It is called
evil, and the reader can decide if that is just a co-
incidence or not. The spacemacs project has put a
lot of effort into unifying the two editors.

1.4 Typographic Conventions

The examples in this manual will be of two types:
files and interactive environments. A file listing will
look like this:

(defn plus [a b]
(+ a b))

Running the program from the interactive envi-
ronment will look like this.

% lein repl
nREPL server started on port 43244
REPL-y 0.2.0
Clojure~1.5.1

Docs: (doc function-name-here)
(find-doc "part-of-name-here")

Source: (source function-name-here)

user=> (load-file "foo.clj")
#'user/plus
user=> (plus 10 20)
30

The % lein repl is the Unix prompt and com-
mand to start Clojure, and the user=> symbol is
the Clojure prompt. Your own prompts may look
different depending on how your environment is set
up.

Most of the examples in this document will be run
from the Unix command line, but you could also use
one of the editors we mentioned to take advantage
of the graphic user interface.

In order to reduce the amount of space it takes to
demonstrate Clojure code, many documentation
writers use the convention of writing an expression
followed by a comment displaying its value. The two
forms are inline, like this:

(plus 10 20) ; => 30

or on the following line, like this:

(plus 10 20)
;; => 30

2 Numerics, Arithmetic, and Function

Calls

Clojure contains many numeric types. The usual
ones are there, such as integers and floats. They look
like you would expect. Note that the semicolon is
the comment character in Clojure.

10 ; Long Integers
234.345 ; Floats

It also has big integers. These allow as many digits
as you have memory to store them.

918741238974019237401239487 ; Bignums

Clojure has fractions, though we propbably will
not use them much. You can convert them to floats
if you want.

50/15 ; => 10/3
(float 50/15) ; => 3.3333333333333335

2.1 Function Calls

In Clojure, every computation begins with a
parenthesis. This is the most noticeable feature of
the language, and perhaps the most important. In
non-lisps, a function call might look like f(x,y). In
Clojure, it looks like

(f x y)

So, to add two numbers 10 and 20, you would write

(+ 10 20)

To add 3× 3 to 4× 4 you would write

(+ (* 3 3) (* 4 4))

3

There are a few strengths to this setup. First,
precedence is explicit. You all know the algebraic
rules governing times and plus, but there are many
other operators. Second, this allows functions to
take a variable number of arguments. For example,
you can say (+ 2 4 8) to get 14, and you can say (<
10 x 20) to check if variable x is between 10 and 20.

Here is some example code

(+ 10 20 30) ; => 60
(- 50 20 1) ; => 29
(* 8 6 7 5 3 9) ; => 45360
(mod 10 4) ; => 2

2.2 Mathematics

Clojure uses Java’s Math library to handle ma-
chine math. There is a separate library if you want
to use such functions on extended precision numbers.
We will not be needing that in this class.

Math/E ; => 2.718281828459045
(Math/sqrt 2) ; => 1.4142135623730951
(Math/exp 34) ; => 5.834617425274549E14
Math/PI ; => 3.141592653589793

2.3 Exercises

Question 1: Using Clojure, determine the sum
and the product of 2,4,5,10, and 12.

Question 2: Using Clojure, verify the famous
identity √

32 + 42 = 5.

Use functions (Math/sqrt x) to compute
√
x and

Math/pow x 2 to compute x2.

Question 3: This code is supposed to calculate 32+
42. What’s wrong with it?

(+ Math/pow(3 2) Math/pow(4 2))

3 Creating and Using Variables

3.1 Define

There are two common ways to create variables in
Clojure. The first is with def. The syntax is sim-
ple: (def var exp) defines a variable named var
and assigns to it the value given by expression exp.

(def a 10)
(def b (+ 15 5))
(+ a b) ; => 30

Variables created by def persist throughout their
scope.

3.2 Let

The second way to create variables is with the let
form. The syntax is (let [v1 e1 ...] body). Un-
like def, the variables created by let are temporary
and local. They exist only in the body part of the
let, and then disappear. You can define more than
one variable at a time by adding more pairs.

This session illustrates the interaction between lo-
cal and global variables.

(def a 10)
(def b 20)
(let [a 50] a) ; => 50
a ; => 10
(let [a 20

b 40]
(+ a b)) ; => 60

(+ a b) ; => 30

Variables are defined by let one at a time. Subse-
quent definitions have access to previous definitions.
For those of you familiar with other Lisp dialects,
this is more like let*.

(def a 10)
(def b 20)
(let [a 20

b a]
(+ a b)) ; => 40

3.3 Exercises

Question 4: What will this do?

(let [x 10
y 20]

(/ x y))

Question 5: What will be the value of x after run-
ning the code from question 4? (Yes, this is a trick
question!)

4

Question 6: What will this code print out?

(def x 10)
(def y 10)
(let [x 5

y (+ x 1)
z (* x y)]

z)

4 Built-in Data Structures

4.1 Sequences

The most common data structure in Clojure is
actually a family of structures called a sequence. A
sequence has to be able to give you two things: the
first element of the sequence and the rest of the se-
quence beyond the first element.2

We actually do not get to know what a sequence
looks like in memory! It could be a list, a vector,
or one of several other things. In class we will talk
about why this is actually a good thing.

4.2 Lists

Lists are built out of a structure known as a cons
cell. The name cons is short for construct. A cons
cell contains a data element and a reference to an-
other cons cell, or else to an empty list, which is
represented by nil.

There are many ways to create lists. One way is
to string together cons cells.

(def a (cons 10
(cons 20 (cons 30 nil))))

This creates the memory diagram given in figure 1.

a 10 20 30

Figure 1: List with Three Elements

Another way to create this is with the quote form.
So we could say:

(def a '(10 20 30))
2The functions to do this are called first and rest. Note

that rest will convert its argument into a sequence!

A third way is to use the list form. It is like cons,
but takes any number of arguments, and evaluates
them all.

(def a (list 10 (+ 15 5) 30))
a ; => '(10 20 30)

All three of the above codes produce the same
memory diagram as given in figure 1.

A list is a kind of sequence, so you can use use
first to get the first element, and rest to access
the rest of the elements. The result of rest is an-
other sequence, not necessarily a list! Notice also
that when you print out a sequence, Clojure will
use list notation (parentheses) to display it.

(first a) ; => 10
(rest a) ; => '(20 30)
(rest '()) ; => nil

Note that whenever you refer to a cons cell that
you have saved in a variable, you do not create a new
list. Instead, you recycle the old one.

(def x (cons 1 (cons 2 nil)))
(def y (cons 10 x))
(def z (cons 5 y))

This code create figure 2.

x 1 2

y 10

z 5

Figure 2: Three Lists Sharing

apply One very nice function is called apply. It
takes a function and applies it to the whole list. It
works with vectors too.

(apply + (list 3 5 7 9)) ; => 24

5

Common List Operations Here are some list oper-
ations you may find useful.3

(def xx (list 2 4 6 8 10))
(count xx)
;; => 5
(reverse xx)
;; => '(10 8 6 4 2)
(append xx xx)
;; => '(2 4 6 8 10 2 4 6 8 10)
(take 2 xx)
;; => '(2 4)
(drop 2 xx)
;; => '(6 8 10)
(first xx)
;; => 2
(rest xx)
;; => '(4 6 8 10)
(second xx)
;; => 4
(nth xx 3)
;; => 8
(map inc '(4 6 8))
;; => '(5 7 9)

We have tests:

(list? xx) ; => true
(list? 45) ; => false

We can also apply functions to the list in different
ways.

(filter odd? '(2 3 4 5 6)) ; => '(3 5)
(map inc xx)
;; => '(3 5 7 9 11)
(reduce + '(2 3 4 5)) ; => 14
(reduce * '(2 3 4 5)) ; => 120
(apply max xx) ; => 10

Exercises

Question 7: What is the difference between v1 and
v2 below?

(def a 10)
(def b 20)
(def v1 '(a b))
(def v2 (list a b))

3Actually, these are sequence operations. In particular,
functions reverse, map, etc. will return a sequence, not a
list. You will probably will not be able to tell the difference
most of the time.

Question 8: Consider the following code, an at-
tempt to create figure 1.

user=> (def x (cons (cons
(cons 10 nil) 20) 30))

user=> x
clojure.lang.Compiler CompilerException:

java.lang.IllegalArgumentException:
Don't know how to create ISeq from:
java.lang.Long, compiling ... ; etc.

Why did this go wrong?

Question 9: Draw a memory diagram for the fol-
lowing code:

(def a (cons 10 (cons 20 nil)))
(def b (cons a a))
(def c (cons b (cons a nil)))

Question 10: Try to write some code that creates
the diagram in figure 3.

x 1 2

y 10

z

Figure 3: An exercise in memory

4.3 Vectors

A vector, also known as an array in many languages,
is a collection of data kept in contiguous memory
locations. In Clojure, a vector is written with
square brackets.

For example this code

(def a [10 20 30])

creates a memory diagram as in figure 4.

a 10 20 30

Figure 4: A three-element vector

6

To access a vector element, you can use the vector
as a function that takes an integer argument. That
integer will be the index into the vector. The first
element always has index 0.

(a 0) ; => 10
(a 2) ; => 30

Vectors in Clojure are immutable.
Vectors are also sequences, so you can use first,

rest, map, etc. on them as well. You will get a se-
quence back though. There is a function mapv which
will return a vector if you really want to preserve the
vector type.

4.4 Hash Maps

In the second half of the course, you will learn about
hash tables in great detail. But they are ubiquitous
in Clojure code, and very convenient, so we’ll talk
about how to use them here, and go over the imple-
mentation details later.

A hash map is a data structure similar to a vector,
but the index can be almost anything, not just an in-
teger. The index is usually called a key, and the data
being indexed is usually called a value. The struc-
ture as a whole is one of many ways to implement a
dictionary.

In Clojure, we can write a literal hash map us-
ing curly braces. Inside the curly braces are pairs.
The first element of the pair is the key; the second
element is the value.

(def ht { "Jenni" "867-5309"
"Emergency" "911" })

One strange fact about Clojure is that a comma
is considered whitespace. Sometimes you will see
hash maps defined this way (note the comma after
the first pair) for legibility:

(def ht { "Jenni" "867-5309",
"Emergency" "911" })

To look up a value from a hash map, you treat it
like a function, with the key as the input.

(ht "Jenni") ; => "867-5309"
(ht "Home") ; => nil

Typically, Clojure programmers use keywords
as the hash map keys when possible. (A keyword is
a an identifier that begins with a colon. They cannot
contain data. An identifier that begins with a single
quote is called a symbol.) As a result, hash maps
tend to look very much like records or structures in
other languages. Another advantage of this is that
a keyword can be treated as a function that takes a
hash map as its argument.

(def pt {:x 10 :y 20})
(pt :x) ; => 10
(:y pt) ; => 20

To “update” a hash map, we have a function
assoc.

(assoc pt :z 30)
;; => {:z 30, :y 20, :x 10}
(assoc pt :x 123)
;; => {:y 20, :x 123}

The keys and values can be arbitrary data struc-
tures.

(def t { [1 2] "hi"})
t ; => {[1 2] "hi"}
(t [1 2]) ; => "hi"
(def np { :p1 {:x 1 :y 2}

:p2 {:x 5 :y 7}})
(np :p1) ; => {:y 2, :x 1}
(-> np :p2 :y) ; => 7

The functions keys and vals will return the keys
and values, respectively, of a hash map.

(vals pt) ; => (20 10)
(keys pt) ; => (:y :x)

The ArrowMacro In the previous code, you saw a
shortcut, the arrow macro. It allows you to rewrite
code more compactly.

(+ ((np :p2) :y) 10) ; => 17
(-> np :p2 :y (+ 10)) ; => 17

The rule is that the first thing after the arrow
becomes the first argument to the second thing. I.e.,
(-> x (f a b)) becomes (f x a b). From then
on, each result becomes the first argument of the

7

next thing. So (-> x inc (* 10)) will become (-
> (inc x) (* 10)) and then (* (inc x) 10)).

There is a double arrow version, ->>, in which the
results become the last argument. So, (->> x (f a
b)) would become (f a b x).

Because hash maps can be treated like functions,
it is common to see the arrow macro used to access
values deep within a nested hash map.

Exercises

Question 11: Suppose you had the phone book hash
map above and a function dial which would actually
dial the number. How would you dial all the numbers
in the phone book in one line of Clojure?

Question 12: The np hash map had a bunch of
“named points” in it. Suppose we wanted to add
the values of the coordinates of :p2. Show how to
do this.

5 Creating Functions

There are two common ways to create a function in
Clojure: the fn form and the defn form.

5.1 Lambda

The keyword fn is called lambda in most other lisps.
That in turn is named for the Greek symbol λ,
and represents a function. This notation is from λ-
calculus, developed in the 1930’s by Alonzo Church
to study the dynamics of functions. The λ-calculus is
a foundation for the functional languages like Clo-
jure, and λ has come to be a near-religious sym-
bol for those who program in these languages. Even
Clojure uses it in its logo.

It was renamed fn because we want to be able to
use it a lot, and this is much easier to type.

We will not have time to explain in CS 296 why
this is so, but will say for now that the ability to
define a function and treat is as any other value is
an extremely powerful mode of expression.

To create a function, use the keyword fn, list the
parameters you want the function to take, and then
write out the body of the function. For example, (fn
[a] (+ a 1)) is a function that takes a variable a
and returns the value a + 1. If you try to type it

Figure 5: Clojure logo, with lambda

out, Clojure will just tell you that it is ... well,
it’s something.

user> (fn [a] (+ a 1))
#<user eval8818 fn__8819 user ...

To make use of these, you have to apply them.
Function application happens just like everything
else in Clojure: you begin and end with paren-
thesis.

user=> ((fn [a] (+ a 1)) 27)
28

You can define functions that take multiple argu-
ments as well.

user=> ((fn [x y] (* x y)) 12 3.5)
42.0

Anonymous functions are wonderful, but without
names it gets hard to use them more than once. You
can assign a function to a variable so you can use it
again.

user=> (def times (fn [x y] (* x y)))
user=> (times 12 3.5)
42.0

5.2 Another Shortcut

Programmers are a lazy bunch. Not content to
shorten lambda to fn, we have an even more brief
way of writing anonymous functions.

The code #(+ 2 %) is equivalent to (fn [x] (+
2 x)). The hash sign in front of the parenthesis
says that this expression is a function. The percent
symbol is taken as the parameter.

You can create multi-parameter functions by hav-
ing a number after the percent sign.

8

(#(+ %1 %2) 10 20) ; => 30

This form is commonly used as to supply function
arguments to functions like map and reduce. There
is one important limitation though: you cannot nest
one of these functions inside another, because the
percent argument would be ambiguous.

Exercises

Question 13: Write a function that takes a number
and doubles it.

Question 14: Write a function that takes two num-
bers and returns their hypotenuse. Assume you have
a function sqrt to take the square root.

5.3 Defn

Defining functions is so common that we have a
shortcut for it. Instead of (def foo (fn [a] ...))
you can simply say (defn foo [a] ...).

(defn double [x] (* x 2))
(defn times [a b] (* a b))

6 Conditionals

To handle branching and conditions, Clojure pro-
vides several constructs. The two most commonly
used are if and cond.

6.1 What is truth?

The if form is simple: (if x y z), where x is an
expression that evaluates to true or false, y is the
“then” branch, and z is the “else” branch. We do not
use then and else keywords like in other languages,
the position of the subexpression tells us all we need
to know.

You need to know that false is represented as
false or nil. Truth is represented explicitly by
true, but in fact everything that isn’t false or nil
is also considered to be true. In the Clojure world,
such values are called truthy, to distinguish between
“things that are taken to be true” and “the boolean
value True.”

Here is an example function that checks if a num-
ber is negative, and if so, makes it positive.

(defn quickabs [a]
(if (< a 0) (- a) a))

Sometimes you want an if without the else
branch. The idiomatic way to do this is Clojure is
the when form. This form is typically used for side-
effecting operations, like I/O.

(when (< x 0) (println "Negative!"))
;; => "Negative!"

You can nest if forms if you want to, but if you
are doing that, then the next section may be more
useful to you.

6.2 cond

Figure 6: cooooooond!

If you only need two cases, then if is usually a
good choice, but more frequently you will see the
cond form, since it allows as many cases as we want.
The structure is as follows:

(cond c1 e1
c2 e2
c3 e3
; ...
:else e4)

The c expressions are booleans, and are called
guards. The corresponding e expressions are the
branches guarded by the booleans. The first guard
in the list that evaluates to true wins, and its corre-
sponding expression gets evaluated.

The final guard is written :else here, but any
truthy value would do the same thing: catch every
case that reaches that point. So, to be clear, the
word :else has no special meaning. We could have
used :fred instead, since all keywords are truthy.

Here is a function that finds the maximum of three
elements.

9

(defn max3 [a b c]
(cond (and (> a b) (> a c)) a

(and (> b a) (> b c)) b
:else c))

(max3 10 20 3)
;; => 20

Question 15: Instead of using :else as the last
guard, you could also use true. Why does that
work?

Question 16: The following code is supposed to do
a special comparison, but for some reason it is not
working. What is the bug?

(defn my-compare [a b]
(cond (= a b) 'equal

< a b 'less
:else 'greater))

(my-compare 10 10) ; => equal
(my-compare 10 1) ; => 10
(my-compare 10 31) ; => 10

7 Records

The cons cell is very useful, but sometimes you
may want to aggregate your data differently. To
teach Clojure a new structure, you can use the
defrecord form. The format is this:

(defrecord name [f1 · · · fn])
For name you specify the name of your structure,

and for each of the fi, 1 ≤ i ≤ n you specify a field
name. For those of you with object-oriented back-
grounds, the name is like a class name, and fi are
like member variables.

For example, consider this code:

(defrecord Foo [x y z])

This creates a new structure type called foo which
has three fields, x, y, and z.

When you create a structure this way, Clo-

jure creates a function to create instances of the
record (we’ll just call it a constructor), and accessor
functions to retrieve the contents of the fields. The
record creator function will have the same name as
the record itself, but with a dot appended. This
is because defrecord creates a Java class, and the

name of a class followed by a dot is the name of the
constructor for that class. For this reason it is cus-
tomary to capitalize the record name. The accessor
functions will be keywords, having the format :fi for
each of the fields fi.

In the Foo example above, our constructor is called
Foo. and the field accessors are :x, :y, and :z.

Here is an example of creating a Foo and examin-
ing the fields.

(def f (Foo. 10 20 30))
(:x f) ; => 10
(:y f) ; => 20
(:z f) ; => 30
user> f ; => #user.Foo{:x 10, :y 20,

:z 30}

Figure 7 shows what this looks like in memory.

f 10 20 30

Figure 7: (def f (Foo. 10 20 30))

Note that you cannot use a record like a function
as you could with hash maps. (f :x) will raise an
error.

8 Mutation

Clojure structures are immutable. To allow de-
structive update, you have to use special operations.
In our class, we will use something called an atom.

You create an atom using the atom form. To access
the contents, you need to use deref, or a shortcut
@. You can set (i.e. destructively update) the atom
with a simple value by using reset!. It is very com-
mon to want to update the content of the atom in
terms of its previous content. The swap! form allows
you to provide a function that does this. So (reset!
a (* @a 2)) becomes (swap! a #(* % 2)).

(def a (atom 0)) ; => #'user/a
(deref a) ; => 0
user> @a ; => 0
(reset! a 5) ; => 5
(+ @a @a) ; => 10
user> a ; => #<Atom@3ebbf380: 5>
(reset! a (inc @a)) ; => 6
(swap! a inc) ; => 7

10

9 Looping

9.1 You don’t need to do it.

You will not use loops as frequently in Clojure as
you might in other languages. This is because Clo-
jure provides constructs to do what you really want
to do: in most cases, creating an integer and count-
ing it up is an artificial addition to the problem.

To do something to every element of a data-
structure, use map.

(map inc '(2 3 4 5)) ; => '(3 4 5 6)

To select the elements that meet a certain criteria,
use filter.

(filter odd? '(2 3 4 5 6 7 8))
;; => '(3 5 7)

To check if every element has a property, use
every?. To check if some element has a property,
use some.

(every? odd? '(1 2 3 4)) ; => false
(some odd? '(1 2 3 4)) ; => true

These functions work on vectors as well as lists.

9.2 But I really want to use a loop!

Okay. There is a form called for that will make
a loop for you. It is similar to the let form, but
instead of a value, you must provide a sequence.

(for [i '(1 2 3)] (+ i 10))
;; => (11 12 13)

If you are using a loop to do “side-effecting”
things, like print values to the string, you will need
to wrap the loop in a dorun call.

user> (for [i '(1 2 3)]
(printf "%d\n" i))

;; (1
;; 2
;; nil 3
;; nil nil)
user> (dorun (for [i '(1 2 3)]

(printf "%d\n" i)))
;; 1
;; 2
;; 3
;; nil

The printf function takes a format string com-
mon to C’s, followed by a list of arguments: %d
means an integer, and \n means a newline.

There are some convenient sequence generators for
you. One of them is range:

(dorun (for [i (range 10)]
(printf "%d-" i)))

0-1-2-3-4-5-6-7-8-9-
(dorun (for [i (range 3 10)]

(printf "%d-" i)))
3-4-5-6-7-8-9-

You can also add filters:

(dorun (for [i (range 3 10)
:when (odd? i)]

(printf "%d-" i)))
3-5-7-9-
(dorun (for [i (range 3 10)

:when (not (odd? i))]
(printf "%d-" i)))

4-6-8-

You can have multiple sequences. They will be
nested.

(dorun (for [i (range 0 2)
j (range 0 2)]

(printf "%d %d -" i j)))

0 0 -0 1 -1 0 -1 1 -

9.3 List Comprehensions

The for form is also known as a list comprehension.
Instead of executing a command in the body of the
loop, the body emits a value, and for accumulates
them into a list. You can use the :when form to filter
out some of the results, and the :let form to define
temporary variables during the run.

(for [i (range 1 10)]
(* i i))

;; => '(1 4 9 16 25 36 49 64 81)
(for [i (range 1 10)]

(* i i))
;; => '(1 4 9 16 25 36 49 64 81)
(for [i (range 1 10)

:when (odd? i)]
(* i i))

11

;; => '(1 9 25 49 81)
(for [i (range 1 10)

:let [j (- i 1)]]
(* i j))

;; => (0 2 6 12 20 30 42 56 72)

Question 17: Write a function (mods n xx) that
uses for to return the moduli of each element of xx
with respect to n.

Question 18: Write a function crazy that takes two
lists xx and yy. Use a for to compute x2 − 1 +
y2 − 1 for odd x2 and y2, where x ∈ xx and y ∈ yy.
Only compute the squares once for each element. So,
(crazy '(1 2 3) '(4 5 6)) will return '(26 34),
because 26 = 12 + 52 and 34 = 32 + 52.

10 Namespaces

Often we will write code where some of it should
be accessible to the user but other parts should not
be. We also will want to group related functions
together. Many languages provide modules to handle
this: in Clojure, modules are called namespaces.

To declare a module, you use the form

(ns myname
...)

where “myname” is the name of the module you
want to define.

Usually, you will use myname.clj as the name of
your source file.

Let’s suppose we want to create a module foo that
has an increment function. We can write our module
like this:

user> (ns foo)
nil
foo> (defn bar [x] (+ x 1))
#'foo/bar
foo> (bar 10)
11

Notice how the prompt changes.
If you want to change namepaces, use the in-ns

form. The argument to in-ns must be a symbol. In
the following example we switch namespaces back to
user.

foo> (in-ns 'user)
#<Namespace user>
user> (bar 10)
CompilerException RuntimeException:
Unable to resolve symbol: bar
compiling:(NO_SOURCE_PATH:1:1)

To use a symbol in a different namespace, you can
require the namespace like this.

user> (require '[foo :as foo])
nil
user> (foo/bar 10)
11

If you don’t want to have to prefix everything with
the name of the namespace, you can use this form:

user> (require '[foo :refer :all])
nil
user> (bar 10)
11

Sometimes you will see (use 'foo); it does the
same thing, but it has been deprecated.

11 Solutions to exercises

Solution 1 The necessary code is:

(+ 2 4 5 10 12) ; => 33
(* 2 4 5 10 12) ; => 4800

Solution 2 The necessary Clojure code is:

(+ (Math/pow 3 2) (Math/pow 4 2)))
;; => 5.0

Solution 3 The expt functions should be written as
(Math/pow 3 2) and (Math/pow 4 2).

Solution 4 The code will create the fraction 10/20,
and display it as 1/2.

Solution 5 Variable x will no longer have a value,
since it only existed in the body of the let.

Solution 6 30

12

Solution 7 The list v1 will be '(a b), while the list
v2 will be '(10 20). The quote operator used to
make v1 causes everything to be quoted, whereas
the list form evaluates everything and builds the
list from the resulting values.

Solution8 When using cons to build lists, you need
to put the element in the first part, and the rest of
the list in the second part. The code in this question
has it reversed.

a

b

c

10 20

Figure 8: Solution to question 9

Solution 10

(def x (cons 1 (cons 2 nil)))
(def y (cons 10 (cdr x)))
(def z (cons y (cdr x)))

Solution 11

(map dial (vals ht))

Solution 12

(+ (-> np :p2 :x) (-> np :p2 :y))

Solution 13 Either of these will work.

(def double (fn [x] (* x 2)))
(def double #(* x %))

Solution 14

(def hypot (fn [a b]
(Maht/sqrt (+ (* a a) (* b b)))))

Solution 15 Since it is the last element, it will only
be checked if everything else fails, and since it is true,
it will always execute if it is reached.

Solution 16 The problem is on this line:

< a b 'less

It takes < as a condition, and since it is not false,
runs the value a. To fix it, use this code:

(defn my-compare [a b]
(cond (= a b) 'equal

(< a b) 'less
:else 'greater))

Solution 17

(defn mods [n xx]
(for [i xx]
(mod i n)))
(mods 3 '(8 6 7 5 3 0 9))
;; => '(2 0 1 2 0 0 0)

Usually, though, we would just use map to accom-
plish this.

(defn mods [n xx]
(map #(mod % n) xx))

Solution 18

(defn crazy [xx yy]
(for [x xx

:let [xs (* x x)]
:when (odd? xs)
y yy
:let [ys (* y y)]
:when (odd? ys)]

(+ xs ys)))
(crazy '(1 2 3) '(4 5 6))
;; => (26 34)

13

12 Colophon

This document was compiled using LuaLaTeX. The
body text is set in the Equity font, and the head-
ers are set in the Concourse font. Both these fonts
are available from Matthew Butterick. The source
code is set in Computer Modern Teletype, designed
by Donald Knuth. The picture of Captian Kirk
screaming belongs to Paramount Pictures, and is
used under the fair use doctrine. The Clojure logo
was designed by Tom Hickey (the brother of Clo-
jure’s creator, Rich Hickey), and is available under
the Creative Commons Attribution–Share Alike li-
cense. The diagrams are set using TikZ and the
author’s data-structures library.

Thanks to Jeffrey Tolar for edits and comments.

14

