
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

References/Text Books
 Theory:

 Computer Organization and Design, 4th Ed, D. A.
Patterson and J. L. Hennessy

 Computer Architceture and Organization, J. P. Hayes

 Computer Architecture, Berhooz Parhami

 Microprocessor Architecture, Jean Loup Baer

 Laboratory:
 Douglas Smith, HDL Chip Design (for Verilog)

 SPIM Tutorial :pages.cs.wisc.edu/~larus/spim.html

2

Pre-Midsem Syllabus

 Overview: Terms and Taxonomy
 Instruction Set Architecture:

 Instruction and Addressing
 Procedures and Data
 Assembly Languages Programs:

 SPIM simulator and Debugger

 Numbers and Computers:
 Number Representations
 Adders
 Multipliers
 Floating Point Arithmetic

Pre-MidSem Syllabus
 Design of a Processor:
 Instruction Execution Steps

 Control Unit Design: Microprogramming

 Pipelined Data Paths
 Performance

 Hazards

3

An Overview

Von Neumann Model
 1903-1957

 Contributed to give a very
basic model, often referred
to as Von Neumann model

4

The von Neumann Machine

MEMORY
HIERARCHY

CONTROL

REGISTERS

Program
Counter

ALU

MEMORY

INPUT

OUTPUT

MEMORY BUS
I/O BUS

CPU

The Stored Program Concept
 Programs are sequence of instructions stored in the

memory.
 The CPU consists of:

 Program Counter (PC) indicates the address of the next
instruction to be executed.

 ALU (Arithmetic Logic Unit)
 performs arithmetic and logical operations

 Registers: High Speed storage of operands.
 Control Unit: That interprets instructions and causes them

to be executed.

5

The Stored Program Concept
 The memory stores the instructions, data and

intermediate results. Memory has several
hierarchy:
 registers being the highest level and the fastest

form.

 Input/ Output: Transmits and receives results
and messages (information) from and to the
outside world respectively.

Instruction Execution Cycle
 Next instruction is fetched from memory.
 Control Unit decodes the instruction.
 Instruction is executed:

 ALU based
 load from a memory location to a register
 store from a register to the memory
 testing condition of a potential branch

 PC is updated (incremented except for a branch)
 Repeat

6

Brief History

 Evolution of Intel Microprocessors (from Jean Baer,
Microprocessor Architecture, Cambridge University Press)

Black bars:
frequency at
introduction

White bars:
peak frequency

Moore’s law for Intel Microprocessors

 Evolution of Intel Microprocessors (from Jean Baer,
Microprocessor Architecture, Cambridge University Press)

7

Some figures
 1971: Intel 4004, 1.08 MHz, 2,300 transistors

 2003: Intel Pentium 4, 3.4 GHz, 1.7 billion
transistors
 Frequency increases roughly double per 2.5 years

 Number of transistors roughly double every two
years (Moore’s Law).

 How will the trend continue in the future?

Power Dissipation in Intel Processors

 Evolution of Intel Microprocessors (from Jean Baer,
Microprocessor Architecture, Cambridge University Press)

8

Performance Metrics
 Raw Speed and number of transistors give a good

indication of the developments made by the
processors.

 However we need more precise metrics.
 to evaluate how fast a program executes

 But it depends on several factors:
 Operating System
 Compiler
 Network
 Nature of Program

Program Independent Metrics and
Benchmarks

 Program Independent metrics: Metrics which
are not affected by the types of programs.

 Benchmarks: A suite of programs, that
indicate the load of the processor.

9

Instructions Per Cycle (IPC)
 Metrics to asses the micro-architecture and

the memory hierarchy, should be independent
of the IO subsystem.

 Define, EXCPU as the time to execute a
program (a collection of instructions), when
the code and data both reside in the memory.
 EXCPU=Number of Instructions x Time to execute

one instruction

CPI vs IPC
 Now, Time to execute one instruction=Cycles

Per Instruction (CPI) x Cycle time
 CPI is a program-independent, clock frequency

independent metric.

 IPC (Instructions per cycle)=1/CPI
 More intuitive as one tries to increase IPC (rather

than decreasing CPI).

IPC = (Number of Instructions x cycle time)/EXCPU

10

Performance
 Can be defined as the reciprocal of EXCPU.
 Three important factors:

 Compiler driven: For a given set of Instructions (called as
ISA-Instruction Set Architecture), and a given program, it
decides the number of instructions.

 Micro-architecture design and implementation: Smaller
the CPI or more the IPC, better the performance.

 Technology: Decides the cycle time.

Reduction of Instructions does not
necessarily make the programs faster

 Consider the example, where a multiplication
program can be realized by shift and add.

 The number of instructions increase.

 But the overall time required reduces.
 This is because, not all instructions take the same

number of cycles.

11

Conclusions
 Von Neumann Model: The Load Store

Architecture

 The Instruction Cycle.

 The trend in processor designs, Moore’s law.

 Performance Metrics.

