cs3102: Theory of Computation

Class 9:
Context-Free Languages Contextually

Spring 2010
University of Virginia
David Evans

Menu

PS2

Recap: Computability Classes, CFL Pumping
Closure Properties of CFLs

Parsing

Problem 5: PRIMES

Use the pumping lemma to prove the language,
PRIMES ={ 1P | p is a prime number }
is non-regular.

Assume PRIMES is regular. Then, there isa DFA M
with pumping Iengt@hat recognizes PRIMES.

All RL pumping lemma proofs can start like this!

Next: pick s. <=]Sl ZP

51" 5= seA
(70wl k5 prine

Problem 5: PRIMES

Use the pumping lemma to prove the language,
PRIMES = {1 | pis a prime number }
is non-regular.

Assume PRIMES is regular. Then, there isa DFA M
with pumping length p that recognizes PRIMES.

Choose s = 1" where r is some prime number > p.
s satisfies the requirements: s € PRIMES and |s| > p

Next: show for any choice of xyz where s = xyz,
|xy| <pand |y| 21, there is some i where xy'z ¢
PRIMES.

Problem 9: Regular Grammars. A regular
grammar is a replacement grammar in which all
rules have the form A — aB or A — a where A
and B represent any variable and a represents a
terminal. Prove that all regular languages can
be recognized by a regular grammar.

Why is this impossible?

€3 safq)

‘ Broken definition of regular grammar: must also allow A — €.

Please read
the PS2

Comments
thoroughly!

Context-Free
Languages™ Regular
Languages

Can be recognized by some DFA

Finite
Languages

All Languages

Pumping Lemma for Context Free Languages:
Player 1: picks p
Player 2: pickss € A, Isl>p
Player 1: picks u,v,x,y,z such that s = uvxyz and loy| >0 and loxy| <p.
Player 2: picks i > 0.
Player 2 wins if uvixy'z ¢ A. If Player 2 can always win, A is not context free!

Example: {ww|w € ¥*}
5 = e <P' O\PL)PQP AP
5= U\C(:))é
$P

Context-Free
Languages Regular
Languages

Finite
Languages

All Languages

How many language classes are there?

Piraha: one, two, many
Computer Sciencese: zero, one, infinity

Context-Free
Languages™ Regular
Languages

Can be recognized by some DFA

Finite
Languages

E L ¢ (6 All Languages

Even in theory, there are inf
machine classes (but only a few:are

ey W

Closure Properties of RLs

If A and B are regular languages then:
AR s a regular language: closed under reversal
Construct the reverse NFA

A" is a regular language Q
Add a transition from accept statésto std

‘A is a regular language (complement)
F=0Q-F

A U Bis aregular language
Construct an NFA that combines two DFAs

A N Bis aregular language
Construct a DFA combining states from two DFAs
that accepts if both accept

Closure Properties of CFLs

If A and B are context free languages then:
AR is a context-free language ?

A" is a context-free language ?
A is a context-free language (complement)?
A U B is a context-free language ?

A N Bis a context-free language ?

Some of these are true. Some of them are false.

CFLs Closed Under Reverse?

Given a CFLA, is AR a CFL?

Vo ol = N=Ba

CFLs Closed Under Reverse

Given a CFLA, is AR a CFL?

Proof-by-construction:

Since A is a CFL, there is some CFG G that recognizes A.

There is a CFG GR that recognizes AR.
G = (V7 27 R’ S)

GR=(V,X, RR,S)
RR={A—> oRIA—>aeR}

CFLs Closed Under *?

Givena CFLA, is A*a CFL? >>¢€

CFLs Closed Under *

Givena CFLA, isA* a CFL?

Proof-by-construction: Since A is a CFL, there is some
CFGG=(V, X, R, S) that recognizes A. There is a CFG
G* that recognizes A™:
G'=(VU{S,},Z R, Sy
R=RU{S;,>SIu{S,—>SS,}u{S,—e}

Closure Properties of CFLs

If A and B are context free languages then:

AR is a context-free language. True

A" is a context-free language. | True
Is A context-free language (complement)?

Is A U B is a context-free language ?

Is A N Bis a context-free language?
Left for you

A on PS3.
Is AB is a context-free language?

CFLs Closed Under Union

Given two CFLs A and Bis A U B a CFL?

CFLs Closed Under Union

Proof-by-construction: There is a CFG G, that
recognizes A U B. Since A and B are CFLs, there are
CFGs G, = (V, 24, Ry, Sy) and Gg = (V, Zp, Ry, Sp) that
generate A and B.
Gy = (V3 U Vi, 2y U X, Ryyps So)
Riyyg=Ry, VR U{S;—> S, 1 u{S;— Sz}

(Assumes V, and Vj are disjoint which is easy to
arrange by changing variable names.)

CFLs Closed Under Complement?

{0111i20}isaCFL. < =30,13%

Is its complement?

010 A~

- @%éﬁ@

CFLs Closed Under Complement?

{0111i20}isaCFL. < =30,1%
Is its complement?
Yes. We can make a DPDA that

recognizes it: swap accepting states of
DPDA that recognizes 01’

Not a counterexample...but not a proof either.

Complementing Non-CFLs

{wwlw e X* } is not a CFL.
Is its complement?

Sa Soo\o{ U Se\/&v\ S io,f)
J

CFGforL, 6 (L.,

All odd length strings are in L

—Ww

S = Sodd | Skven

Soada = PSoqa 1011 Skven— XY | YX
P—00101110111 X -7ZXZ10
VEEVAYAR

Z-011

Engineering Languages

Regular
Languages

Finite
Languages

All Languages

Where is Java?

What is the Java Programming Language?

public class Test {

public static void main(String [] a) { s e JAVA
printin("Hello World!");

} > javac Test.java
Test.java:3: cannot resolve symbol
symbol : method println (java.lang.String)

}

// C:\users\luser\Test.java
public class Test {
public static void main(String [] a) { s ¢ JAVA
System.out.println ("Hello Universe!");

}

} > javac Test.java
Test.java:1: illegal unicode escape
// C:\users\luser\Test.java

Defining the Java Language

JAVA = { w | w can be generated by the
CFG for Java in the Java
Language Specification }

JAVA = { w a correct Java compiler can
build a parse tree for w }

Parsing

S—> S+MIM
M—>M*TI|T
T — (S) | number

Programming
languages

are (should be)
designed to make
parsing easy,
efficient, and
unambiguous.

uoneAlaq
arsing

Unambiguous
S—> S+SI1S*S1(S) | number

&)
ofoXo
O 000 ©
ONNONNO

3 +2 *1

(5
0O ©
6 OO
()

+ 2 *

Ambiguity
How can one determine if a CFG is ambiguous?

Super-duper-challenge problem (automatic A++):
create a program that solve the “is this CFG
ambiguous” problem:

Input: any CFG

Output: “Yes” (ambiguous)/“No” (unambiguous)

Warning: Undecidable Problem Alert!

Don’t slack off on the rest of the course thinking
you can solve this. It is known to be impossible!

Parsing

S—> S+MIM
M—>M*TI|T
T — (S) | number

Programming languages
are (should be) designed
to make parsing easy,
efficient, and
unambiguous.

uoleALaq

“Easy” and “Efficient”

Easy: we can automate the process of building a
parser from a description of a grammar

Efficient: the resulting parser can build a parse
tree quickly (linear time in the length of the
input)

Recursive Descent Parsing

Parse() {S(); }

sS4 S—> S+MIM

try {S(); expect(“+”); M(); } catch {backup(;} A S M *T | T

try { M(); } catch {backup(); }

error(); } T — (S) | number
M() {

try { M(); expect(“*”); T(); } catch { backup(); }

try { T(); } catch { backup(); }

error (); }
70 {

try { expect(“(“); S(); expect(“)”); } catch { backup(); }

try { number(); } catch { backup(); }

error ();

} Easy to produce and understand
Works for any CFG
Inefficient (might not even finish)
LL(k) (Lookahead-Left) Look-ahead Parser
. e Parse() {(); } S—> S+MIM
A CFG is an LL(k) grammar if it can be parser o0 Mo M*T| T

deterministically with < k tokens lookahead

M—>M*TI| T S— S+M S S+M
T — (S) | number S—M
LL(1) grammar

if (lookahead(1, “+”)) { S(); eat(“+"); M(); } T — (S) | number
else { M();}
}
M() {
if (lookahead(1, “*”)) { M(); eat(“*"); T(); }
else {T(); }}
TOA
if (lookahead(0, “(“)) { eat(“(“); S(); eat(“)”); }

else { number();} Fairly easy to produce automatically

Efficient (for low lookahead)
Doesn’t work for all CFGs

.l ava CC Context-Free

https://javacc.dev.java.net/ LL(k)

Regular
Languages

Input: Grammar specification

Output: A Java program that is a recursive e
descent parser for the specified grammar

Doesn’t work for all CFGs: only for LL(k) grammars

Similar tools exist for all major programming languages: All Languages

Lex/Flex + YACC/Bison (C): “Yet another compiler compiler”

PLY (Python): Python lex/yacc

ANTLR Language Classes
Return PS2 Charge

I T

* Read PS2 Comments
Jchey. Uames ras3kd (Robyn * PS3 due Tuesday
Harrison) - Short) — yyz5w
pmc8p Yy
afg2s (Arthur dr7jx (David
Gordon) Renardy)
—dk8p — jmd9xk

