
cs3102: Theory of Computation

Class 9:

Context-Free Languages Contextually

Spring 2010

University of Virginia

David Evans

Menu

• PS2

• Recap: Computability Classes, CFL Pumping

• Closure Properties of CFLs

• Parsing

Problem 5: PRIMES

Use the pumping lemma to prove the language,

PRIMES = { 1p | p is a prime number }

is non-regular.

Assume PRIMES is regular. Then, there is a DFA M

with pumping length p that recognizes PRIMES.

Next: pick s.

All RL pumping lemma proofs can start like this!

Problem 5: PRIMES

Use the pumping lemma to prove the language,

PRIMES = { 1p | p is a prime number }

is non-regular.

Assume PRIMES is regular. Then, there is a DFA M

with pumping length p that recognizes PRIMES.

Choose s = 1r where r is some prime number ≥ p.

s satisfies the requirements: s ∈ PRIMES and |s| ≥ p

Next: show for any choice of xyz where s = xyz,

|xy| ≤ p and |y| ≥ 1, there is some i where xyiz ∉

PRIMES.

Why is this impossible?

Broken definition of regular grammar: must also allow A → ε.

Please read

the PS2

Comments

thoroughly!

All Languages

Regular

Languages

Can be recognized by some DFA

Finite

Languages

Context-Free

Languages

wwR

w

an

anbn

anbncn
Example:

Pumping Lemma for Context Free Languages:

Player 1: picks p

Player 2: picks s ∈ A, |s|≥ p

Player 1: picks u,v,x,y,z such that s = uvxyz and |vy| > 0 and |vxy| ≤ p.

Player 2: picks i ≥ 0.

Player 2 wins if uvixyiz ∉ A. If Player 2 can always win, A is not context free!

All Languages

Regular

Languages

Finite

Languages

Context-Free

Languages

wwR

w

an
anbn

anbncn

ww

How many language classes are there?

Pirahã: one, two, many

Computer Sciencese: zero, one, infinity
All Languages

Regular

Languages

Can be recognized by some DFA

Finite

Languages

Context-Free

Languages

??

Even in theory, there are infinitely many different

machine classes (but only a few are interesting).
Closure Properties of RLs

If A and B are regular languages then:

AR is a regular language: closed under reversal

Construct the reverse NFA

A* is a regular language

Add a transition from accept states to start

A is a regular language (complement)

F' = Q – F

A ∪ B is a regular language

Construct an NFA that combines two DFAs

A ∩ B is a regular language

Construct a DFA combining states from two DFAs

that accepts if both accept

Closure Properties of CFLs
If A and B are context free languages then:

AR is a context-free language ?

A* is a context-free language ?

A is a context-free language (complement)?

A ∪ B is a context-free language ?

A ∩ B is a context-free language ?

Some of these are true. Some of them are false.

CFLs Closed Under Reverse?

Given a CFL A, is AR a CFL?

CFLs Closed Under Reverse

Given a CFL A, is AR a CFL?

Proof-by-construction:

Since A is a CFL, there is some CFG G that recognizes A.

There is a CFG GR that recognizes AR.

G = (V, Σ, R, S)

GR = (V, Σ, RR, S)

RR = { A → αR | A → α ∈ R }

CFLs Closed Under *?

Given a CFL A, is A* a CFL?

CFLs Closed Under *

Given a CFL A, is A* a CFL?

Proof-by-construction: Since A is a CFL, there is some

CFG G = (V, Σ, R, S) that recognizes A. There is a CFG

G* that recognizes A*:

G* = (V ∪ {S0}, Σ, R*, S0)

R* = R ∪ { S0 → S } ∪ { S0 → S0S0 } ∪ { S0 → ε }

Closure Properties of CFLs
If A and B are context free languages then:

AR is a context-free language.

A* is a context-free language.

Is A context-free language (complement)?

Is A ∪ B is a context-free language ?

Is A ∩ B is a context-free language?

Is AB is a context-free language?

True

True

Left for you

on PS3.

CFLs Closed Under Union

Given two CFLs A and B is A ∪ B a CFL?

CFLs Closed Under Union

Proof-by-construction: There is a CFG GAUB that

recognizes A ∪ B. Since A and B are CFLs, there are

CFGs GA = (VA, ΣA, RA, SA) and GB = (VB, ΣB, RB, SB) that

generate A and B.

GAUB = (VA ∪ VB, ΣA ∪ ΣB, RAUB, S0)

RAUB = RA ∪ RB ∪ { S0 → SA } ∪ { S0 → SB }

(Assumes VA and VB are disjoint which is easy to

arrange by changing variable names.)

CFLs Closed Under Complement?

{0i1i | i ≥ 0 } is a CFL.

Is its complement?

CFLs Closed Under Complement?

{0i1i | i ≥ 0 } is a CFL.

Is its complement?

Yes. We can make a DPDA that

recognizes it: swap accepting states of

DPDA that recognizes 0i1i.

Not a counterexample…but not a proof either.

Complementing Non-CFLs

{ww | w ∈ Σ* } is not a CFL.

Is its complement?

CFG for Lww (L¬ww)

S → SOdd | SEven

All odd length strings are in L
¬ww

SOdd → PSOdd | 0 | 1

P → 00 | 01 | 10 | 11

SEven → XY | YX

X → ZXZ | 0

Y → ZYZ | 1

Z → 0 | 1

Engineering Languages

All Languages

Regular

Languages

Finite

Languages

Context-Free

Languages

wwR

w

an
anbn

anbncn

ww

Where is Java?

What is the Java Programming Language?

public class Test {

public static void main(String [] a) {

println("Hello World!");

}

}

> javac Test.java

Test.java:3: cannot resolve symbol

symbol : method println (java.lang.String)

// C:\users\luser\Test.java

public class Test {

public static void main(String [] a) {

System.out.println ("Hello Universe!");

}

} > javac Test.java

Test.java:1: illegal unicode escape

// C:\users\luser\Test.java

s ∈ JAVA

s ∉ JAVA

Defining the Java Language

JAVA = { w | w can be generated by the

CFG for Java in the Java

Language Specification }

JAVA = { w | a correct Java compiler can

build a parse tree for w }

Parsing

S → S + M | M

M → M * T | T

T → (S) | number

3 + 2 * 1

S

S M+

M T*

1T

2

M

T

3

D
e

riva
tio

n P
a

rs
in

g

Programming

languages

are (should be)

designed to make

parsing easy,

efficient, and

unambiguous.

Unambiguous
S → S + S | S * S | (S) | number

3 + 2 * 1

S

S S+

S*

1
2

3
S

3 + 2 * 1

S

S S*

1S S+

3 2

Ambiguity

How can one determine if a CFG is ambiguous?

Super-duper-challenge problem (automatic A++):

create a program that solve the “is this CFG

ambiguous” problem:

Input: any CFG

Output: “Yes” (ambiguous)/“No” (unambiguous)

Warning: Undecidable Problem Alert!

Don’t slack off on the rest of the course thinking

you can solve this. It is known to be impossible!

Parsing

S → S + M | M

M → M * T | T

T → (S) | number

3 + 2 * 1

S

S M+

M T*

1T

2

M

T

3

D
e

riva
tio

n P
a

rs
in

g

Programming languages

are (should be) designed

to make parsing easy,

efficient, and

unambiguous.

“Easy” and “Efficient”

Easy: we can automate the process of building a

parser from a description of a grammar

Efficient: the resulting parser can build a parse

tree quickly (linear time in the length of the

input)

Recursive Descent Parsing

S → S + M | M

M → M * T | T

T → (S) | number

Parse() { S(); }

S() {

try { S(); expect(“+”); M(); } catch { backup(); }

try { M(); } catch {backup(); }

error(); }

M() {

try { M(); expect(“*”); T(); } catch { backup(); }

try { T(); } catch { backup(); }

error (); }

T() {

try { expect(“(“); S(); expect(“)”); } catch { backup(); }

try { number(); } catch { backup(); }

error ();

} Easy to produce and understand

Works for any CFG

Inefficient (might not even finish)

LL(k) (Lookahead-Left)

A CFG is an LL(k) grammar if it can be parser

deterministically with ≤ k tokens lookahead

S → S + M | M

M → M * T | T

T → (S) | number

1 +

S → S + M

S → M

S → S + M

2

LL(1) grammar

Look-ahead Parser
Parse() { S(); }

S() {

if (lookahead(1, “+”)) { S(); eat(“+”); M(); }

else { M();}

}

M() {

if (lookahead(1, “*”)) { M(); eat(“*”); T(); }

else { T(); } }

T() {

if (lookahead(0, “(“)) { eat(“(“); S(); eat(“)”); }

else { number();}

S → S + M | M

M → M * T | T

T → (S) | number

Fairly easy to produce automatically

Efficient (for low lookahead)

Doesn’t work for all CFGs

JavaCC

Input: Grammar specification

Output: A Java program that is a recursive

descent parser for the specified grammar

https://javacc.dev.java.net/

Doesn’t work for all CFGs: only for LL(k) grammars

Similar tools exist for all major programming languages:

Lex/Flex + YACC/Bison (C): “Yet another compiler compiler”

PLY (Python): Python lex/yacc

ANTLR

All Languages

Regular

Languages

Finite

Languages

Context-Free

w

an

anbncn

ww

Language Classes

LL(k)

JAVA

Python

Python

Return PS2
front of room

afg2s (Arthur

Gordon)

– dk8p

dr7jx (David

Renardy)

– jmd9xk

jth2ey (James

Harrison) -

pmc8p

ras3kd (Robyn

Short) – yyz5w

Charge

• Read PS2 Comments

• PS3 due Tuesday

