## Menu

cs3102: Theory of Computation

## Class 9:

Context-Free Languages Contextually

Spring 2010
University of Virginia
David Evans

- PS2
- Recap: Computability Classes, CFL Pumping
- Closure Properties of CFLs
- Parsing


## Problem 5: PRIMES

Use the pumping lemma to prove the language, PRIMES $=\left\{1^{p} \mid p\right.$ is a prime number $\}$ is non-regular.

Assume PRIMES is regular. Then, there is a DFA $M$ with pumping length $p$ that recognizes PRIMES.

All RL pumping lemma proofs can start like this!
Next: pick s.

$$
s=1^{k} \quad \begin{aligned}
& s=1^{p} \\
& k \geqslant p \text { and } k \text { is prime }
\end{aligned}
$$

## Problem 5: PRIMES

Use the pumping lemma to prove the language, PRIMES $=\left\{1^{p} \mid p\right.$ is a prime number $\}$ is non-regular.

Assume PRIMES is regular. Then, there is a DFA M with pumping length $p$ that recognizes PRIMES.

Choose $s=1^{r}$ where $r$ is some prime number $\geq p$. $s$ satisfies the requirements: $s \in P R I M E S$ and $|s| \geq p$

Next: show for any choice of $x y z$ where $s=x y z$, $|x y| \leq p$ and $|y| \geq 1$, there is some $i$ where $x y^{i} z \notin$ PRIMES.

Problem 9: Regular Grammars. A regular grammar is a replacement grammar in which all rules have the form $A \rightarrow a B$ or $A \rightarrow a$ where $A$ and $B$ represent any variable and $a$ represents a terminal. Prove that all regular languages can be recognized by a regular grammar.

Why is this impossible?




## Pumping Lemma for Context Free Languages:

Player 1: picks $p$
Player 2: picks $s \in A,|s| \geq p$
Player 1: picks $u, v, x, y, z$ such that $s=u v x y z$ and $|v y|>0$ and $|v x y| \leq p$.
Player 2: picks $i \geq 0$.
Player 2 wins if $u v^{i} x y^{i} z \notin A$. If Player 2 can always win, $A$ is not context free!
Example: $\left\{w w \mid w \in \Sigma^{*}\right\}$ $S=a^{p} a^{p} a^{\rho} b^{p} a^{p} b^{p}$


How many language classes are there?
Pirahã: one, two, many
Computer Sciencese: zero, one, infinity


## Closure Properties of RLs

If $A$ and $B$ are regular languages then: $A^{\mathrm{R}}$ is a regular language: closed under reversal

Construct the reverse NFA
$A^{*}$ is a regular language
Add a transition from accept statesto start
$\bar{A}$ is a regular language (complement)

$$
F^{\prime}=Q-F
$$

$A \cup B$ is a regular language
Construct an NFA that combines two DFAs
$A \cap B$ is a regular language
Construct a DFA combining states from two DFAs that accepts if both accept

## Closure Properties of CFLs

If $A$ and $B$ are context free languages then: $A^{\mathrm{R}}$ is a context-free language ?
$A^{*}$ is a context-free language ?
$\bar{A}$ is a context-free language (complement)?
$A \cup B$ is a context-free language ?
$A \cap B$ is a context-free language ?
Some of these are true. Some of them are false.

## CFLs Closed Under Reverse?

Given a CFL $A$, is $A^{\mathrm{R}}$ a CFL?


## CFLs Closed Under Reverse

## Given a CFL $A$, is $A^{\mathrm{R}}$ a CFL?

## Proof-by-construction:

Since $A$ is a CFL, there is some CFG $G$ that recognizes $A$.
There is a CFG $G^{\mathrm{R}}$ that recognizes $A^{\mathrm{R}}$.

$$
G=(V, \Sigma, R, S)
$$

$G^{\mathrm{R}}=\left(V, \Sigma, R^{\mathrm{R}}, S\right)$
$R^{\mathrm{R}}=\left\{A \rightarrow \alpha^{\mathrm{R}} \mid A \rightarrow \alpha \in R\right\}$

## CFLs Closed Under *?

Given a CFL $A$, is $A^{*}$ a CFL? $S_{0} \rightarrow \varepsilon$ $S_{0} \rightarrow S^{S_{0} \rightarrow S_{0} S_{0}}$


## CFLs Closed Under *

## Given a CFL $A$, is $A^{*}$ a CFL?

Proof-by-construction: Since $A$ is a CFL, there is some CFG $G=(V, \Sigma, R, S)$ that recognizes $A$. There is a CFG $G^{*}$ that recognizes $A^{*}$ :

$$
\begin{aligned}
& G^{*}=\left(V \cup\left\{S_{0}\right\}, \Sigma, R^{*}, S_{0}\right) \\
& R^{*}=R \cup\left\{S_{0} \rightarrow S\right\} \cup\left\{S_{0} \rightarrow S_{0} S_{0}\right\} \cup\left\{S_{0} \rightarrow \varepsilon\right\}
\end{aligned}
$$

## Closure Properties of CFLs

If $A$ and $B$ are context free languages then: $A^{\mathrm{R}}$ is a context-free language. True
$A^{*}$ is a context-free language. True
Is $\bar{A}$ context-free language (complement)?
Is $A \cup B$ is a context-free language ?

| Is $A \cap B$ is a context-free language? |  |
| :--- | :--- |
| Is $A B$ is a context-free language? | Left for you <br> on PS3. |

## CFLs Closed Under Union

Given two CFLs $A$ and $B$ is $A \cup B$ a CFL?

## CFLs Closed Under Union

Proof-by-construction: There is a CFG $G_{A U B}$ that recognizes $A \cup B$. Since $A$ and $B$ are CFLs, there are CFGs $G_{A}=\left(V_{A}, \Sigma_{A}, R_{A}, S_{A}\right)$ and $G_{B}=\left(V_{B}, \Sigma_{B}, R_{B}, S_{B}\right)$ that generate $A$ and $B$.

$$
\begin{aligned}
& G_{A U B}=\left(V_{A} \cup V_{B}, \Sigma_{A} \cup \Sigma_{B}, R_{A U B}, S_{0}\right) \\
& R_{A U B}=R_{A} \cup R_{B} \cup\left\{S_{0} \rightarrow S_{A}\right\} \cup\left\{S_{0} \rightarrow S_{B}\right\}
\end{aligned}
$$

(Assumes $V_{\mathrm{A}}$ and $V_{\mathrm{B}}$ are disjoint which is easy to arrange by changing variable names.)

## CFLs Closed Under Complement?

$\left\{\boldsymbol{0}^{i} \mathbf{1}^{i} \mid i \geq 0\right\}$ is a CFL. $\Sigma=\{0,1\}$
Is its complement?


## CFLs Closed Under Complement?

$\left\{\boldsymbol{0}^{i} \mathbf{1}^{i} \mid i \geq 0\right\}$ is a CFL. $\Sigma=\{0,1\}$ Is its complement?

Yes. We can make a DPDA that recognizes it: swap accepting states of DPDA that recognizes $0^{i} \mathbf{1}^{i}$.

Not a counterexample...but not a proof either.

## Complementing Non-CFLs

$\left\{w w \mid w \in \Sigma^{*}\right\}$ is not a CFL.
Is its complement?
$S \rightarrow S_{\text {odd }} \cup S_{\text {even }} \sum=\{0,1\}$

## CFG for $L_{w w}\left(L_{\sim w w}\right)$

All odd length strings are in $L_{\neg w w}$

$$
S \rightarrow S_{\mathrm{Odd}} \mid S_{\mathrm{Even}}
$$

$$
\begin{array}{ll}
S_{\text {Odd }} \rightarrow P S_{\text {Odd }}|\mathbf{0}| \mathbf{1} & S_{\text {Even }} \rightarrow X Y \mid Y X \\
P \rightarrow \mathbf{0 0}|\mathbf{0 1}| \mathbf{1 0} \mid \mathbf{1 1} & \\
& \\
& \\
& \\
& Z \rightarrow Z X Z|\mathbf{Z}| \mathbf{0} \\
& Z \rightarrow \mathbf{0} \mid \mathbf{1}
\end{array}
$$



Where is Java?

What is the Java Programming Language?

## Defining the Java Language



## // C:\users\luser\Test.java <br> public class Test \{

public static void main(String [] a) \{ System.out.println ("Hello Universe!");
$s \notin J A V A$


## Unambiguous

$$
S \rightarrow S+S|S * S|(S) \mid \text { number }
$$

$J A V A=\{w \mid w$ can be generated by the
CFG for Java in the Java Language Specification \}
$J A V A=\{w \mid$ a correct Java compiler can build a parse tree for $w\}$


## Ambiguity

How can one determine if a CFG is ambiguous?
Super-duper-challenge problem (automatic A++): create a program that solve the "is this CFG ambiguous" problem:
Input: any CFG
Output: "Yes" (ambiguous)/"No" (unambiguous)
Warning: Undecidable Problem Alert!
Don't slack off on the rest of the course thinking you can solve this. It is known to be impossible!

Parsing
$S \rightarrow S+M \mid M$
$M \rightarrow M$ * $T$ | $T$
$T \rightarrow(S) \mid$ number
Programming languages are (should be) designed to make parsing easy, efficient, and unambiguous.


Recursive Descent Parsing


Efficient: the resulting parser can build a parse tree quickly (linear time in the length of the input)

## LL(k) (Lookahead-Left)

A CFG is an $\operatorname{LL}(k)$ grammar if it can be parser deterministically with $\leq k$ tokens lookahead
$S \rightarrow S+M \mid M$
1
$+$
2
$M \rightarrow M$ * $T$ | $T$
$T \rightarrow(S) \mid$ number

$$
S \rightarrow S+M \quad S \rightarrow S+M
$$

$$
S \rightarrow M
$$

## Look-ahead Parser

```
Parse() {S(); }
S() {
                                    S->S+M|M
                                    M->M* T| T
    if (lookahead(1, "+")) {S(); eat("+"); M(); } T T (S)| number
    else {M();}
}
M() {
    if (lookahead(1, "*")) { M(); eat("*"); T(); }
    else {T(); } }
T() {
    if (lookahead(0, "(")) { eat("("); S(); eat(")"); }
    else { number();}
                                    Fairly easy to produce automatically
                                    Efficient (for low lookahead)
                                    Doesn't work for all CFGs
```


## JavaCC

https://javacc.dev.java.net/

Input: Grammar specification
Output: A Java program that is a recursive descent parser for the specified grammar

## Doesn't work for all CFGs: only for $\mathrm{LL}(k)$ grammars



## Return PS2

front of room

## jth2ey (James Harrison) pmc8p <br> afg2s (Arthur <br> Gordon) <br> -dk8p



## Charge

- Read PS2 Comments
- PS3 due Tuesday

