
CS342: Software Design
September 26, 2017

Project 1 discussion:

● Overview

● Code examples

● Class designs

Testing for Project 1

Different levels of testing

Agenda

Card Game: Poker - 5 Card Draw

Class dependency

Game

ComputerPlayer UserPlayer

Card

CardPile

You may get this when building large scale software...

Player Base class:
common fields and
methods for user and
computer
- Add a card to hand
- Discard a card
- Has flus, has four suit,
has etc
- Calculate rank
- Cal # of cards u can
discard
- Get hand

Cleaner class design

Five CardDraw (Main):
UI and orchestration
- Prompt # of players
- Trigger dealing
- User's turn
- AI's turn
- Display results

Game Session: main
logic and workflow
- Set up pile
- Instantiate Players
- Deal to Players
- Players replace cards
- Decide results and
winners

C
om

pu
te

r P
la

ye
r

- A
I f

un
ct

io
n

U
se

r
Pl

ay
er

- I
nt

er
ac

tiv
e

se
le

ct
io

n

Card Pile
- Shuffle
- Deal a card

C
ar

d
- N

um
be

r,
su

it,
 s

tri
ng

Main function class: orchestration

Main function class: UI

GameSession class: game level logic and workflow

Player classes

Card Class

Good job with the enum!

What test cases do we need

here?

Let’s take another look: Class dependency

Game

ComputerPlayer UserPlayer

Card

CardPile

Player Base class:
common fields and
methods for user and
computer
- Add a card to hand
- Discard a card
- Has flus, has four suit,
has etc
- Calculate rank
- Calculate # of cards u
can discard
- Get hand

And Cleaner class design

Five CardDraw (Main):
UI and orchestration
- Prompt # of players
- Trigger dealing
- User's turn
- AI's turn
- Display results

Game Session: main
logic and workflow
- Set up pile
- Instantiate Players
- Deal to Players
- Players replace cards
- Decide results and
winners

C
om

pu
te

r P
la

ye
r

- A
I f

un
ct

io
n

U
se

r
Pl

ay
er

- I
nt

er
ac

tiv
e

se
le

ct
io

n

Card Pile
- Shuffle
- Deal a card

C
ar

d
- N

um
be

r,
su

it,
 s

tri
ng

Create Loosely coupled, self-contained classes

● Less dependent on other class

● Can perform its own domain of business

● Respect other’s boundary. Don’t overreach

● Separate UI vs. logic, and logic vs. data access

● One direction dependency.

● Layer: lower layer shouldn’t be aware of higher layer. High layer shouldn’t care

how lower layer does its job

● Why separate frontend and backend classes?

● Easier to debug, read, maintain, and scale.

What could have been done differently?

● Player show hands: move display part out of Player class

● “Hand” class?

Discussions

What are we missing here?

CardPile Class

CardPile test
continues

How do we test the drawn

card should match the

missing card from pile?

How do we access private

methods and fields of

CardPile?

BasePlayer Test
Test “hasAce”:

● Both positive and negative

cases

● how many times do we need

to run

● Same for hasFourSuit,

ResolveReplaceChances:

need to test path hasAce

and not haveAce

Hint: use @Before, @After

to set up hands

addCard() → hasAce() → ResolveReplaceChances()

● UAT: real users

● System testing: QA

● Integration:

Developers, maybe

QA

● Unite testing:

developers

Different levels of testing

● System testing vs. functional testing

● Regression testing

● Smoke testing

● Continuous testing

● Load/performance testing

● Edge case (what happen to GameSession if two players have

same hand rank? What if someone’s birthday is right at

0:00AM? What if…)

More about testing

