
CS349D Cloud Computing

Christos Kozyrakis & Matei Zaharia

Fall 2017, 10:30–12:00, 380-380W

http://cs349d.stanford.edu

Class Staff
Christos Kozyrakis

http://www.stanford.edu/~kozyraki

Matei Zaharia
https://cs.stanford.edu/~matei

James Thomas (TA)
http://cs.stanford.edu/~jjthomas

Topics
Cloud computing overview

Cloud economics (2)

Storage

Databases

Serverless computing

Analytics & streaming
systems

Security & privacy

Debugging & monitoring

Resource allocation

Operations

Serving systems

Programming models

ML as a service

Hardware acceleration

CAP theorem

Class Format
One topic per class meeting

We all read the paper ahead of time
Submit answer to 1-2 questions before meeting
1-2 students summarize paper & lead discussion
We all participate actively in the discussion
1 student keeps notes

A few guest lectures
See schedule online

What to Look for in a Paper
The challenge addressed by the paper

The key insights & original contributions
Real or claimed, you have to check

Critique: the major strengths & weaknesses
Look at the claims and assumptions, the methodology,
the analysis of data, and the presentation style

Future work: extensions or improvements
Can we use a similar methodology to other problems?
What are the broader implications?

Tips for Reading Papers
Read the abstract, intro, & conclusions sections first

Read the rest of the paper twice
First a quick pass to get rough idea then a detailed reading

Underline/highlight the important parts of the paper

Keep notes on the margins about issues/questions
Important insights, questionable claims, relevance to other topics, ways to
improve some technique etc.

Look up references that seem to important or missing
You may also want to check who and how references this paper

Research Project
Groups of 2-3 students

Topic
Address an open question in cloud computing
Suggested by staff or suggest your own

Timeline
Project proposal – October 9th
Mid-quarter checkpoint – November 6th
Presentation/paper – week of December 3rd

Reminders
Make sure you are registered on Axess

Contact instructors for access code

Sign up to lead a discussion topic
We will assign topics for note taking

Start talking about projects
Form a team

Cloud Computing Overview

Christos Kozyrakis & Matei Zaharia

http://cs349d.stanford.edu

What is Cloud Computing?
Informal: computing with large datacenters

What is Cloud Computing?
Informal: computing with large datacenters

Our focus: computing as a utility
» Outsourced to a third party or internal org

Types of Cloud Services
Infrastructure as a Service (IaaS):

Platform as a Service (PaaS):

Software as a Service (SaaS):

Public vs private clouds:

VMs, disks	

Web, MapReduce	

Email, GitHub	

Shared across arbitrary orgs/customers"
vs internal to one organization	

Example
AWS Lambda functions-as-a-service
»  Runs functions in a Linux container on events
» Used for web apps, stream processing, highly

parallel MapReduce and video encoding

Cloud Economics: For Users
Pay-as-you-go (usage-based) pricing:
» Most services charge per minute, per byte, etc
» No minimum or up-front fee
» Helpful when apps have variable utilization

Cloud Economics: For Users
Elasticity:
» Using 1000 servers for 1 hour costs the same as

1 server for 1000 hours
»  Same price to get a result faster!

Resources

Time Time

Resources

Cloud Economics: For Providers
Economies of scale:
»  Purchasing, powering, managing machines at

scale gives lower per-unit costs than customers’

Other Interesting Features
Spot market for preemptible machines

Reserved instances and RI market

Ability to quickly try exotic hardware

Common Cloud Applications
1.  Web/mobile applications

2.  Data analytics (MapReduce, SQL, ML, etc)

3.  Stream processing

4.  Batch computation (HPC, video, etc)

Cloud Software Stack

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Other Services
model serving, search,

Unicorn, Druid, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Message Bus
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Distributed Storage
Amazon S3, GFS, Hadoop FS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …Co

or
di

na
tio

n
Ch

ub
by

, Z
K,

 …

Metadata
Hive, AWS Catalog, …

Operational Stores
SQL, Spanner, Dynamo,
Cassandra, BigTable, …

M
et

er
ing

 +
 B

illi
ng

Se
cu

rit
y

(e
.g

. I
AM

)

Example: Web Application

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Other Services
model serving, search,

Unicorn, Druid, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Message Bus
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Distributed Storage
Amazon S3, GFS, Hadoop FS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …Co

or
di

na
tio

n
Ch

ub
by

, Z
K,

 …

Metadata
Hive, AWS Catalog, …

Operational Stores
SQL, Spanner, Dynamo,
Cassandra, BigTable, …

M
et

er
ing

 +
 B

illi
ng

Se
cu

rit
y

(e
.g

. I
AM

)

Example: Analytics Warehouse

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Other Services
model serving, search,

Unicorn, Druid, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Message Bus
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Distributed Storage
Amazon S3, GFS, Hadoop FS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …Co

or
di

na
tio

n
Ch

ub
by

, Z
K,

 …

Metadata
Hive, AWS Catalog, …

Operational Stores
SQL, Spanner, Dynamo,
Cassandra, BigTable, …

M
et

er
ing

 +
 B

illi
ng

Se
cu

rit
y

(e
.g

. I
AM

)

Components Offered as PaaS

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Other Services
model serving, search,

Unicorn, Druid, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Message Bus
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Distributed Storage
Amazon S3, GFS, Hadoop FS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …Co

or
di

na
tio

n
Ch

ub
by

, Z
K,

 …

Metadata
Hive, AWS Catalog, …

Operational Stores
SQL, Spanner, Dynamo,
Cassandra, BigTable, …

M
et

er
ing

 +
 B

illi
ng

Se
cu

rit
y

(e
.g

. I
AM

)

Datacenter Hardware
2-socket server

>10GbE Switch

>10GbE NIC
Flash Storage

JBOD disk array

GPU/accelerators

Datacenter Hardware

Rows of rack-mounted servers
Datacenters with 50 – 200K of servers and burn 10 – 100MW

Storage: distributed with compute or NAS systems
Remote storage access for many use cases (why?)

Hardware Heterogeneity

Custom-design servers
Configurations optimized for major app classes
Few configurations to allow reuse across many apps
Roughly constant power budget per volume

[Facebook server configurations]

Useful Latency Numbers "
Initial list from Jeff Dean, Google

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L3 cache reference 20 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Snappy 3,000 ns
Send 2K bytes over 10Ge 2,000 ns
Read 1 MB sequentially from memory 100,000 ns
Read 4KB from NVMe Flash 50,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA à Europe à CA 150,000,000 ns

Useful Throughput Numbers
DDR4 channel bandwidth 20 GB/sec
PCIe gen3 x16 channel 15 GB/sec
NVMe Flash bandwidth 2GB/sec
GbE link bandwidth 10 – 100 Gbps
Disk bandwidth 6 Gbps

NVMe Flash 4KB IOPS 500K – 1M
Disk 4K IOPS 100 – 200

Performance Metrics
Throughput

Requests per second
Concurrent users
Gbytes/sec processed
...

Latency
Execution time
Per request latency

 28

Tail Latency

The 95th or 99th percentile request latency
End-to-end with all tiers included

Larger scale à more prone to high tail latency

[Dean	&	Barroso,’13]	

29

Total Cost of Ownership (TCO)
TCO = capital (CapEx) + operational (OpEx) expenses

Operators perspective
CapEx: building, generators, A/C, compute/storage/net HW

Including spares, amortized over 3 – 15 years
OpEx: electricity (5-7c/KWh), repairs, people, WAN, insurance, …

Users perspective
CapEx: cost of long term leases on HW and services
OpeEx: pay per use cost on HW and services, people

30

Operator’s TCO Example

31

Hardware dominates TCO, make it cheap
Must utilize it as well as possible

61%	16%	

14%	

6%	 3%	

Servers	

Energy	

Cooling	

Networking	

Other	

[Source: James Hamilton]

Reliability
Failure in time (FIT)

Failures per billion hours of operation = 109/MTTF

Mean time to failure (MTTF)
Time to produce first incorrect output

Mean time to repair (MTTR)
Time to detect and repair a failure

Availability

Steady state availability = MTTF / (MTTF + MTTR)

Correct	 Failure	 Correct	 Correct	Failure	

MTTR	 MTTR	MTTF	 MTTF	

Yearly Datacenter Flakiness
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packet loss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vIPs for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures (2-4% failure rate, machines crash at least twice)
~thousands of hard drive failures (1-5% of all disks will die)

Add to these SW bugs, config errors, human errors, …

Key Availability Techniques
Technique Performance Availability

Replication ✔ ✔
Partitioning (sharding) ✔ ✔
Load-balancing ✔
Watchdog timers ✔
Integrity checks ✔
Canaries ✔
Eventual consistency ✔ ✔

Make apps do something reasonable when not all is right
Better to give users limited functionality than an error page

Aggressive load balancing or request dropping
Better to satisfy 80% of the users rather than none

The CAP Theorem
In distributed systems, choose 2 out of 3

Consistency
Every read returns data from most recent write

Availability
Every request executes & receives a (non-error) response

Partition-tolerance
The system continues to function when network
partitions occur (messages dropped or delayed)

Useful Tips
Check for single points of failure

Keep it simple stupid (KISS)
The reason many systems use centralized control

If it’s not tested, do no rely on it

Question: how do you test availability techniques
with hundreds of loosely coupled services
running on thousands of machines?

37

