CS354R
DR SARAH ABRAHAM

SOCKET PROGRAMMING

CS354R

LECTURE OVERVIEW

» Application layer

» Client-server

» Application requirements
» Background

» TCP vs. UDP

> Byte ordering
» Socket I/0O

» TCP/UDP server and client

> 1/O multiplexing

CS354R

CLIENT-SERVER PARADIGM

Typical network app has two pieces: client and server

» Client

application

» |nitiates contact with server
» Typically requests service from server

» Clientimplemented in browser for
web, mail reader for e-mail

» Server

> Provides requested service to client

» e.g.Sends web page, delivers e-mail

CS354R

FTP: THE FILE TRANSFER PROTOCOL

FTP FTP
client server

» Transfer file to/from remote host

» Client/server model
» Client: side that initiates transfer (either to/from remote)
» Server: remote host

> ftp: RFC 959

> ftp server: port 21

CS354R

SEPARATE CONTROL, DATA CONNECTIONS

» Ftp client contacts ftp server at port
21, specifying TCP as transport
protocol

» Two parallel TCP connections
opened:

» Control: exchange commands,
responses between client and
server

» Data: file data to/from server

» Out-of-band protocol

» Ftp server maintains “state”: current
directory, earlier authentication

CS354R

FTP COMMANDS, RESPONSES

CS354R

TRANSPORT SERVICE REQUIREMENTS

» Data loss

» Some apps (e.g. audio) can tolerate loss

» Other apps (e.g. file transfer, telnet) require 100% reliable transfer
» Timing

» Some apps (e.g. games) require low delay to be effective

» Bandwidth

» Some apps (e.g. multimedia) require minimum bandwidth to be
effective

» Some apps (e.g. "elastic apps”) use whatever bandwidth they can

CS354R

TRANSPORT SERVICE REQUIREMENTS

CS354R

PACKET FORMAT

Network Topology

Host Host
— Router — Router —
A B
Data Application
Data Flow
hUI;P gIzP Transport
spplcation , __ PTOCESS-£O-PrOCeSs ypicarior cader| data
l I L IP dat Int t
Transport | . host-to-host = » Iransport header ata nterne
Internet Internet Internet Internet Frame Frame data Frame Link
l I l I l I header footer
Link Link Link Link

L Fiber, J
Ethernet Satellite, Ethernet

etc.

CS354R

PACKET FORMAT

IIIlllIIllIIIIIllllllllllllll
Version | L Type of Service Total Length
Identification Flags Fragment Offset
* Time to Live Protecol =6 Header Checksum
E Source Address
& Destination Address
P Optiens Padding
Source Port Destination Port
§ Sequence Number
Acknowledgment Number
:':; g 2 g g 3 'l: Window
G(K|H|{T|N(N
Checksum Urgent Pointer
{ TCP Options Padding
2 TCP Data

e
$

CS354R

NAMES AND ADDRESSES

» Each attachment point on Internet is given a unique
address

» Based on location within network (like phone numbers)
» Humans prefer to deal with names not addresses

» Domain Name Service (DNS) provides mapping of name
to address

» Name based on administrative ownership of host

CS354R

CONCEPT OF PORT NUMBERS

» Port numbers are used to identify “entities” on a host
» Port numbers can be:
» Well-known (port 0-1023)
> Assigned (port 1024-49151)
» Dynamic or private (port 49152-65535)
» Servers/daemons usually use well-known ports
» Any client can identify the server/service
» HTTP =80, FTP = 21, Telnet = 23, ...
» Other common services use assigned ports
» Clients should use dynamic ports

» Assigned by kernel at runtime

NTP Web
daemon| server

port 123 'j :‘ port 80

TCP/UDP

| D
— T
Ethernet Adapter

CS354R

SERVER AND CLIENT

Server and Client exchange messages over the network through a
common Socket API

Clients \ user
Server ports ¢ space
ibq
/
] \ / -) kernel
TCP/UDP AN /| | TCP/UDP
: sSpace
| Socket API | -
IP P
. /
SR S—— ——
: v hardware
Ethernet Adapter | |« | | Ethernet Adapter

CS354R

WHAT IS A SOCKET?

» A socket is a file descriptor that lets an application read/write data from/to the network

int fd; /* socket descriptor */

if ((fd = socket (AF INET, SOCK STREAM, 0)) < 0) |
perror ("socket”) ;
ex1t (1) ;

J

» socket returns an integer (socket descriptor)
» fd < 0 indicates that an error occurred

» AF_INET: associates a socket with the Internet protocol family

» SOCK_STREAM: selects the TCP protocol, SOCK_DGRAM: selects the UDP protocol

CS354R

TCP SERVER

» What does a web server need
Web Server to do so that a web client can
connect to it?

Port 80

TCP

A 4
A

Ethernet Adapter

CS354R

SOCKET 1/0: SOCKET()

» Since web traffic uses TCP, the web server must create a
socket of type SOCK_STREAM

int fd; /* socket descriptor */

1f((fd = socket (AF _INET, SOCK STREAM, 0O)) < 0) {
perror (‘socket”) ;

ex1t (1) ;

CS354R

SOCKET 1/0: BIND()

» A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind() */

/* create the socket */
srv.sin family = AF INET; /* use the Internet addr family */

srv.sin port = htons(80); /* bind socket ‘fd’ to port 80*/

/* bind: a client may connect to any of my addresses */
srv.sin addr.s addr = htonl (INADDR ANY) ;

1f(bind (fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror ("bind"); exit (1) ;

» Still not quite ready to communicate with a client...

CS354R

SOCKET 1/0: LISTEN()

» listen indicates that the server will accept a connection

int f£d;
struct sockaddr in srv;

/* socket descriptor */

/* used by bind/()

/* 1)
/* 2)

1f(listen(fd, 5)

create the socket */
bind the socket to a port */

< 0) |
perror (“listen”) ;
exit (1) ;

/* backlog of 5 */

*/

» Still not quite ready to communicate with a client...

CS354R

SOCKET 1/0: ACCEPT()

» accept blocks waiting for a connection

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind() */
struct sockaddr in cli; /* used by accept () */

int newfd; /* returned by accept() */
int cli len = sizeof(cli); /* used by accept () */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
newfd = accept(fd, (struct sockaddr*) &cli, &cli len);
1f (newfd < 0) {
perror ("accept") ; ex1t (1);

}

» accept returns a new socket (newfd) with the same properties as the
original socket (fd)

» newfd < O indicates that an error occurred

CS354R

SOCKET 1/0: ACCEPT() CONTINUED...

struct sockaddr in cli; /* used by accept() */
int newfd; /* returned by accept () */
int cli len = sizeof(cli); /* used by accept () */

newfd = accept(fd, (struct sockaddr*) &cli, &cli len);
1f (newfd < 0) {

perror ("accept") ;

ex1t (1) ;

}

» How does the server know which client it is?
» cli.sin addr.s_ addr contains the client’s IP address
» cli.sin port contains the client’s port number

» Now the server can exchange data with the client using read and write on the descriptor
newfd

» Why does accept need to return a new descriptor?

CS354R

SOCKET 1/0: READ()

» read blocks on data from the client but does not guarantee
that sizeof(buf) is read

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */
/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
/* 4) accept the incoming connection */
1f ((nbytes = read(newfd, buf, sizeof (buf))) < 0) {
perror (‘read”) ; exit(1l);
}

CS354R

TCP CLIENT

» How does a web client connect 5 Web Clients
to a web server?

TCP

A
A

Ethernet Adapter

CS354R

DEALING WITH IP ADDRESSES

» |IP Addresses are commonly written as strings (“128.2.35.50"), but
programs deal with IP addresses as integers.

Converting strings to numerical address:

struct sockaddr in srv;
srv.sin addr.s addr = inet addr(“128.2.35.50%);
1f(srv.sin addr.s addr == (in addr t) -1) {

fprintf (stderr, "inet addr failed!\n"); exit(l);

Converting a numerical address to a string:

struct sockaddr in srv;
char *t = inet ntoa(srv.sin addr);
1f(t == 0) {

fprintf (stderr, “inet ntoa failed!\n"); exit(1l);

CS354R

TRANSLATING NAMES T0 ADDRESSES

» getaddrinfo provides interface to DNS
» Returns addrinfo structs given a host and service
» getnameinfo provides host and service given addrinfo

» Functions are not IPv4 or IPv6 dependent

#include <netdb.h>

int st;

struct addrinfo *results; /*ptr to linked list of address info*/

struct addrinfo hints;

char *name = “www.cs.cmu.edu';

1f (st = getaddrinfo (name, %“80”, &hints, &results) != 0) {
fprintf (stderr, “getaddrinfo failed!\n”); exit(1l);

CS354R

SOCKET 1/0: CONNECT()

» connect allows a client to connect to a server

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by connect () */

/* create the socket */

/* connect: use the Internet address family */
srv.sin family = AF INET;

/* connect: socket ‘fd’ to port 80 */

srv.sin port = htons (80);

/* connect: connect to IP Address “128.2.35.50" */
srv.sin addr.s addr = inet addr ("128.2.35.50");

1f (connect (fd, (struct sockaddr*) &srv, sizeof(srv)) < 0)

perror (connect"); exit(1l);

{

CS354R

SOCKET 1/0: WRITE()

» write can be used with a socket

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by connect () */
char buf[512]; /* used by write () */
int nbytes; /* used by write() */

/* 1) create the socket */
/* 2) connect() to the server */

/* Example: A client could “write” a request to a server */
1f ((nbytes = write(fd, buf, sizeof(buf))) < 0) {

perror (‘write”) ;

ex1it (1) ;

CS354R

TCP CLIENT-SERVER INTERACTION

TCP Server
from UNIX Network Programming Volume 1, figure 4.1 socket ()
|
\ 4
bind ()
socket () £ ()
| . . acce
v connection establishmen c
connect () | > l
|
¥ data request
write () - 4’ read
read() - ' |
| . C . A 4
¥ end-of-file notification read ()
close () >

CS354R

UDP PROPERTIES

» Does not assume any handshake or prior communication
» Stateless protocol with no information/session retention
» Uses datagrams or self-contained packets of information

» No need for prior information exchange

CS354R

UDP SERVER EXAMPLE
- » What does a UDP server
need to do so that a UDP
client can connect to it?
Port 123
UDP
P

Ethernet Adapter

CS354R

SOCKET 1/0: SOCKET()

» The UDP server must create a datagram socket...

int f£d; /* socket descriptor */

1f((fd = socket (AF INET, SOCK DGRAM, 0)) < 0) {
perror (“socket”) ;
ex1t (1)

}

» socket returns an integer (socket descriptor)
» fd < 0 indicates that an error occurred

» AF_INET associates the socket with the Internet protocol family

» SOCK_DGRAM selects the UDP protocol

CS354R

SOCKET 1/0: BIND()

» A socket can be bound to a port

struct sockaddr in srv; /* used by bind() */

/* create the socket */

/* bind: use the Internet address family */
srv.sin family = AF INET;

/* bind: socket ‘fd to port 80*/

srv.sin port = htons (80);

/* bind: a client may connect to any of my addresses */
srv.sin addr.s addr = htonl (INADDR ANY) ;

1f (bind (fd, (struct sockaddr*) &srv, sizeof(srv)) < 0)
perror ("bind"); exit(1l);

}

int fd; /* socket descriptor */

» Now the UDP server is ready to accept packets...

CS354R

SOCKET I/0: RECVFROM)

» read does not provide the client’s address to the UDP server

» recvfrom receives messages from a socket

int f£d; /* socket descriptor */
struct sockaddr in srv; /* used by bind() */

struct sockaddr in cli; /* used by recvfrom() */
char buf[512]; /* used by recvfrom() */
int cli len = sizeof(cli); /* used by recvfrom() */
int nbytes; /* used by recvfrom() */

/* 1) create the socket */

/* 2) bind to the socket */

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) é&cli, &cli len);

1f (nbytes < 0) {

perror (“recvfrom’); exit (1) ;

CS354R

SOCKET 1/0: RECVFROM() CONTINUED...

» The actions performed by recvfrom
» Returns the number of bytes to read (nbytes)
» Copies nbytes of data into buf
» Returns the address of the client (cli)

» Returns the length of cli (cli_len)

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,

(struct sockaddr*) cli, &cli len);

CS354R

UDP CLIENT EXAMPLE

» How does a UDP client
communicate with a

UDP server?

/

ports

2 UDP Clients

TCP

IP

Ethernet Adapter

CS354R

SOCKET 1/0: SENDTO()

» write is not allowed

» UDP client does not bind a port number

» Port number is dynamically assigned when the first sendto is called

int f£d; /* socket descriptor */

struct sockaddr in srv; /* used by sendto() */

/* 1) create the socket */

/* sendto: send data to IP Address “128.2.35.50" port 80 */

srv.sin family = AF INET;

srv.sin port = htons (80);

srv.sin addr.s addr = inet addr (“128.2.35.507);

nbytes = sendto (fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &srv, sizeof (srv)):;

1f (nbytes < 0) {

perror (“sendto’) ; exit (1) ;

CS354R

UDP CLIENT-SERVER INTERACTION

from UNIX Network Programming Volume 1, figure 8.1

UDP Client

socket ()

[
\ 4

sendto ()

A 4

recvirom ()

data request

UDP Server

socket ()

[
A 4

bind()

[
\ 4

recvirom ()

<

blocks until datagram

received from a client

data reply

—

\4

sendto ()

g

y

close ()

CS354R

SIDE NOTE: UDP BROADCAST AND MULTICAST

» These examples have been point-to-point (one source, one destination)

sending of data but UDP supports point-to-multipoint (one source,
multiple destinations)

» May not work in all circumstances and primarily for LANs
» Broadcast only supported in IPV4
» Multicast not supported by all switches and hubs

» Only way to do it across the Internet is with additional work-arounds
» IP Multicast added to IPV4 and fully integrated in IPV6

» Primarily for multimedia content

CS354R

THE UDP SERVER

» How can the UDP server
UDP Server service multiple ports
Port 3000 ' Port 2000 simultaneously?

| 4

UDP

A 4
A

Ethernet Adapter

CS354R

UDP SERVER: SERVICING TWO PORTS

» What problems does this code have?

int sl;
int s2;

/* 1
/* 2
/* 3
/* 4

while (1)

/* socket descriptor 1 */
/* socket descriptor 2 */

create socket sl */

bind sl to port 2000 */

)

) create socket s2 */

)

) bind s2 to port 3000 */

{

recvfrom(sl, buf, sizeof (buf), ...);
/* process buf */

recvfrom(s?2, buf, sizeof (buf), ...);
/* process buf */

CS354R

SOCKET 1/0: SELECT()

int select (1int maxfds, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout);

FD CLR(int fd, fd set *fds); /* clear the bit for fd in fds */

FD ISSET (int fd, fd set *fds); /* is the bit for fd in fds? */
FD SET (int fd, fd set *fds); /* turn on the bit for fd in fds */
FD ZERO (fd set *fds); /* clear all bits in fds */

» maxfds: number of descriptors to be tested

» descriptors (0, 1, ... maxfds-1) will be tested
> readfds: a set of fds we want to check if data is available

> returns a set of fds ready to read

» if input argument is NULL, not interested in that condition
> writefds: returns a set of fds ready to write

> exceptfds: returns a set of fds with exception conditions

CS354R

SOCKET 1/0: SELECT()

int select (1nt maxfds, fd set *readfds, fd set *writefds,

fd set *exceptfds, struct timeval *timeout)

struct timeval {
long tv_sec; /* seconds /
long tv usec; /* microseconds */

J

> timeout

» if NULL, wait forever and return only when one of the descriptors is
ready for I/O

» otherwise, wait up to a fixed amount of time specified by timeout

» if we don’t want to wait at all, create a timeout structure with timer
value equal to 0

CS354R

SOCKET 1/0: SELECT() IN UDP

» select allows synchronous I/0 multiplexing

fd set readfds; /* used by select () */

/* create and bind sl and s2 */

1f (select(s2+1, &readfds, 0, 0, 0) < 0)
perror (“select”) ;
exit (1) ;

}

1f (FD_ISSET (sl, &readfds))
recvfrom(sl, buf, sizeof (buf),
/* process buf */

}

/* do the same for s2 */

int sl, s2; /* socket descriptors */

while (1) {
FD ZERO (&readfds) ; /* initialize the fd set */
FD SET (s1, &readfds); /* add sl to the fd set */
FD SET (s2, &readfds); /* add s2 to the fd set */

{

.y

CS354R

SOCKET 1/0: SELECT() IN TCP

int fd, next=0; /* original socket */
int newfd[10]; /* new socket descriptors */
while (1) {

fd set readfds;
FD ZERO (&readfds) ;
FD SET (fd, &readfds);

/* Now use FD SET to initialize other newfd's

that have already been returned by accept () */

select (maxfd+1, &readfds, 0, 0, 0);
1f (FD_ISSET (fd, &readfds)) |
newfd[next++] = accept(fd, ...);
}
/* do the following for each descriptor newfd[n] */
1f (FD_ISSET (newfd[n], &readfds)) |
read (newfd[n], buf, sizeof (buf)):;
/* process data */

CS354R

EVENT-DRIVEN APPROACHES

» Use of asynchronous event notifications

» Potentially faster and more flexible than select
» Provide notifications when events occur on file descriptors
» Designed to handle event loop in a fast, non-blocking way

» Libraries like libevent, libev, libuv, etc

CS354R

BASIC PACKET BUILDING FOR A BUFFER

struct packet {
u 1nt32 t type;
u intlo t length;
u intl6 t checksum;
u 1int32 t address;

/ * S S S——————
char buf[1024];
struct packet *pkt;

pkt = (struct packet*) buf;
pkt->type = htonl (1) ;
pkt->length = htons (2) ;
pkt->checksum = htons (3) ;
pkt->address = htonl (4);

CS354R

EXTENDING FUNCTIONALITY THROUGH PACKETS

» Possible to use TCP and UDP to get functionality of both protocols

» Also possible to add packet information and packet handling to
UDP communication for greater reliability

» e.g.Index checks on packets to verify order and delivery

» System needs and constraints determine how to approach
problem

» Don'treinvent TCP

» But maybe a little more reliability is worth latency tradeoffs...

CS354R

PAYLOAD CONSIDERATIONS

» What information needs to be in the packet?
» How large is the payload?

» What is the latency of serializing/deserializing the
payload?

» How often do the server and clients need to know about
this information?

» Is my payload secure and safe?

CS354R

PACKET INFORMATION

» What information is in what packet should be architected
with care

» Cannot afford to send out the entire world state every
frame

» Provide initial information about world schema to client
upon connection

» Provide ongoing updates relative to this schema as the
world state changes

CS354R

DISCUSS

» Consider these client-server network scenarios. What
should be in the packet? What needs to happen when the
packet is received?

» A player in an MMO trades with another player
» A player in a battle royale equips a new weapon
» A playerin a go game places a stone

» A player in an arena shooter uses a hit scan gun

» A player in an arena shooter uses a ballistic gun

CS354R

PACKET FORMAT

» XML and JSON are too verbose for the frequency data is
being sent

» Text information is not tightly packed
» Ideally use a binary format

» Low latency games may use a custom binary format
rather than an existing library

CS354R

PROBLEMS WITH MEMCPY

» Directly copying the struct data into the packet is very cheap

» Works well on simple projects like what we're creating where only 4 or
5 people will play it

» Major issues at a commercial level
» Must ensure cross-platform/cross-compiler support for memory layout
» Must handle endian-ness
» Must handle pointers

» Major security risk if struct data is simply trusted

CS354R

READING AND WRITING PER-FIELD

» Create serialization library that reads and writes from the
struct to the packet

» Need to be able to read/write from every struct type
» Need to be able to read/write into every packet type

» Can additionally perform better bitpacking here to ensure
good packet properties

CS354R

ADDITIONAL RESOURCES

» Gaffer on Games <https://www.gafferongames.com/>

» Tons of in-depth articles on physics, networking, and
networked physics

https://www.gafferongames.com/

