
CS355Leeure11.IS/7#

Logistics
: HWZ due Friday (5/11)

[ Also : some  changes  To Sam 's  and Henry's  office hours -

see Piazza ]
HW4 posted This Friday

Previously: SIS ⇒ OWFS
,

CRHFS (symmetric  cryptography) } But we know how  to do  all of  This before from

LWE ⇒ PKE
, key exchange (public . key cryptography)

number - Theory (e.g. ,
DDH

,
RSA

,
etc .)

[ HW 4 ]

Question: Do lattices give as  additional power that we did not have before ?

ThislectI :
Fully homomorph :c  encryption (FHE)

"

Can  we  compute  on  encrypted data
"

-

very useful for  outsourcing computation ( eg .

"

encrypted Google  search
' )

Abstractly:

given encryption  Ctx  of  value  X  under  some public key ,
can  we derive from  That an  encryption  of f ( X ) for  an  arbitrary function f ?

Eh Etoamal
encryption

: pk
: (

g , h=gs)
) ¥nnglgpfgjhl;lgq.rynh.IS#y⇒ (grim ,

h
"  +  "

gath) ( F- Kamal is  additivelyhomomorphiif(message in  exponent) sk : g c-

encryption  of  Sam  Xi +  Xz

EI
. Regev  encryption : pk : ( A

,
bt= state )

)
Enclpk , xi ) : (Ar,

btr
.

+ x. . LII )

Enclpk ,
xz ) : (

Art
,
btrz + x. . 1£ , )

⇒ ( Akita )
,

BT ( ritrz ) + ( x
,

+  xz ) . LED
sk : s = encryption  of  sum X ,

+  Xz E Zz
Note:  in  this lecture

,
we  will write  the LWE assumption  as

( A
,

state 't ) I ( A
,

u )
f

this  is  The scene assumption  as  in previous
lectures

, just
A  d- zqmm

,

s  ←r zqn
,

a  ←r Zgm
,

e  ←  XB e transposed ( oftentimes
,

this  is  a  move convenient form for

modern lattice  constructions )
In both of  These  cases ,  we  can  evaluate  single operation  on  cipher texts (e.g. ,  addition  qr multiplication) Can  we  support both additional multiplication?

⇒
Fully homomorphic  encryption

:
 encryption  scheme  that supports both addition  and multiplication  on  cipher Texts ( thus

,
suffices for  arbitrary computation)

Majored
in  cryptography ( dates back  To late 1920 s ! ) - first solved by Stanford student Craig Gentry in 2009

↳ revolutionized lattice . based
cryptography

!

Generator : 1.  Build somewhat homomorphic  encryption ( SWHE ) -

encryption  scheme  That supports bounded number  of homomorphic  operations

2. Bootstrap SWHE  to  FHE (essentially a  way To
"

refresh
"

cipher  text )

Focus  will be  on building SWHE ( has  all of  The ingredients for  realizing FHE )
↳  In particular ,  will present Gentry - Sahni - Waters ( GSW ) construction (conceptually simplest scheme

,  Though not the most concretely efficient )
"

3rd generation  of  FHE
"



Starting: Regeo  encryption

keenly
:

Ft
 ± Zjm a  = £ftp.e

, ] E Zgln
" ' "

Observation
:

5I zqn STA  = . STA

-1
5Th

-1
et = et  

a On
-5

e←r xm s = [ z ] e zgnt
'

Output pk= A  and sk  = s

xm

need: Write pk= At 7dg
" ' 'm

and sampleRE{ a  Bm

C = AR + x. LET .
 I ,nI,×T Iinnsxm

= toll0 )
( nti )  xcntl )

identity matrix

Decrypted
: Write  skis

. Compute STC and output 0 if Ileana I < ¥ and 1  if I GTC)nn| > 4£

%HFcomponent  of  STC
,  interpreted as  value between

- £2 and Gz

Correctness : STC = STAR + X ' Lot ] . STI  in + nxm Observe : the  vector  s ( i.e.
,  The secret key ) is  an  approximate left .

eigenvector  of

= ETR +  X. L£ ] .  ST the matrix C ( i.e.
,  The cipher text ) with associated eigenvalue Xi LLT

I X . L£ ] .  ST ( i.e.
,

the "

encoded
"

message)

Security: Same as proof for Reger  encryption (Two hybrids : LWE
,

then LHL )

Observe: We  can pad A  with rows  of  all - zeroes  so  it is  a  square  matrix ( over Zqmtm ) and pads  accordingly as  well

For  the cipher text
,

we just  embed The
message in  the first ( n + 1) components

Then
,  correctness  and

security follow  as before ( scheme has  not  changed) ,  and the message is  simply
the "

noisy
"

eigenvalve associated with S ( the lignin's  Year )

lithium ? Because  eigenualues  add and multiply :

Thu ;  st ( c. + c z ) = stc
,

+  sign =  x. 5 '  +  XZST  
= ( Xitxz ) 's

-

Suppose Xi  is a ( left ) agenda of C
,  with associated eigenvector  s

-

| LYLY"morph :c

STC
, Cz =  X

,
.  STCZ =  X , Xz ST operations !

→

Suppose Xz  is a ( left) eigenvalu of Cz  with associated eigenvector  s

)

Does  the above  work  with approximate  eigenualves ( with the padded matrices ) ? Unfortunately ,
not ...

Need new  Tricks !

Cerrato:  STC =  x. Left .  st +  ETR

Addition: ST ( C
,

+ Cz) = X , .LI/.5+eTR
,

+ Xz . L£l .

 ST +  ETRZ

= ( X
,

+ xz ) . ( It . ST +  et ( R
,

+ Rz ) Works  as long as R
,

+ Rz  is  small ! ( As long as
�1� a

of ,  This  will be OK . )Multiplication:  STC
, Cz = ( X

,
.LI ] - ST +  ETR , )Cz =

 xi L£t .  54 +  ETR
,

Cz

=  ×
,

. LEI . ( xz . Lott +  ETRD +  etr.cz
- -

not quite  what we  wanted due This  is large  since Cz  is  not short !

to  the message  encoding ,
but

↳ Correctness fails for  multiplication !
Should be fixable . . . -



Third : A  matrix  with a public Trapdoor ( can  also be  viewed as  a
'  '

powers
- of - Two

"

matrix )

g = (
' 2  4 j 2

" T "

,  z  it?  249
.? ) € zqnxn

498 '
For  notational simplicity , we  will write  m  =  nlloyq ]

= -0 ( nlogq )
- ~

6 is  a  matrix  with the
powers

- of - two  along The diagonala  more  compact way to  write  This  Is

G = ( 1 2 4 . " 2458 '

) Q In
in fact

,

Hu1÷Threaten: given any
✓ e kqn , we  can efficiently find a

"

short
"

needsuch that Gu = V !

E
namely SIS is  ea# for G

.

%
: | binary decomposition  of V

,

✓
i.  m V

,

= [ 2i . V
, ; { 2i Vi ;

a = (I'm ) } binarydelimitation  of k ⇒ Gu =/.gg?ygiv...) = z Moreover
,

pull . =]:n '
'

} binary decomposition  of Vn Vni
:

✓
mm 1

In general ,
for  a vector V t Zqn ,

we  write G-
'
w ) to denote the vector ue Zqm consisting of  the binary decomposition  of  The

components  of v
.

More
generally,

if  we have  a  matrix ✓ E Zqmm,
we  write G

"lV ) to denote  applying The binary

decomposition  operator  To  each column  of ✓
.

Thus
,

we  can formally define G
"

as the following mapping
:

G
"

: Znqm→ Zqmm [ Important : Gt is  not The matrix  inverse  of G (G is  not even squared

The matrix G E Zqmm and The inverse  
mapping

G
'

satisfy the following properties
:

1
. For all

VEZgnm
,

G. G-
 '

(V ) =V

2 .
For  all VE Zgnm ,

HGYV ) Ha = I

Why is  This  useful ? Recall previous  issue  with multiplication :  multiplying Two Regeu  cipher texts C ,
and G  causes  The error  in C

,
to be

scaled by Cs and Cz  is not short .

Key idea :
 instead of  multiplying by Cz  which is big ,

we instead
multiply by Gt ( Cz)

,
which is  short .

To  recover  correctness
,

we  will

use  The
property

that G. Gt ( Cz) =Cz

therefore :

keenly
:

E
 ± Zjm a  = (sutta

+  e
, ] E Zgln

" ' "

Identical to Regeu  encryption !

s±2T

s=[5)
e- zit

'

e
E Xm 1

Output pk= A  and sk  = s

xm

need: Write pk= At 7dg
" ' 'm

and sampleRE { 0,13
"

C = Art x. G ( use  the gadget matrix  in place  of the scaled identity ]

Decrypted: Write  sk=s
. Compute STC and output 0 if I lstc )

ml
< IT and 1  if I GTC )

m|
> It

€ last component is  scaled by 240g 8 '

so  correctness holds  as long as Ba of



CSWinuariaut_ : let C = ART X. G for  some xe { a , }
.

Then
, f

last components  of  STG is large ( ~ 2498 ] ) if Xzl

STC = ST ( AR + x. G) = - ETR + x.  stg
and small if  x=O

Homomorphic  addition :
T ( Ci + Cz ) = ST ( AR

,
+ X. G) + ST ( Arzt Xz . G) =

. et ( R
,

+ Rc ) + ( X
,

+ Xz ) . STG
-

s
-

new  error  in  cipher text  also  adds

Heeter : 5 ( C
,

G- ' ( Cd) = 5 ( AR
,

+ x
, G) . G- ' ( Cz) = ST ( AR

,
G-

 '

(G) + Xi . C.)
= STCAR

,
G-

 '

(G) + X , ARZ + X
, Xz . G)

= - et (

R.G@tXRt-x.X
; STG

new  error  only increases  modestly since X
,

E { 0,1 } and G-
 ' (G)

is  short :  if HR , H•
,

HRZH
•

f B
,

then

HR ,
Gtkz ) + x

, Rolla £ B ( MH )

Conclusion: If we  want to  support circuits  of  multiplicative depth d
,

we  need To  choose of
= MO

(d)
to  accomodate  the

mutipli cations . Observe  That in  this  case
, log of

= Old log m )
,

so  the number  of bits  in  The cipher text scales linearly with

the depth of  The circuit
.

[ Note: generally ,  there is  a lot of flexibility when choosing lattice parameters ]
Semantic  security follows by safe argument as Reger . Homomorphic  operations possible by structure  of gadget matrix !

trout .

The  above  construction  requires  imposing an  a priori
bound on  the multiplicative depth of  the computation .

To  obtain fully homomorphic  
encryption ,

we
apply Gentry 's brilliant insight of bootstrapping .

tighter . Suppose  we have SWHE  with following properties
:

l . We  can  evaluate functions  with multiplicative depth d

2 .
The decryption function  can be  implemented by a  circuit with multiplicative depth d

'
< d

Then
, we  can build an FHE  scheme as follows :

- Public key of FHE  scheme Is public key of SWHE  scheme and an  encryption  of  The SDHE decryption key under The

SWHE public key

→ We  now describe  a  cipher text -

refreshing procedure :

- For  each SWHE  cipher text , we  can  associate  a
"

noise
"

level That keeps  Track  of how  
many

more homomorphic  operations

Can be performed on  the ciphertett ( while  maintaining correctness )
.

↳ for  instance
,

We  can  evaluate depth - d circuits  on fresh cipher  texts ; after  evaluating a  single  multiplication ,
We

can  only evaluate  circuits  of depth - ldt ) and so  on .  . .

→  

The  refresh procedure Takes any valid cipher text and produces  one  that supports depth - ( d - d
' ) homomorphism ;

Since d > d
'

,
This  enables  inbounded ( ie

, arbitrary) computations  on  cipher texts



idea : Suppose  

Ctx
=  Encrypt (pk ,

× ) .

Using the SWHE
,

we  can  compute  Ctµ
,

=  

Encrypt (pk ,
fk )) for  any

f  with multiplicative depth up to d

Given  ctx
,

we first  compute

Cta = Encrypt (pk ,
ctx ) [ strictly speaking , encrypt bit by bit ]

This is  a fresh cipher  Text so  we  can perform  operations  of depth up to d on Ctct
.

Since  the public key includes a copy

of  the decryption key ( ctsk)
,

we  can homomorphically evaluate  The dsktnf.net :
This  is  a  new  encryption  of  m

,

44 ' Encrypt (PK ' # p+ (pk , Decrypt ( sk ,ct)) = Encrypt (pk ,
× ) and we  can  continue Performing

Ctsk  =

Encrypt ( pk ,
Sk )

} '€Y_ homomorph :c  operations  on  m 1 of

depth d - d ' )
depth . I '

computation

Bootstrapping is  a general Technique That converts  

any
SWHE  That can  evaluate  Its  own decryption function (

plus  a little  more ) into

an FHE  scheme .
Transformation  requires

 additional circularse.am# assumption (namely ,
That it is OK to publish  an  encryption  of

the scheme 's  ow_n public key .

[ The GSW scheme supports bootstrapping
-

decryption is  a  threshold inner product ;  choose parameters

carefully ]

#protein : Build FHE from LWE ( or  another standard assumption)without the circular security assumption .


