
CS355Leeure11.IS/7#

Logistics
: HWZ due Friday (5/11)

[Also : some changes To Sam 's and Henry's office hours -

see Piazza]
HW4 posted This Friday

Previously: SIS ⇒ OWFS
,

CRHFS (symmetric cryptography) } But we know how to do all of This before from

LWE ⇒ PKE
, key exchange (public . key cryptography)

number - Theory (e.g. ,
DDH

,
RSA

,
etc .)

[HW 4]

Question: Do lattices give as additional power that we did not have before ?

ThislectI :
Fully homomorph :c encryption (FHE)

"

Can we compute on encrypted data
"

-

very useful for outsourcing computation (eg .

"

encrypted Google search
')

Abstractly:

given encryption Ctx of value X under some public key ,
can we derive from That an encryption of f (X) for an arbitrary function f ?

Eh Etoamal
encryption

: pk
: (

g , h=gs)
) ¥nnglgpfgjhl;lgq.rynh.IS#y⇒ (grim ,

h
" + "

gath) (F- Kamal is additivelyhomomorphiif(message in exponent) sk : g c-

encryption of Sam Xi + Xz

EI
. Regev encryption : pk : (A

,
bt= state)

)
Enclpk , xi) : (Ar,

btr
.

+ x. . LII)

Enclpk ,
xz) : (

Art
,
btrz + x. . 1£ ,)

⇒ (Akita)
,

BT (ritrz) + (x
,

+ xz) . LED
sk : s = encryption of sum X ,

+ Xz E Zz
Note: in this lecture

,
we will write the LWE assumption as

(A
,

state 't) I (A
,

u)
f

this is The scene assumption as in previous
lectures

, just
A d- zqmm

,

s ←r zqn
,

a ←r Zgm
,

e ← XB e transposed (oftentimes
,

this is a move convenient form for

modern lattice constructions)
In both of These cases , we can evaluate single operation on cipher texts (e.g. , addition qr multiplication) Can we support both additional multiplication?

⇒
Fully homomorphic encryption

:
 encryption scheme that supports both addition and multiplication on cipher Texts (thus

,
suffices for arbitrary computation)

Majored
in cryptography (dates back To late 1920 s !) - first solved by Stanford student Craig Gentry in 2009

↳ revolutionized lattice . based
cryptography

!

Generator : 1. Build somewhat homomorphic encryption (SWHE) -

encryption scheme That supports bounded number of homomorphic operations

2. Bootstrap SWHE to FHE (essentially a way To
"

refresh
"

cipher text)

Focus will be on building SWHE (has all of The ingredients for realizing FHE)
↳ In particular , will present Gentry - Sahni - Waters (GSW) construction (conceptually simplest scheme

, Though not the most concretely efficient)
"

3rd generation of FHE
"

Starting: Regeo encryption

keenly
:

Ft
 ± Zjm a = £ftp.e

,] E Zgln
" ' "

Observation
:

5I zqn STA = . STA

-1
5Th

-1
et = et

a On
-5

e←r xm s = [z] e zgnt
'

Output pk= A and sk = s

xm

need: Write pk= At 7dg
" ' 'm

and sampleRE{ a Bm

C = AR + x. LET .
 I ,nI,×T Iinnsxm

= toll0)
(nti) xcntl)

identity matrix

Decrypted
: Write skis

. Compute STC and output 0 if Ileana I < ¥ and 1 if I GTC)nn| > 4£

%HFcomponent of STC
, interpreted as value between

- £2 and Gz

Correctness : STC = STAR + X ' Lot] . STI in + nxm Observe : the vector s (i.e.
, The secret key) is an approximate left .

eigenvector of

= ETR + X. L£] . ST the matrix C (i.e.
, The cipher text) with associated eigenvalue Xi LLT

I X . L£] . ST (i.e.
,

the "

encoded
"

message)

Security: Same as proof for Reger encryption (Two hybrids : LWE
,

then LHL)

Observe: We can pad A with rows of all - zeroes so it is a square matrix (over Zqmtm) and pads accordingly as well

For the cipher text
,

we just embed The
message in the first (n + 1) components

Then
, correctness and

security follow as before (scheme has not changed) , and the message is simply
the "

noisy
"

eigenvalve associated with S (the lignin's Year)

lithium ? Because eigenualues add and multiply :

Thu ; st (c. + c z) = stc
,

+ sign = x. 5 ' + XZST
= (Xitxz) 's

-

Suppose Xi is a (left) agenda of C
, with associated eigenvector s

-

| LYLY"morph :c

STC
, Cz = X

,
. STCZ = X , Xz ST operations !

→

Suppose Xz is a (left) eigenvalu of Cz with associated eigenvector s

)

Does the above work with approximate eigenualves (with the padded matrices) ? Unfortunately ,
not ...

Need new Tricks !

Cerrato: STC = x. Left . st + ETR

Addition: ST (C
,

+ Cz) = X , .LI/.5+eTR
,

+ Xz . L£l .

 ST + ETRZ

= (X
,

+ xz) . (It . ST + et (R
,

+ Rz) Works as long as R
,

+ Rz is small ! (As long as
�1� a

of , This will be OK .)Multiplication: STC
, Cz = (X

,
.LI] - ST + ETR ,)Cz =

 xi L£t . 54 + ETR
,

Cz

= ×
,

. LEI . (xz . Lott + ETRD + etr.cz
- -

not quite what we wanted due This is large since Cz is not short !

to the message encoding ,
but

↳ Correctness fails for multiplication !
Should be fixable . . . -

Third : A matrix with a public Trapdoor (can also be viewed as a
' '

powers
- of - Two

"

matrix)

g = (
' 2 4 j 2

" T "

, z it? 249
.?) € zqnxn

498 '
For notational simplicity , we will write m = nlloyq]

= -0 (nlogq)
- ~

6 is a matrix with the
powers

- of - two along The diagonala more compact way to write This Is

G = (1 2 4 . " 2458 '

) Q In
in fact

,

Hu1÷Threaten: given any
✓ e kqn , we can efficiently find a

"

short
"

needsuch that Gu = V !

E
namely SIS is ea# for G

.

%
: | binary decomposition of V

,

✓
i. m V

,

= [2i . V
, ; { 2i Vi ;

a = (I'm) } binarydelimitation of k ⇒ Gu =/.gg?ygiv...) = z Moreover
,

pull . =]:n '
'

} binary decomposition of Vn Vni
:

✓
mm 1

In general ,
for a vector V t Zqn ,

we write G-
'
w) to denote the vector ue Zqm consisting of the binary decomposition of The

components of v
.

More
generally,

if we have a matrix ✓ E Zqmm,
we write G

"lV) to denote applying The binary

decomposition operator To each column of ✓
.

Thus
,

we can formally define G
"

as the following mapping
:

G
"

: Znqm→ Zqmm [Important : Gt is not The matrix inverse of G (G is not even squared

The matrix G E Zqmm and The inverse
mapping

G
'

satisfy the following properties
:

1
. For all

VEZgnm
,

G. G-
 '

(V) =V

2 .
For all VE Zgnm ,

HGYV) Ha = I

Why is This useful ? Recall previous issue with multiplication : multiplying Two Regeu cipher texts C ,
and G causes The error in C

,
to be

scaled by Cs and Cz is not short .

Key idea :
 instead of multiplying by Cz which is big ,

we instead
multiply by Gt (Cz)

,
which is short .

To recover correctness
,

we will

use The
property

that G. Gt (Cz) =Cz

therefore :

keenly
:

E
 ± Zjm a = (sutta

+ e
,] E Zgln

" ' "

Identical to Regeu encryption !

s±2T

s=[5)
e- zit

'

e
E Xm 1

Output pk= A and sk = s

xm

need: Write pk= At 7dg
" ' 'm

and sampleRE { 0,13
"

C = Art x. G (use the gadget matrix in place of the scaled identity]

Decrypted: Write sk=s
. Compute STC and output 0 if I lstc)

ml
< IT and 1 if I GTC)

m|
> It

€ last component is scaled by 240g 8 '

so correctness holds as long as Ba of

CSWinuariaut_ : let C = ART X. G for some xe { a , }
.

Then
, f

last components of STG is large (~ 2498]) if Xzl

STC = ST (AR + x. G) = - ETR + x. stg
and small if x=O

Homomorphic addition :
T (Ci + Cz) = ST (AR

,
+ X. G) + ST (Arzt Xz . G) =

. et (R
,

+ Rc) + (X
,

+ Xz) . STG
-

s
-

new error in cipher text also adds

Heeter : 5 (C
,

G- ' (Cd) = 5 (AR
,

+ x
, G) . G- ' (Cz) = ST (AR

,
G-

 '

(G) + Xi . C.)
= STCAR

,
G-

 '

(G) + X , ARZ + X
, Xz . G)

= - et (

R.G@tXRt-x.X
; STG

new error only increases modestly since X
,

E { 0,1 } and G-
 ' (G)

is short : if HR , H•
,

HRZH
•

f B
,

then

HR ,
Gtkz) + x

, Rolla £ B (MH)

Conclusion: If we want to support circuits of multiplicative depth d
,

we need To choose of
= MO

(d)
to accomodate the

mutipli cations . Observe That in this case
, log of

= Old log m)
,

so the number of bits in The cipher text scales linearly with

the depth of The circuit
.

[Note: generally , there is a lot of flexibility when choosing lattice parameters]
Semantic security follows by safe argument as Reger . Homomorphic operations possible by structure of gadget matrix !

trout .

The above construction requires imposing an a priori
bound on the multiplicative depth of the computation .

To obtain fully homomorphic
encryption ,

we
apply Gentry 's brilliant insight of bootstrapping .

tighter . Suppose we have SWHE with following properties
:

l . We can evaluate functions with multiplicative depth d

2 .
The decryption function can be implemented by a circuit with multiplicative depth d

'
< d

Then
, we can build an FHE scheme as follows :

- Public key of FHE scheme Is public key of SWHE scheme and an encryption of The SDHE decryption key under The

SWHE public key

→ We now describe a cipher text -

refreshing procedure :

- For each SWHE cipher text , we can associate a
"

noise
"

level That keeps Track of how
many

more homomorphic operations

Can be performed on the ciphertett (while maintaining correctness)
.

↳ for instance
,

We can evaluate depth - d circuits on fresh cipher texts ; after evaluating a single multiplication ,
We

can only evaluate circuits of depth - ldt) and so on . . .

→

The refresh procedure Takes any valid cipher text and produces one that supports depth - (d - d
') homomorphism ;

Since d > d
'

,
This enables inbounded (ie

, arbitrary) computations on cipher texts

idea : Suppose

Ctx
= Encrypt (pk ,

×) .

Using the SWHE
,

we can compute Ctµ
,

=

Encrypt (pk ,
fk)) for any

f with multiplicative depth up to d

Given ctx
,

we first compute

Cta = Encrypt (pk ,
ctx) [strictly speaking , encrypt bit by bit]

This is a fresh cipher Text so we can perform operations of depth up to d on Ctct
.

Since the public key includes a copy

of the decryption key (ctsk)
,

we can homomorphically evaluate The dsktnf.net :
This is a new encryption of m

,

44 ' Encrypt (PK ' # p+ (pk , Decrypt (sk ,ct)) = Encrypt (pk ,
×) and we can continue Performing

Ctsk =

Encrypt (pk ,
Sk)

} '€Y_ homomorph :c operations on m 1 of

depth d - d ')
depth . I '

computation

Bootstrapping is a general Technique That converts

any
SWHE That can evaluate Its own decryption function (

plus a little more) into

an FHE scheme .
Transformation requires

 additional circularse.am# assumption (namely ,
That it is OK to publish an encryption of

the scheme 's ow_n public key .

[The GSW scheme supports bootstrapping
-

decryption is a threshold inner product ; choose parameters

carefully]

#protein : Build FHE from LWE (or another standard assumption)without the circular security assumption .

