$\operatorname{CS} 355$ Lecture 11 (5/7)

Logistics: HW3 due Friday (5/11)
[Also: some changes to Sam's and Henry's office hours - see Piazza] HW4 posted this Friday

Previous lectures: SIS \Rightarrow OWFS, CRHFs (symmetric cryptography) \} But we know how to do all of this before from $L W E \Rightarrow$ PKE, key exchange (public-key cryptography) number -theory (e.g., DDH, RSA, etc.)

$$
\left[\mathrm{HWH}_{4}\right]
$$

Question: Do lattices give us additional power that we did not have before?

This lecture: Fully homomophic encryption (FHE)
"Can we compute on encrypted data" - very useful for outsourcing computation (erg. "encrypted Google search")

Abstractly: given encryption $c t_{x}$ of value x under some public key, can we deride from that an encryption of $f(x)$ for an arbitrary function f ?
 encryption of sum $x_{1}+x_{2}$
Ex. Reged encryption: pk: $\left(A, b^{\top}=s^{\top} A+e^{\tau}\right)\left\{\begin{array}{l}\operatorname{Enc}\left(p k, x_{1}\right):\left(A r_{1}, b^{\top} r_{1}+x_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right) \\ s k: s\end{array} \Rightarrow E_{n c}\left(p k, x_{2}\right):\left(A r_{2}, b^{\top} r_{2}+x_{2} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right) . ~\left(A\left(r_{1}+r_{2}\right), b^{\top}\left(r_{1}+r_{2}\right)+\left(x_{1}+x_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)\right.$
Note: in this lecture, we will write the LWE assumption as encryption of sum $x_{1}+x_{2} \in \mathbb{Z}_{2}$
$\left(A, s^{\top} A+e^{\top}\right) \stackrel{c}{\approx}(A, u)$
$A \stackrel{R}{\mathbb{R}} \mathbb{Z}_{q}^{n \times m}, s \mathbb{Z}_{q}^{R}, u \leftarrow \mathbb{Z}_{q}^{n}, e \leftarrow X_{B}$ $\int \begin{aligned} & \text { this is the same assumption as in previous lectures, just } \\ & \text { transposed (oftentimes, this is a move convenient form for } \\ & \text { modern lattice constructions) }\end{aligned}$
In both of these cases, we can evaluate single operation on ipphertexts (eng., addition or multiplication) Can we support both addition and multiplication?
\Rightarrow Fully homomorphic encryption: encryption scheme that supports both addition and multiplication on ciphertexts (thus, suffices for arbitrary computation)
Major open problem in cryptography (dates back to late 1970s!) - first solved by Stanford student Craig Gentry in 2009
\longrightarrow revolutionized lattice-based cryptography!
General blueprint: 1. Build somewhat homomopphic encryption (SWHE) - encryption scheme that supports bounded number of homomorphic operations
2. Bootstrap SWHE to FHE (essentially a way to "refresh" ciphertext)

Focus will be on building SWHE (has all of the ingredients for realizing FHE)
\mapsto In particular, will present Gentry-Sahai-Waters (GSW) construction (conceptually simplest scheme, though not the most concretely efficient) "Ord generation of FHE"

Starting point: Rages encryption

$$
\begin{array}{rl}
\underline{\text { Key } \operatorname{Gen}\left(1^{\lambda}\right)}: & \tilde{A} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m} \\
\tilde{S} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n} & A=\left[\begin{array}{c}
\tilde{A} \\
\tilde{S}^{\top} \tilde{A}+e^{T}
\end{array}\right] \in \mathbb{Z}_{q}^{(n+1) \times m} \\
& e^{R} X^{m}
\end{array} \quad S=\left[\begin{array}{c}
-\tilde{S} \\
1
\end{array}\right] \in \mathbb{Z}_{q}^{n+1} .
$$

Observation:

$$
s^{\top} A=-\tilde{s}^{\top} \tilde{A}+\tilde{s}^{\top} \tilde{A}+e^{\top}=e^{\top} \approx 0^{m}
$$

output $p k=A$ and $s k=s$
Encrypt ($p k, x)$: Write $p k=A \in \mathbb{Z}_{q}^{(n+1) \times m}$ and sample $R \stackrel{R}{\leftarrow}\{0,1\}^{m \times m}$

$$
C=A R+x \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot I_{(n+1) \times m} I_{(n+1) \times m}=\underbrace{\left(\left.\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1
\end{array} \right\rvert\,\right.}_{\begin{array}{c}
(n+1) \times(n+1) \\
\text { identity) matrix }
\end{array}}
$$

Decrypt $(s k, c)$: Write $s k=s$. Compute $s^{\top} C$ and output 0 if $\left|\left(s^{\top} C\right)_{n+1}\right|<\frac{q}{4}$ and 1 if $\left|\left(s^{\top} C\right)_{n+1}\right|>\frac{q}{4}$ $\tau_{(n-1)^{s t}}$ component of $s^{T} C$, interpreted as value between $-\frac{q}{2}$ and $\frac{q}{2}$
Correctness:

$$
\begin{aligned}
s^{\top} C & =s^{\top} A R+x \cdot\left\lfloor\frac{q}{2}\right\rfloor \\
& =e^{\top} R+x \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top} \\
& \approx x \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top}
\end{aligned}
$$

Observe: the vector S (i.e., the secret key) is an approximate left-eigenvector of the matrix C (ie, the ciphertext) with associated eigenvalue $x \cdot\left\lfloor\frac{9}{2}\right\rfloor$ (i.e., the "encoded" message)

Security: Same as proof for Reges encryption (two hybrids: LWE, then LHL)

Observe: We can pad A with rows of all-zerses so it is a square matrix (over $\mathbb{Z}_{b}^{m \times m}$) and pad s accordingly as well
For the ciphertext, we just embed the message in the first $(n+1)$ components
Then, correctness and security follow as before (scheme has not changed), and the message is simply the "noisy" eigensiave associated with s (the "noisy" ${ }^{\text {eignestor) }}$)
Why is this view useful? Because eigenvalues add and mattiply:

- Suppose x_{1} is a (left) eigundere of C_{1} with associated eigenvector $\left.s\right\}$ Then: $s^{\top}\left(c_{1}+c_{2}\right)=s^{\top} C_{1}+s^{\top} C_{2}=x_{1} s^{\top}+x_{2} s^{\top}=\left(x_{1}+x_{2}\right) s^{\top}$ Enables
- Suppose X_{2} is a (left) eigenate of C_{2} with associated eigenvector $s ~ d \quad s^{\top} C_{1} C_{2}=x_{1} \cdot s^{\top} C_{2}=x_{1} x_{2} s^{\top}$ homomorphic \int operations!

Does the above work with approximate eigenvalues (with the padded matrices)? Unfortunately, not... Need new tricks!
Correctness: $s^{\top} C=x \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top}+e^{\top} R$
Addition: $s^{\top}\left(C_{1}+C_{2}\right)=x_{1} \cdot\left\lfloor\frac{9}{2}\right\rfloor \cdot s^{\top}+e^{\top} R_{1}+x_{2} \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top}+e^{\top} R_{2}$

$$
=\left(x_{1}+x_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top}+e^{T}\left(R_{1}+R_{2}\right) \quad \text { Works as long as } R_{1}+R_{2} \text { is small! (As long as } B \ll q \text {, this will be OK.) }
$$

Multipitiation: $s^{\top} C_{1} C_{2}=\left(x_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top}+e^{\top} R_{1}\right) C_{2}=x_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot s^{\top} C_{2}+e^{\top} R_{1} C_{2}$

$$
=x_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor \cdot\left(x_{2} \cdot\left\lfloor\frac{q}{2}\right\rfloor+e^{\top} R_{2}\right)+e^{\top} R_{1} C_{2}
$$

not quite what we wasted due this is large since C_{2} is not short!
to the message encoding, bat \longrightarrow Correctness fails for multiplication!

The gadget matrix: A matrix with a public trapdoor (can also be viewed as a "powers-of-two" matrix)

$$
\begin{aligned}
& =\theta(n \log q)
\end{aligned}
$$

a more compact way to write this is
G is a matrix with the powers-of-two along the diagonal

$$
G=\left(\begin{array}{llll}
1 & 2 & \cdots & 2^{\log q J}
\end{array}\right) \otimes I_{n}
$$

in fact, $\|u\|_{\infty}=1$
The magic of the gadget matrix: given any $v \in \mathbb{Z}_{q}^{n}$, we can efficiently find a "short" $u \in \mathbb{Z}_{q}^{n}$ such that $G u=v$!

In general, for a vector $v \in \mathbb{Z}_{q}^{n}$, we write $G^{-1}(v)$ to denote the vector $u \in \mathbb{Z}_{q}^{m}$ consisting of the binary decomposition of the components of V. More generally, if we have a matrix $V \in \mathbb{Z}_{q}^{n \times m}$, we write $G^{-1}(V)$ to denote applying the binary decomposition operator to each column of V. Thus, we can formally define G^{-1} as the following mapping:

$$
G^{-1}: \mathbb{Z}_{q}^{n \times m} \rightarrow \mathbb{Z}_{q}^{m \times m} \quad\left[\text { Important: } G^{-1} \text { is not the matrix inverse of } G \text { (} G\right. \text { is not even square)] }
$$

The matrix $G \in \mathbb{Z}_{q}^{n \times m}$ and the inverse mapping G^{-1} satisfy the following properties:

1. For all $V \in \mathbb{Z}_{q}^{n \times m}, G \cdot G^{-1}(V)=V$
2. For all $V \in \mathbb{Z}_{q}^{n \times m},\left\|G^{-1}(V)\right\|_{\infty}=1$

Why is this useful? Recall previous issue with multiplication: multiplying two Reges ciphertexts C_{1} and C_{2} causes the error in C_{1} to be scaled by C_{2} and C_{2} is not short.
Key idea: instead of multiplying by C_{2} which is big, we instead multiply by $G^{-1}\left(C_{2}\right)$, which is short. To recover correctness, we will use the property that $G \cdot G^{-1}\left(C_{2}\right)=C_{2}$

The GSW Homomorphic Encryption Scheme:

$$
\begin{array}{rl}
\underline{\operatorname{Key} \operatorname{Gen}\left(1^{\lambda}\right):}: \tilde{A} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m} & A=\left[\begin{array}{c}
\tilde{A} \\
\tilde{S}^{\top} \tilde{A}+e^{\top}
\end{array}\right] \in \mathbb{Z}_{q}^{(n+1) \times m} \\
\tilde{S} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n} & S=\left[\begin{array}{c}
-\tilde{s} \\
1
\end{array}\right] \in \mathbb{Z}_{q}^{n+1} \\
& e{ }^{R} X^{m}
\end{array}
$$

output $p k=A$ and $s k=s$
Encrypt ($p k, x$): Write $p k=A \in \mathbb{Z}_{q}^{n+1) \times m}$ and sample $R \mathscr{R}^{R}\{0,1\}^{m \times m}$
$C=A R+x \cdot G \quad$ [use the gadget matrix in place of the scaled identity]
Decrypt $(s k, c)$: Write $s k=s$. Compute $s^{\top} C$ and output O if $\left|\left(s^{\top} C\right)_{m}\right|<\frac{q}{4}$ and 1 if $\left|\left(s^{\top} C\right)_{m}\right|>\frac{q}{4}$
τ last component is scaled by $2^{\log } \mathrm{q}^{\mathrm{J}}$
so correctness holds as long as $B \ll q$

GSW invariant: let $C=A R+x \cdot G$ for some $x \in\{0,1\}$. Then, last components of $s^{\top} G$ is large $\left(\sim 2^{\log q]}\right)$ if $x=1$

$$
s^{\top} C=S^{\top}(A R+x \cdot G)=-e^{\top} R+x \cdot s^{\top} G
$$

Homomomphic addition: $\quad S^{\top}\left(C_{1}+C_{2}\right)=S^{\top}\left(A R_{1}+x_{1} G\right)+S^{\top}\left(A R_{2}+x_{2} G\right)=\underbrace{-e^{\top}\left(R_{1}+R_{2}\right)}+\left(x_{1}+x_{2}\right) \cdot S^{\top} G$
new error in ciphertext also adds
Homomorphic multiplication: $S^{\top}\left(C_{1} G^{-1}\left(C_{2}\right)\right)=S^{\top}\left(A R_{1}+x_{1} G\right) \cdot G^{-1}\left(C_{2}\right)=S^{\top}\left(A R_{1} G^{-1}\left(C_{2}\right)+x_{1} \cdot C_{2}\right)$

$$
\begin{aligned}
& =s^{\top}\left(A R_{1} G^{-1}\left(C_{2}\right)+x_{1} A R_{2}+x_{1} x_{2} \cdot G\right) \\
& =-e^{\top}\left(R_{1} G^{-1}\left(C_{2}\right)+x_{1} R_{2}\right)+x_{1} x_{2} \cdot s^{\top} G
\end{aligned}
$$

new error only increases modestly since $x_{1} \in\{0,1\}$ and $G^{-1}\left(c_{2}\right)$ is short: if $\left\|R_{1}\right\|_{\infty},\left\|R_{2}\right\|_{\infty} \leqslant B$, then

$$
\left\|R_{1} G^{-1}\left(c_{2}\right)+x_{1} R_{2}\right\|_{\infty} \leqslant B(m+1)
$$

Conclusion: If we want to support circuits of multiplicative depth d, we need to choose $q=m^{O(d)}$ to accomodate the multiplications. Observe that in this case, $\log q=O(d \log m)$, so the number of bits in the ciphertext scales linearly with the depth of the circuit. [Note: generally, there is a lot of flexibility when choosing lattice parameters]
Semantic security follows by same argument as Reges. Homomorphic operations possible by structure of gadget matrix!

From SWHE to FHE. The above construction requires imposing an a priori bound on the multiplicative depth of the computation. To obtain fully homomorphic encryption, we apply Gentry's brilliant insight of bootstrapping.

High-level idea. Suppose we have SWHE with following properties:

1. We can evaluate functions with multiplicative depth d
2. The decryption function can be implemented by a circuit with multiplicative depth $d^{\prime}<d$

Then, we can build an FHE scheme as follows:

- Public key of FHE Scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the SWHE public key
- We now describe a ciphertext-refreshing procedure:
- For each SWHE ciphertext, we can associate a "noise" level that keeps track of how many more homomorphic operations can be performed on the ciphertext (while maintaining correctness).
\rightarrow for instance, we can evaluate depth-d circuits on fresh ciphertexts; after evaluating a single multiplication, we can only evaluate circuits of depth -(d-1) and so on...
- The refresh procedure takes any valid ciphertext and produces one that supports depth- (d-d') homomorphism; since $d>d^{\prime}$, this enables unbounded (ie., arbitrary) computations on ciphertats

Idea: Suppose $c_{x}=$ Encrypt $(p k, x)$.
Using the SWHE, we can compute $c t_{f(x)}=$ Encrypt $(p h, f(x))$ for any f with multiplicative depth up to d Given $c t_{x}$, we first compute

$$
c t_{c t}=\text { Encrypt }\left(p k, c t_{x}\right) \quad \text { [strictly speaking, encrypt bit by bit] }
$$

This is a fresh ciphertext so we can perform operations of depth up to d on $c t a t$. Since the public key includes a copy of the decryption key $\left(c t_{s k}\right)$, we can homomorphically evaluate the decryption function:

$$
\begin{aligned}
& \left.\begin{array}{l}
c t_{c t}=E_{n c r y p t}\left(p k, c t_{x}\right) \\
c t_{s k}=E_{n c r y p t}(p k, s k)
\end{array}\right\} \underbrace{E_{n c r y p t}(p k, \operatorname{Decrypt}(s k, c t))}=E_{n c r y p t}(p k, x) \\
& \text { depth-d' computation }
\end{aligned}
$$

This is a new encryption of m, and we can continue performing homomorphic operations on m (of depth $\left.d-d^{\prime}\right)$

Bootstrapping is a general technique that converts any SWHE that can evaluate its own decryption function (plus a little more) into an FHE scheme. Transformation requires additional circular security assumption (namely, that it is OK to publish an encryption of the scheme's own public key. [The GSW scheme supports bootstrapping - decryption is a threshold inner product; choose parameters carefully]

Open problem : Build FHE from LWE (or another standard assumption) without the circular security assumption.

