CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 13, 14–Argmax Computation)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay 3rd and 7th Feb, 2011

Key difference between Statistical/MLbased NLP and Knowledgebased/linguistics-based NLP

- Stat NLP: speed and robustness are the main concerns
- KB NLP: Phenomena based
- Example:
 - Boys, Toys, Toes
 - To get the root remove "s"
 - How about foxes, boxes, ladies
 - Understand phenomena: go deeper
 - Slower processing

Sequence w is transformed into sequence t.

T*=argmax(P(T|W)) w W*=argmax(P(W|T))

Bayesian Decision Theory Bayes Theorem : Given the random variables A and B,

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}$$

- $P(A \mid B)$ Posterior probability
 - Prior probability

P(A)

P(B|A) Likelihood

To understand when and why to apply Bayes Theorem

An example: *it is known that in a population, 1 in* 50000 has meningitis and 1 in 20 has stiff neck. It is also observed that 50% of the meningitis patients have stiff neck.

A doctor observes that a patient has stiff neck. What is the probability that the patient has meningitis?

(Mitchel, Machine Learning, 1997)

Ans: We need to find P(m|s): probability of meningitis given the stiff neck

Apply Bayes Rule (why?)

P(m|s)= [P(m). P(s|m)]/P(s)

P(m)= prior probability of meningitis
P(s|m)=likelihod of stiff neck given meningitis
P(s)=Probability of stiff neck

Probabilities

Some Issues

p(m/s) could have been found as

Questions:

- Which is more reliable to compute, p(s/m) or p(m/s)?
- Which evidence is more sparse , p(s/m) or p(m/s)?
- Test of significance : The counts are always on a sample of population. Which probability count has sufficient statistics?

5 problems in NLP whose probabilistic formulation use Bayes theorem

The problems

- Statistical Spell Checking
- Automatic Speech Recognition
- Part of Speech Tagging: discussed in detail in subsequent classes
- Probabilistic Parsing
- Statistical Machine Translation

Some general observations

 $A^{*} = \operatorname{argmax} [P(A|B)]$ $= \operatorname{argmax} [P(A).P(B|A)]$ A

Computing and using P(A) and P(B|A), both need

(i) looking at the internal structures of A and B
(ii) making independence assumptions
(iii) putting together a computation from smaller parts

Corpus

- A collection of text called *corpus*, is used for collecting various language data
- With annotation: more information, but manual labor intensive
- Practice: label automatically; correct manually
- The famous *Brown Corpus* contains 1 million tagged words.
- Switchboard: very famous corpora 2400 conversations, 543 speakers, many US dialects, annotated with orthography and phonetics

Example-1 of Application of Noisy Channel Model: Probabilistic Speech Recognition (Isolated Word)[8]

- Problem Definition : Given a sequence of speech signals, identify the words.
- 2 steps :
 - Segmentation (Word Boundary Detection)
 - Identify the word
- Isolated Word Recognition :
 - Identify W given SS (speech signal)

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} P(W \mid SS)$$

Identifying the word

$$\hat{W} = \arg \max_{W} P(W \mid SS)$$
$$= \arg \max_{W} P(W) P(SS \mid W)$$

- P(SS/W) = likelihood called "phonological model " → intuitively more tractable!
- *P(W)* = prior probability called "language model"

$$P(W) = \frac{\# W \text{ appears in the corpus}}{\# \text{ words in the corpus}}$$

Ambiguities in the context of P(SS|W) or P(W|SS)

Concerns

- Sound → Text ambiguity
 - whether v/s weather
 - right v/s write
 - bought v/s bot
- Text \rightarrow Sound ambiguity
 - read (present tense) v/s read (past tense)
 - *lead* (verb) v/s *lead* (noun)

Primitives

- Phonemes (sound)
- Syllables
- ASCII bytes (machine representation)

Phonemes

- Standardized by the IPA (International Phonetic Alphabet) convention
- /t/ → sound of *t* in *tag*
- /d/ → sound of d in dog
- /D/ → sound of *the*

- Consists of
 - 1. Rhyme
 - 1. Nucleus
 - 2. Onset
 - 3. Coda

Pronunciation Dictionary

Pronunciation Automaton

- *P(SS/W)* is maintained in this way.
- P(t o m ae t o /Word is "tomato") = Product of arc probabilities

Problem 2: Spell checker: apply Bayes Rule

W*= argmax [P(W/T)] = argmax [P(W).P(T/W)]

W=correct word, T=misspelt word

- Why apply Bayes rule?
 - Finding p(w/t) vs. p(t/w)?
- Assumptions :
 - *t* is obtained from *w* by a single error.
 - The words consist of only alphabets
 () wo following d Manting Crossels and NLD 200

(Jurafsky and Martin, Speech and NLP, 2000)

4 Confusion Matrices: sub, ins, del and trans

If x and y are alphabets,

- sub(x,y) = # times y is written for x (substitution)
- ins(x,y) = # times x is written as xy
- del(x,y) = # times xy is written as x
- trans(x,y) = # times xy is written as yx

Probabilities from confusion matrix

• $P(t/w) = P(t/w)_{S} + P(t/w)_{I} + P(t/w)_{D} + P(t/w)_{X}$ where

$$\begin{split} \mathsf{P}(\mathsf{t}|\mathsf{w})_{\mathsf{S}} &= \mathsf{sub}(\mathsf{x},\mathsf{y}) \ / \ \mathsf{count} \ \mathsf{of} \ \mathsf{x} \\ \mathsf{P}(\mathsf{t}|\mathsf{w})_{\mathsf{I}} &= \mathsf{ins}(\mathsf{x},\mathsf{y}) \ / \ \mathsf{count} \ \mathsf{of} \ \mathsf{x} \\ \mathsf{P}(\mathsf{t}|\mathsf{w})_{\mathsf{D}} &= \mathsf{del}(\mathsf{x},\mathsf{y}) \ / \ \mathsf{count} \ \mathsf{of} \ \mathsf{x} \\ \mathsf{P}(\mathsf{t}|\mathsf{w})_{\mathsf{X}} &= \mathsf{trans}(\mathsf{x},\mathsf{y}) \ / \ \mathsf{count} \ \mathsf{of} \ \mathsf{x} \end{split}$$

These are considered to be mutually exclusive events

URLs for database of misspelt words

- http://www.wsu.edu/~brians/errors/err ors.html
- http://en.wikipedia.org/wiki/Wikipedia:L ists_of_common_misspellings/For_mach ines

A sample

- abandonned->abandoned
- aberation->aberration
- abilties->abilities
- abilty->ability
- abondon->abandon
- abondoned->abandoned
- abondoning->abandoning
- abondons->abandons
- aborigene->aborigine

fi yuo cna raed tihs, yuo hvae a sgtrane mnid too. Cna yuo raed tihs? Olny 55 plepoe can.

i cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was rdanieg.

The phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at

Cmabrigde Uinervtisy, it dseno't mtaetr in waht oerdr the ltteres in a wrod are, the olny iproamtnt tihng is taht the frsit and lsat ltteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed

it whotuit a pboerlm. Tihs is bcuseae the huamn mnid deos not raed

ervey lteter by istlef, but the wrod as a wlohe. Azanmig huh? yaeh and

Ι

awlyas tghuhot slpeling was ipmorantt! if you can raed tihs forwrad it.

Spell checking: Example

- Given *aple*, find and rank
 - P(maple|aple), P(apple|aple), P(able|aple), P(pale|aple) etc.

 Exercise: Give an intuitive feel for which of these will rank higher

Example 3: Part of Speech Tagging

- POS Tagging is a process that attaches each word in a sentence with a suitable tag from a given set of tags.
- The set of tags is called the Tag-set.
- Standard Tag-set : Penn Treebank (for English).

Penn Treebank Tagset: sample

- 1. CC Coordinating conjunction; *Jack and_CC Jill*
- 2. CD Cardinal number; *Four_CD children*
- 3. DT Determiner; *The_DT sky*
- 4. EX Existential *there ; There_EX was a king*
- 5. FW Foreign word; शब्द_FW means 'word'
- 6. IN Preposition or subordinating conjunction; *play with_IN ball*
- 7. JJ Adjective; *fast_JJ car*
- 8. JJR Adjective, comparative; *faster_JJR car*
- 9. JJS Adjective, superlative; *fastest_JJS car*
- 10. LS List item marker; *1._LS bread 2._LS butter 3._LS Jam*
- 11. MD Modal; You may_MD go
- 12. NN Noun, singular or mass; *water_NN*
- 13. NNS Noun, plural; *boys_NNS*
- 4. NNP Proper noun, singular; *John_NNP*

POS Tags

- NN Noun; e.g. *Dog_NN*
- VM Main Verb; e.g. Run_VM
- VAUX Auxiliary Verb; e.g. Is_VAUX
- JJ Adjective; e.g. *Red_JJ*
- PRP Pronoun; e.g. You_PRP
- NNP Proper Noun; e.g. John_NNP
- etc.

POS Tag Ambiguity

- In English : I bank₁ on the bank₂ on the river bank₃ for my transactions.
 - Bank₁ is verb, the other two banks are noun
- In Hindi :
 - "Khaanaa" : can be noun (food) or verb (to eat)
 - Mujhe khaanaa khaanaa hai. (first khaanaa is noun and second is verb)

For Hindi

- Rama achhaa gaata hai. (hai is VAUX : Auxiliary verb); Ram sings well
- Rama achha ladakaa hai. (hai is VCOP : Copula verb); Ram is a good boy

Process

- List all possible tag for each word in sentence.
- Choose best suitable tag sequence.

Example

- "People jump high".
- People : Noun/Verb
- jump : Noun/Verb
- high : Noun/Verb/Adjective
- We can start with probabilities.

Derivation of POS tagging formula

Best tag sequence

= T*

= argmax P(T|W)

= argmax P(T)P(W|T) (by Baye's Theorem)

$$\begin{split} \mathsf{P}(\mathsf{T}) &= \mathsf{P}(\mathsf{t}_0 = \ \ t_1 \mathsf{t}_2 \ \dots \ t_{n+1} = .) \\ &= \mathsf{P}(\mathsf{t}_0) \mathsf{P}(\mathsf{t}_1 | \mathsf{t}_0) \mathsf{P}(\mathsf{t}_2 | \mathsf{t}_1 \mathsf{t}_0) \mathsf{P}(\mathsf{t}_3 | \mathsf{t}_2 \mathsf{t}_1 \mathsf{t}_0) \ \dots \\ &\quad \mathsf{P}(\mathsf{t}_n | \mathsf{t}_{n-1} \mathsf{t}_{n-2} \dots \mathsf{t}_0) \mathsf{P}(\mathsf{t}_{n+1} | \mathsf{t}_n \mathsf{t}_{n-1} \dots \mathsf{t}_0) \\ &= \mathsf{P}(\mathsf{t}_0) \mathsf{P}(\mathsf{t}_1 | \mathsf{t}_0) \mathsf{P}(\mathsf{t}_2 | \mathsf{t}_1) \ \dots \ \mathsf{P}(\mathsf{t}_n | \mathsf{t}_{n-1}) \mathsf{P}(\mathsf{t}_{n+1} | \mathsf{t}_n) \end{split}$$

 $= \prod_{i=1}^{N+1} P(t_i | t_{i-1})$ Bigram Assumption

Lexical Probability Assumption

 $P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) \dots P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1})$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$= P(w_{o}|t_{o})P(w_{1}|t_{1}) \dots P(w_{n+1}|t_{n+1})$$

$$= \prod_{i=0}^{n+1} P(w_{i}|t_{i})$$

$$= \prod_{i=0}^{n+1} P(w_{i}|t_{i}) \quad \text{(Lexical Probability Assumption)}$$

Generative Model

This model is called Generative model. Here words are observed from tags as states. This is similar to HMM.

Bigram probabilities

	N	V	A
N	0.2	0.7	0.1
V	0.6	0.2	0.2
\boldsymbol{A}	0.5	0.2	0.3
A	0.5	0.2	0.3
	-		
	-		
	a		
	•		
		N 0.2 V 0.6 A 0.5	N V N 0.2 0.7 V 0.6 0.2 A 0.5 0.2

Lexical Probability

	People	jump	high		
N	10 ⁻⁵	0.4x10 ⁻³	10 ⁻⁷		
V	10 ⁻⁷	10 ⁻²	10 ⁻⁷		
А	0	0	10 ⁻¹		
values in cell a	re P(col-heading	g/row-heading)			

Calculation from actual dataCorpus

- ^ Ram got many NLP books. He found them all very interesting.
- Pos Tagged
 - NVANN.NVNARA.

Recording numbers

	^	Ν	V	Α	R	
^	0	2	0	0	0	0
Ν	0	1	2	1	0	1
V	0	1	0	1	0	0
Α	0	1	0	0	1	1
R	0	0	0	1	0	0
	1	0	0	0	0	0

Probabilities

	٨	Ν	V	Α	R	
^	0	1	0	0	0	0
Ν	0	1/5	2/5	1/5	0	1/5
V	0	1/2	0	1/2	0	0
Α	0	1/3	0	0	1/3	1/3
R	0	0	0	1	0	0
	1	0	0	0	0	0

To find

- $T^* = argmax (P(T) P(W/T))$
- $P(T).P(W/T) = \prod P(t_i / t_{i-1}).P(w_i / t_i)$

 $i=1 \rightarrow n+1$

- $P(t_i / t_{i-1})$: Bigram probability
- P(w_i /t_i): Lexical probability
- Qrwh: P(w_i/t_i)=1 irui=0 +a / vhqwhqfh ehjlqqhu,, dqg i=(n+1) (., fullstop)

Bigram probabilities

	N	V	A	R
N	0.15	0.7	0.05	0.1
V	0.6	0.2	0.1	0.1
A	0.5	0.2	0.3	0
R	0.1	0.3	0.5	0.1

Lexical Probability

	People	jump	high		
N	10 ⁻⁵	0.4x10 ⁻³	10 ⁻⁷		
v	10 ⁻⁷	10 ⁻²	10 ⁻⁷		
Α	0	0	10-1		
R	0	0	0		
values in cell a	re P(col-heading	g/row-heading)			

Some notable text corpora of English

- American National Corpus
- Bank of English
- British National Corpus
- <u>Corpus Juris Secundum</u>
- <u>Corpus of Contemporary American English</u> (COCA) 400+ million words, 1990-present. Freely searchable online.
- <u>Brown Corpus</u>, forming part of the "Brown Family" of corpora, together with <u>LOB</u>, Frown and F-LOB.
- International Corpus of English
- Oxford English Corpus
- Scottish Corpus of Texts & Speech