CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 13, 14-Argmax Computation)

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay
$3^{\text {rd }}$ and $7^{\text {th }}$ Feb, 2011

Key difference between Statistical/MLbased NLP and Knowledge-based/linguistics-based NLP

- Stat NLP: speed and robustness are the main concerns
- KB NLP: Phenomena based
- Example:
- Boys, Toys, Toes
- To get the root remove "s"
- How about foxes, boxes, ladies
- Understand phenomena: go deeper
- Slower processing

Noisy Channel Model

$$
\left(w_{n}, w_{n-1}, \ldots, w_{1}\right) \quad\left(t_{m}, t_{m-1}, \ldots, t_{1}\right)
$$

Sequence w is transformed into sequence t.

$$
\begin{aligned}
& \mathrm{T}^{*}=\underset{\mathrm{W}}{\operatorname{argmax}}(\mathrm{P}(\mathrm{~T} \mid \mathrm{W})) \\
& \mathrm{W}^{*}=\underset{\mathrm{T}}{\operatorname{argmax}}(\mathrm{P}(\mathrm{~W} \mid \mathrm{T}))
\end{aligned}
$$

Bayesian Decision Theory

- Bayes Theorem : Given the random variables A and B,

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
$$

$P(A \mid B)$ Posterior probability
$P(A) \quad$ Prior probability
$P(B \mid A) \quad$ Likelihood

To understand when and why to apply Bayes Theorem

An example: it is known that in a population, 1 in 50000 has meningitis and 1 in 20 has stiff neck. It is also observed that 50\% of the meningitis patients have stiff neck.

A doctor observes that a patient has stiff neck. What is the probability that the patient has meningitis?
(Mitchel, Machine Learning, 1997)

Ans: We need to find
$\mathbf{P (m | s) : ~ p r o b a b i l i t y ~ o f ~}$ meningitis given the stiff neck

Apply Bayes Rule (why?)

$$
\begin{aligned}
& P(\mathrm{~m} \mid \mathrm{s}) \\
=\quad & {[\mathrm{P}(\mathrm{~m}) \cdot \mathrm{P}(\mathrm{~s} \mid \mathrm{m})] / \mathrm{P}(\mathrm{~s}) }
\end{aligned}
$$

$P(m)=$ prior probability of meningitis $P(s \mid m)=$ likelihod of stiff neck given meningitis
$P(s)=$ Probability of stiff neck

Probabilities

$$
\begin{gathered}
P(m)=\frac{1}{50000} \\
P(s)=\frac{1}{20} \\
P(s \mid m)=0.5 \\
P(m \mid s)=\frac{P(m) P(s \mid m)}{\frac{1}{50000} * 0.5} \\
P(m \mid s) \ll P(\sim m \mid s) \\
\text { Hence meningitis is not likely }
\end{gathered}
$$

Some Issues

- $p(\mathrm{~m} / \mathrm{s})$ could have been found as

Questions:

- Which is more reliable to compute, $p(s / m)$ or $p(m / s)$?
- Which evidence is more sparse , $p(s / m)$ or $p(\mathrm{~m} / \mathrm{s})$?
- Test of significance : The counts are always on a sample of population. Which probability count has sufficient statistics?

5 problems in NLP whose probabilistic formulation use Bayes theorem

The problems

- Statistical Spell Checking
- Automatic Speech Recognition
- Part of Speech Tagging: discussed in detail in subsequent classes
- Probabilistic Parsing
- Statistical Machine Translation

Some general observations

$$
\mathrm{A}^{*}=\quad \operatorname{argmax}[\mathrm{P}(\mathrm{~A} \mid \mathrm{B})]
$$

$$
\left.=\quad \begin{array}{c}
\mathrm{A} \\
= \\
\mathrm{argmax}
\end{array} \mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B} \mid \mathrm{A})\right]
$$

Computing and using $\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, both need
(i) looking at the internal structures of A and B
(ii) making independence assumptions
(iii) putting together a computation from smaller parts

Corpus

- A collection of text called corpus, is used for collecting various language data
- With annotation: more information, but manual labor intensive
- Practice: label automatically; correct manually
- The famous Brown Corpus contains 1 million tagged words.
- Switchboard: very famous corpora 2400 conversations, 543 speakers, many US dialects, annotated with orthography and phonetics

Example-1 of Application of Noisy Channel Model: Probabilistic Speech Recognition (Isolated Word)[8]

- Problem Definition : Given a sequence of speech signals, identify the words.
- 2 steps:
- Segmentation (Word Boundary Detection)
- Identify the word
- Isolated Word Recognition:
- Identify W given SS (speech signal)

$$
W=\underset{W}{\arg \max } P(W \mid S S)
$$

Identifying the word

$$
\begin{aligned}
W & =\underset{W}{\arg \max } P(W \mid S S) \\
& =\arg \max P(W) P(S S \mid W)
\end{aligned}
$$

- $P(S S / W)=$ likelihood called "phonological model " \rightarrow intuitively more tractable!
- $P(W)=$ prior probability called "language model"

$$
P(W)=\frac{\# \mathrm{~W} \text { appears in the corpus }}{\# \text { words in the corpus }}
$$

Ambiguities in the context of P(SS|W) or P(W|SS)
 - Concerns

- Sound \rightarrow Text ambiguity
- whether v/s weather
- right v/s write
- bought v/s bot
- Text \rightarrow Sound ambiguity
- read (present tense) v/s read (past tense)
- lead (verb) v/s lead (noun)

Primitives

- Phonemes (sound)
- Syllables
- ASCII bytes (machine representation)

Phonemes

- Standardized by the IPA (International Phonetic Alphabet) convention
- $/ t / \rightarrow$ sound of t in tag
- /d/ \rightarrow sound of d in $d o g$
- /D/ \rightarrow sound of the

Syllables

Advise
(verb)
ad

- Consists of

1. Rhyme
2. Nucleus
3. Onset
4. Coda

Pronunciation Dictionary

Pronunciation Automaton

Word

Tomato

- $P(S S / W)$ is maintained in this way.
- $P(t$ o m ae to /Word is "tomato") = Product of arc probabilities

Problem 2: Spell checker: apply Bayes Rule

$W^{*}=\operatorname{argmax}[P(W / T)]$ $=\operatorname{argmax}[P(W) \cdot P(T / W)]$ W=correct word, $T=$ misspelt word

- Why apply Bayes rule?
- Finding $p(w / t)$ vs. $p(t / w)$?
- Assumptions :
- t is obtained from w by a single error.
- The words consist of only alphabets
(Jurafsky and Martin, Speech and NLP, 2000)

4 Confusion Matrices: sub, ins, de/ and trans

- If x and y are alphabets,
- $\operatorname{sub}(x, y)=\#$ times y is written for x (substitution)
- ins $(x, y)=\#$ times x is written as $x y$
- $\operatorname{del}(x, y)=\#$ times $x y$ is written as x
- trans $(x, y)=\#$ times $x y$ is written as $y x$

Probabilities from confusion matrix

- $P(t / w)=P(t / w)_{S}+P(t / w)_{I}+P(t / w)_{D}+P(t / w)_{X}$ where

$$
\begin{aligned}
& P(t \mid w)_{S}=\operatorname{sub}(x, y) / \text { count of } x \\
& P(t \mid w)_{I}=\operatorname{ins}(x, y) / \text { count of } x \\
& P(t \mid w)_{D}=\operatorname{del}(x, y) / \text { count of } x \\
& P(t \mid w)_{x}=\operatorname{trans}(x, y) / \text { count of } x
\end{aligned}
$$

- These are considered to be mutually exclusive events

URLs for database of misspelt words

- http://www.wsu.edu/~brians/errors/err ors.html
- http://en.wikipedia.org/wiki/Wikipedia:L ists_of_common_misspellings/For_mach ines

A sample

- abandonned->abandoned
- aberation->aberration
- abilties->abilities
- abilty->ability
- abondon->abandon
- abondoned->abandoned
- abondoning->abandoning
- abondons->abandons
- aborigene->aborigine
fi yuo cna raed tihs, yuo hvae a sgtrane mnid too. Cna yuo raed tihs? Olny 55 plepoe can.
i cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was rdanieg.
The phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at
Cmabrigde Uinervtisy, it dseno't mtaetr in waht oerdr the Itteres in a wrod are, the olny iproamtnt tihng is taht the frsit and Isat Itteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed
it whotuit a pboerlm. Tihs is bcuseae the huamn mnid deos not raed
ervey Iteter by istlef, but the wrod as a wlohe. Azanmig huh? yaeh and
I
awlyas tghuhot slpeling was ipmorantt! if you can raed tihs forwrad it.

Spell checking: Example

- Given aple, find and rank
- P(maple|aple), P(apple|aple), P(able|aple), P(pale|aple) etc.
- Exercise: Give an intuitive feel for which of these will rank higher

Example 3: Part of Speech Tagging

- POS Tagging is a process that attaches each word in a sentence with a suitable tag from a given set of tags.
- The set of tags is called the Tag-set.
- Standard Tag-set : Penn Treebank (for English).

Penn Treebank Tagset: sample

- 1. CC Coordinating conjunction; Jack and_CC Jill
- 2. CD Cardinal number; Four_CD children
- 3. DT Determiner; The_DT sky
- 4. EX Existential there ; There_EX was a king
- 5. FW Foreign word; शब्द_FW means 'word'
- 6. IN Preposition or subordinating conjunction; play with_IN ball
- 7. JJ Adjective; fast_JJ car
- 8. JJR Adjective, comparative; faster_JJR car
- 9. JJS Adjective, superlative; fastest_JJS car
- 10. LS List item marker; 1._LS bread 2._LS butter 3._LS Jam
- 11. MD Modal; You may_MD go
- 12. NN Noun, singular or mass; water_NN
- 13. NNS Noun, plural; boys_NNS
- 4. NNP Proper noun, singular; John_NNP

POS Tags

- NN - Noun; e.g. Dog_NN
- VM - Main Verb; e.g. Run_VM
- VAUX - Auxiliary Verb; e.g. Is_VAUX
- JJ - Adjective; e.g. Red_JJ
- PRP - Pronoun; e.g. You_PRP
- NNP - Proper Noun; e.g. John_NNP
. etc.

POS Tag Ambiguity

- In English : I bank ${ }_{1}$ on the bank ${ }_{2}$ on the river bank ${ }_{3}$ for my transactions.
- Bank ${ }_{1}$ is verb, the other two banks are noun
- In Hindi :
- "Khaanaa" : can be noun (food) or verb (to eat)
- Mujhe khaanaa khaanaa hai. (first khaanaa is noun and second is verb)

For Hindi

- Rama achhaa gaata hai. (hai is VAUX : Auxiliary verb); Ram sings well
- Rama achha ladakaa hai. (hai is VCOP : Copula verb); Ram is a good boy

Process

- List all possible tag for each word in sentence.
- Choose best suitable tag sequence.

Example

- "People jump high".
- People : Noun/Verb
- jump : Noun/Verb
- high : Noun/Verb/Adjective
- We can start with probabilities.

Derivation of POS tagging formula

Best tag sequence

$$
\begin{aligned}
& =\mathrm{T}^{*} \\
& =\operatorname{argmax} \mathrm{P}(\mathrm{~T} \mid \mathrm{W})
\end{aligned}
$$

$$
=\operatorname{argmax} \mathrm{P}(\mathrm{~T}) \mathrm{P}(\mathrm{~W} \mid \mathrm{T}) \quad \text { (by Baye's Theorem) }
$$

$$
\begin{aligned}
P(T) & =P\left(t_{0}=\wedge t_{1} t_{2} \ldots t_{n+1}=.\right) \\
& =P\left(t_{0}\right) P\left(t_{1} \mid t_{0}\right) P\left(t_{2} \mid t_{1} t_{0}\right) P\left(t_{3} \mid t_{2} t_{1} t_{0}\right) \ldots \\
& P\left(t_{n} \mid t_{n-1} t_{n-2} \ldots t_{0}\right) P\left(t_{n+1} \mid t_{n} t_{n-1} \ldots t_{0}\right) \\
& =P\left(t_{0}\right) P\left(t_{1} \mid t_{0}\right) P\left(t_{2} \mid t_{1}\right) \ldots P\left(t_{n} \mid t_{n-1}\right) P\left(t_{n+1} \mid t_{n}\right) \\
& =\prod_{i=1}^{N+1} P\left(t_{i} \mid t_{i-1}\right) \quad \text { Bigram Assumption }
\end{aligned}
$$

Lexical Probability Assumption

$P(W \mid T)=P\left(w_{0} \mid t_{0}-t_{n+1}\right) P\left(w_{1} \mid w_{0} t_{0}-t_{n+1}\right) P\left(w_{2} \mid w_{1} w_{0} t_{0}-t_{n+1}\right) \ldots$

$$
P\left(w_{n} \mid w_{0}-w_{n-1} t_{0}-t_{n+1}\right) P\left(w_{n+1} \mid w_{0}-w_{n} t_{0}-t_{n+1}\right)
$$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$
\begin{aligned}
& =P\left(w_{0} \mid t_{0}\right) P\left(w_{1} \mid t_{1}\right) \ldots P\left(w_{n+1} \mid t_{n+1}\right) \\
& =\prod_{i=0}^{n+1} P\left(w_{i} \mid t_{i}\right) \\
& =\prod_{i=0}^{n+1} P\left(w_{i} \mid t_{i}\right) \quad \text { (Lexical Probability Assumption) }
\end{aligned}
$$

Generative Model

Bigram probabilities

| | | | |
| :---: | :---: | :---: | :---: |$|$| | \boldsymbol{V} | \boldsymbol{A} |
| :---: | :---: | :---: |
| \boldsymbol{N} | 0.2 | 0.7 |
| \boldsymbol{V} | 0.6 | 0.2 |
| \boldsymbol{A} | 0.5 | 0.2 |

Lexical Probability

	People	jump	high								
	10^{-5}	0.4×10^{-3}	10^{-7}								
N	10^{-7}	10^{-2}	10^{-7}								
V	0	0	10^{-1}								
A	0							values in cell are P(col-heading/row-heading)			
:---	:---	:---	:---	:---							

Calculation from actual data

- Corpus
- ^ Ram got many NLP books. He found them all very interesting.
- Pos Tagged
- ^NVANN. NVNARA.

Recording numbers

	\mathbf{n}	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	
\mathbf{n}	0	2	0	0	0	0
\mathbf{N}	0	1	2	1	0	1
\mathbf{V}	0	1	0	1	0	0
\mathbf{A}	0	1	0	0	1	1
\mathbf{R}	0	0	0	1	0	0
.	1	0	0	0	0	0

Probabilities

	\hat{n}	\mathbf{N}	\mathbf{V}	\mathbf{A}	\mathbf{R}	.
\mathbf{n}	0	1	0	0	0	0
\mathbf{N}	0	$1 / 5$	$2 / 5$	$1 / 5$	0	$1 / 5$
\mathbf{V}	0	$1 / 2$	0	$1 / 2$	0	0
\mathbf{A}	0	$1 / 3$	0	0	$1 / 3$	$1 / 3$
\mathbf{R}	0	0	0	1	0	0
$\mathbf{.}$	1	0	0	0	0	0

To find

- $T^{*}=\operatorname{argmax}(P(T) P(W / T))$
- $P(T) \cdot P(W / T)=\Pi P\left(t_{i} / t_{i-1}\right) \cdot P\left(w_{i} / t_{i}\right)$

$$
i=1 \rightarrow n+1
$$

- $P\left(t_{i} / t_{i-1}\right)$: Bigram probability
- $P\left(w_{i} / t_{j}\right)$: Lexical probability
- Q rwh: $P\left(w_{i} / t_{i}\right)=1$ iru $=0$ +a / vhqwhqfh ehj lqqhu, dqg $i=(n+1)$ (., fullstop)

Bigram probabilities

		\boldsymbol{N}	\boldsymbol{V}	\boldsymbol{A}
\boldsymbol{N}	0.15	0.7	0.05	0.1
\boldsymbol{V}	0.6	0.2	0.1	0.1
\boldsymbol{A}	0.5	0.2	0.3	0
\boldsymbol{R}	0.1	0.3	0.5	0.1

Lexical Probability

	People	jump	high			
N	10^{-5}	0.4×10^{-3}	10^{-7}			
V	10^{-7}	10^{-2}	10^{-7}			
A	0	0	10^{-1}			
R	0	0	0			
values in cell are P(col-heading/row-heading)						

Some notable text corpora of English

- American National Corpus
- Bank of English
- British National Corpus
- Corpus Juris Secundum
- Corpus of Contemporary American English (COCA) 400+ million words, 1990-present. Freely searchable online.
- Brown Corpus, forming part of the "Brown Family" of corpora, together with LOB, Frown and F-LOB.
- International Corpus of English
- Oxford English Corpus
- Scottish Corpus of Texts \& Speech

