
CS4670 Final Report

Hand Gesture Detection and Recognition for

Human-Computer Interaction

By,

Roopashree H Sreenivasa Rao (rhs229)

Jonathan Hirschberg (jah477)

Index:

I. Abstract

II. Overview

III. Design

IV. Constraints

V. Sample images contained in the database

VI. Results obtained on Desktop

VII. Results obtained on Cell Phone

VIII. Conclusion

IX. Future Work

X. Program Description

XI. OpenCV functions used

XII. Self-Implemented functions

XIII. Distribution of Work

XIV. Platform

XV. Outside Sources

XVI. Program Listing

I. Abstract:

This project deals with the detection and recognition of hand gestures. Images of the

hand gestures are taken using a Nokia N900 cell phone and matched with the

images in the database and the best match is returned. Gesture recognition is one of

the essential techniques to build user-friendly interfaces. For example, a robot that

can recognize hand gestures can take commands from humans, and for those who

are unable to speak or hear, having a robot that can recognize sign language would

allow them to communicate with it. Hand gesture recognition could help in video

gaming by allowing players to interact with the game using gestures instead of using

a controller. However, such an algorithm needs to be more robust to account for the

myriad of possible hand positions in three-dimensional space. It also needs to work

with video rather than static images. That is beyond the scope of our project.

II. Overview:

Distance Transform: The distance transform is an operator normally only applied to

binary images. The result of the transform is a grayscale image that looks similar to

the input image, except that the intensities of points inside foreground regions are

changed to show the distance to the closest boundary from each point.

For example,

Image was taken from “Distance Transform.” David Coeurjolly.

In the above image, each pixel p of the object is labeled by the distance to the closest

point q in the background.

Contours: Contours are sequences of points defining a line/curve in an image.

Contour matching can be used to classify image objects.

Database: Contains the images of various hand gestures.

Moments: Image moments are useful to describe objects after segmentation. Simple

properties of the image, which are found via image moments, include area (or total

intensity), its centroid and information about its orientation.

Ratio of the two distance transformed images of the same size = (No of pixels whose

difference is zero or less than a certain threshold) / (Total number of pixels in the

distance transformed image)

III. Design:

Step 1: User takes a picture of the hand to be tested either through the cell phone

camera or from the Internet.

Step 2: The image is converted into gray scale and smoothed using a Gaussian

kernel.

Step 3: Convert the gray scale image into a binary image. Set a threshold so that the

pixels that are above a certain intensity are set to white and those below are set to

black.

Step 4: Find contours, then remove noise and smooth the edges to smooth big

contours and melt numerous small contours.

Step 5: The largest contour is selected as a target.

Step 6: The angles of inclination of the contours and also the location of the center of

the contour with respect to the center of the image are obtained through the

bounding box information around the contour.

Step 7: The hand contours inside the bounding boxes are extracted and rotated in

such a way that the bounding boxes are made upright (inclination angle is 0) so that

matching becomes easy.

Step 8: Both the images are scaled so that their widths are set to the greater of the

two widths and their heights are set to the greater of the two heights. This is done

so that the images are the same size.

Step 9: The distance transform of both the query image and the candidate images

are computed and the best match is returned.

IV. Constraints:

1. The picture of the hand must be taken against a dark background

2. The program recognizes a limited number of gestures as long as there are

gestures similar to them in the database.

3. We must have each gesture with at least four orientations at 90 degrees each to

return the best match.

V. Sample Images contained in the Database:

In our experiment, we will be identifying limited number of gestures, which is

shown as below. The query image even with slight orientation (+ or – 30 degrees)

will be able to match with one of the image contained in the database.

Images with different orientations are present within the database. In order to

maintain performance, we have a limited number of gesture images in our database.

New gesture images can be added to the database without any pre-processing.

(a) Few of the images in the database.

VI. Results:

Case 1:

(A)

In the above case, we can see the query image on the left hand side and the matched

candidate image from the database on the right.

(a) Candidate Image in the database

Both the images are converted to binary images and the contours are computed.

Using the bounding box information obtained from the contours, we get the angle of

inclination of the contours and also, the center, height, and width of the bounding

box. The results obtained after rotating and scaling the query and candidate images

are:

(a) Rotated and scaled query image

(b) Rotated and scaled candidate

image

Now, the distance transforms of both the query image and the candidate images are

computed as follows:

(a) Distance Transform of the query

image

(b) Distance Transform of the

candidate image

Now, the difference of the two image images is computed and the ratio of the match

is found by the number of pixels whose difference between the two corresponding

pixels is zero or below a certain threshold divided by the total number of pixels in

one of the image. If the ratio is above 65% then the candidate image is determined

as a match and returned.

(B)

A similar case as Case 1 (A)

Case 2:

In the above case, the hand gesture on the left hand side is slightly tilted and still the

right gesture from the database is returned.

(a) The rotated and scaled image of

the query image

(b) The rotated and scaled image of

the candidate image

(a) Distance Transform of the query

image

(b) Distance Transform of the

candidate image

Case 3:

(a) Candidate image in the database

(a) Rotated and scaled image of the

query image

(b) Rotated and scaled image of the

candidate image

(a) Distance Transform image of the

query image

(b) Distance Transform image of the

candidate image

Case 4:

In the above case, the program returns the right gesture image, even though the

database doesn’t contain the left hand gesture as in the query image because, the

candidate image passes the ratio test.

(a) Candidate image in the database

(a) Rotated and scaled query image

(b) Rotated and scaled candidate

image

(a) Distance Transform of the query

image

(b) Distance Transform of the

candidate image

Case 5:

If a similar gesture as the query image is not present in the database then a no-

match is returned.

Case 6:

Cases of False Positives. The right gesture is returned but not logical.

VII. Results on the Cell Phone:

We got similar results on the cell phone as well and the performed almost close to

that on the desktop.

Screenshots on the cell phone:

The cell phone code was adapted from Project 2b.

VIII. Conclusion:

Based on our observation, we can conclude that the results mainly depend on:

1. Threshold, while converting the gray image to the binary image and finding

contours. For example found that uneven lighting across the picture of the hand

caused the algorithm to draw contours around the darkened areas in addition to the

contour around the hand. Changing the threshold prevented that from happening.

2. The threshold for the Ratio test while matching the distance transformed images.

The ratio we used

3. The background, which must preferably be black to get accurate results.

4. An additional check on moments is useful to check if the contours of both the

query image and the candidate image have the same shape.

5. In order to maintain performance the database contains images of small

dimensions.

IX. Program description:

We have adapted our code from the code of Project 2b.

FeaturesUI.cpp: has been customized to get the GUI as shown in the above images.

FeaturesDoc.cpp: contains the actual logic required for this project.

Features.cpp: contains the logic for the cell phone

The main functions in the program are described below.

X. Future Work:

1. Skin segmentation algorithm can be implemented to extract the skin pixels

2. Can have more images of gestures added to the database for the program to

recognize

3. Captions can be added to the gestures recognized

XI. OpenCV Functions used in the program:

1. To compute the distance transform

void cvDistanceTransform(. . .)

2. To find the number of Contours in the image

int cvFindContours(. . .)

2. To compute the moments

double cvMatchShapes (. . .)

3. To find bounding box’s height, width and center

cvMinAreaRect2(. . .)

4. To find the area of the contour

cvContourArea (…)

XII. Functions implemented by our own:

1. rotate_inverse_warp()

This function extracts the image contained within the bounding box, rotates the image

in the negative direction (the angle is obtained from the bounding box) and creates a

new image.

2. distance transform

This function uses the algorithm described in “Euclidean Distance Transform,” which

replaces binary image pixel intensities with values equal to their Euclidean distance from

the nearest edge. While we implemented this function, we were unable to get it to

work completely, so we ended up using OpenCV’s cvDistTransform().

XIII. Distribution of Work

Work done by Jonathan:

Wrote functions for rotation, scaling, and distance transform. Debugged code, worked

on the report, the presentation slides, and presented the slides during the final

presentation.

Work done by Roopa:

Wrote the main pipeline for the project and also, got the program working on the cell

phone. Debugged code, worked on the report, the presentation slides, and presented

the slides during the final presentation.

XIV: Platform

Ubuntu, OpenCV, C++, Nokia900 (phone device)

XV: Outside Sources

1. The hand gesture images were taken from Google Images.

2. “Distance Transform.” David Coeurjolly.

3. Euclidean Distance Transform, from http://www.cs.auckland.ac.nz/~rklette

4. Learning OpenCV. O'Reilly

5. “Hand Gesture Recognition for Human-Machine Interaction.” Journal of WSCG,

Vol.12, No.1-3, ISSN 1213-6972

Acknowledgements

We’d like to thank Professor Noah Snavely and Kevin Matzen for guiding and assisting us

during this project and the course.

XVI. Program Listing:

All the openCV functions that are used are marked in blue.

/* metric to compute the distance transform */

int found = 0;
int dist_type = CV_DIST_L2;
int mask_size = CV_DIST_MASK_5;

/* This is the main function that computes the matches. The query image
//and the database image are pre-processed. Both the images are
//converted to binary images and the contours are computed. The openCV
//function is used to compute the contours and it also returns the
//bounding box information like the height and the width of the
//bounding box and also the center of the bounding box with respect to
//the image. In addition it also returns the angle of inclination of
//the bounding box. This information is used to rotate the binary image
//in order to compute the distance transform of the images. The pixel
//values of the distance-transformed images are subtracted to compute
//the match. If the pixel difference is zero or less than a certain
//threshold, then it is determined as a match. The number of such
//pixels that satisfy this criterion is counted and the ratio of this
//count to the total number of pixels in the image gives us the ratio.
//In our program we have set the threshold to be at least 65%. If the
//ratio is greater than 65% then the candidate image in consideration
//is selected as a match. In addition, the moment value is also
//computed and set to between 0.0 and 0.22 to find the best match. */

IplImage* computeMatch(IplImage *src_img, IplImage *cmp_img)
{

 //cvShowImage("src img", src_img);
 //cvShowImage("cmp_img", cmp_img);
 //convert the image to gray
 IplImage* gray_img=0;
 gray_img = cvCreateImage(cvSize(src_img->width, src_img-
>height),IPL_DEPTH_8U,1);
 cvCvtColor (src_img, gray_img, CV_BGR2GRAY);

 //for another image
 IplImage* gray_img2 = 0;
 gray_img2 = cvCreateImage(cvSize(cmp_img->width, cmp_img-
>height),IPL_DEPTH_8U,1);
 cvCvtColor (cmp_img, gray_img2, CV_BGR2GRAY);

 /*****************/

 //Smooth the image
 IplImage* gray_smooth_img=0;
 gray_smooth_img = cvCreateImage(cvSize(src_img->width, src_img-
>height),IPL_DEPTH_8U,1);
 cvSmooth(gray_img, gray_smooth_img, CV_GAUSSIAN, 5, 5);

 //Smooth the other image
 IplImage* gray_smooth_img2=0;
 gray_smooth_img2 = cvCreateImage(cvSize(cmp_img->width, cmp_img-
>height),IPL_DEPTH_8U,1);
 cvSmooth(gray_img2, gray_smooth_img2, CV_GAUSSIAN, 5, 5);

 /*****************/

 //lets apply threshold
 IplImage* gray_ath_img=0;
 gray_ath_img = cvCreateImage(cvSize(src_img->width, src_img-
>height),IPL_DEPTH_8U,1);
 cvThreshold(gray_smooth_img,gray_ath_img, 10
,255,CV_THRESH_BINARY);
 IplImage *bin_img1 = cvCloneImage(gray_ath_img);

 //lets apply threshold to another image
 IplImage* gray_ath_img2=0;
 gray_ath_img2 = cvCreateImage(cvSize(cmp_img->width, cmp_img-
>height),IPL_DEPTH_8U,1);
 cvThreshold(gray_smooth_img2,gray_ath_img2, 10
,255,CV_THRESH_BINARY);
 IplImage *bin_img2 = cvCloneImage(gray_ath_img2);

 /********************/

 // lets apply the canny edge detector
 IplImage* can_img=0;
 can_img = cvCreateImage(cvSize(src_img->width, src_img-
>height),IPL_DEPTH_8U,1);
 cvCanny(gray_ath_img, can_img, 50, 100, 3);
 //cvShowImage("Canny Image", can_img);

 IplImage* can_img2=0;
 can_img2 = cvCreateImage(cvSize(cmp_img->width, cmp_img-
>height),IPL_DEPTH_8U,1);
 cvCanny(gray_ath_img2, can_img2, 50, 100, 3);
 //cvShowImage("Canny Image", can_img2);

 /******************/
 // We are finding the contours here

 // find the contours of the query image
 CvMemStorage* g_storage = NULL;
 //IplImage* contour_img=0;
 if(g_storage==NULL) {
 //contour_img = cvCreateImage(cvSize(src_img->width, src_img-
>height),IPL_DEPTH_8U,1);
 g_storage = cvCreateMemStorage(0);
 }
 else
 {
 cvClearMemStorage(g_storage);
 }

 CvSeq* contour = 0;
 CvSeq* first_contour = NULL;
 int nc = 0; // total number of contours -- roopa
 nc = cvFindContours(gray_ath_img, g_storage, &first_contour,
 sizeof(CvContour), CV_RETR_LIST);

 //printf("Total Contours Detected in the Query Image: %d\n", nc);

 double max_area = 0.0;
 for(CvSeq* c=first_contour; c!=NULL; c=c->h_next)
 {
 double area = cvContourArea(c, CV_WHOLE_SEQ);
 if (area < max_area)
 {
 max_area = area;
 contour = c;
 }
 }

 //printf("max area = %f\t", max_area);

 cvZero(gray_ath_img);
 if(contour)
 {
 cvDrawContours(gray_ath_img, contour, cvScalarAll(255),
cvScalarAll(255), 100);
 }

 // find the contours of the candidate image
 CvMemStorage* g_storage2 = NULL;
 //IplImage* contour_img2 =0;
 if(g_storage2==NULL) {
 g_storage2 = cvCreateMemStorage(0);
 }
 else
 {
 cvClearMemStorage(g_storage2);
 }

 //cvShowImage("Contour Image 1", gray_ath_img);

 CvSeq* contour2 = 0;
 CvSeq* first_contour2 = NULL;
 int nc2 = 0; // total number of contours

 nc2 = cvFindContours(gray_ath_img2, g_storage2, &first_contour2,
sizeof(CvContour), CV_RETR_LIST);
 //printf("Total Contours Detected in the Candidate Image: %d\n",
nc2);

 double max_area2 = 0.0;
 for(CvSeq* c2=first_contour2; c2!=NULL; c2=c2->h_next)
 {
 double area2 = cvContourArea(c2, CV_WHOLE_SEQ);
 if (area2 < max_area2)
 {
 max_area2 = area2;
 contour2 = c2;
 }
 }

 //printf("max area = %f\n", max_area2);

 cvZero(gray_ath_img2);

 if(contour2)
 {
 cvDrawContours(gray_ath_img2, contour2, cvScalarAll(255),
cvScalarAll(255), 100);
 }

 /**************************/

 // we get the bounding box information here
 // for the Query Image

 CvBox2D box;
 box = cvMinAreaRect2(contour, 0);
 float ang;
 ang = box.angle;

 // for size
 CvSize2D32f siz = box.size;
 double wid = siz.width;
 double hei = siz.height;
 /*
 printf("Width and Height of Query_Image Box\n");
 printf("Width : %f Height : %f Angle : %f\n", wid, hei, ang);
 */

 //find the center
 CvPoint2D32f cen = box.center;
 double x = cen.x;
 double y = cen.y;
 //printf("Center (x, y) : (%f, %f)", x, y);

 //for the candidate image
 CvBox2D box2;
 box2 = cvMinAreaRect2(contour2, 0);
 float ang2;

 ang2 = box2.angle;

 // for size
 CvSize2D32f siz2 = box2.size;
 double wid2 = siz2.width;
 double hei2 = siz2.height;
 /*
 printf("Width and Height of Query_Image Box\n");
 printf("Width : %f Height : %f Angle : %f\n", wid2, hei2,
ang2);
 */

 //find the center
 CvPoint2D32f cen2 = box2.center;
 double x2 = cen.x;
 double y2 = cen.y;
 //printf("Center (x, y) : (%f, %f)", x2, y2);

 /********************/
 IplImage* res = cvCreateImage(cvSize(cmp_img->width, cmp_img-
>height),IPL_DEPTH_8U,3);
 res = convert3channel(gray_ath_img2);

// rotate and scale the image
IplImage* rot_sc_img = inverse_warp_rotate(bin_img1, box);//.angle);
IplImage* rot_sc_img2 = inverse_warp_rotate(bin_img2, box2);//.angle *
-1);

int sw, sh;

if (rot_sc_img->width > rot_sc_img2->width)
 sw = rot_sc_img->width;
else
 sw = rot_sc_img2->width;

if (rot_sc_img->height > rot_sc_img2->height)
 sh = rot_sc_img->height;
else
 sh = rot_sc_img2->height;

scale_img1 = cvCreateImage(cvSize(sw, sh),rot_sc_img->depth,
rot_sc_img->nChannels);
scale_img2 = cvCreateImage(cvSize(sw, sh),rot_sc_img2->depth,
rot_sc_img2->nChannels);

// resize the rotated image
cvResize(rot_sc_img, scale_img1);
cvResize(rot_sc_img2, scale_img2);

cvSaveImage("s1.jpg",scale_img1);
cvSaveImage("s2.jpg",scale_img2);

// we are computing the moments here

double val = 0.0;
val = cvMatchShapes(contour, contour2, CV_CONTOURS_MATCH_I1, 0);
std :: cout << " moment val : " << val << endl;

// convert the scaled image to 3 channels

IplImage *rotsc1 = convert3channel(scale_img1);
IplImage *rotsc2 = convert3channel(scale_img2);

cvSaveImage("rot1.jpg", rotsc1);
cvSaveImage("rot2.jpg", rotsc2);

//cvShowImage(" rotsc1", rotsc1);
//cvShowImage(" rotsc2", rotsc2);

IplImage* dt1 = computeDistTransform(1);
IplImage* dt2 = computeDistTransform(2);

cvSaveImage("dt1.jpg", dt1);
cvSaveImage("dt22.jpg", dt2);

//cvShowImage("dt1", dt1);
//cvShowImage("dt2", dt2);

int count = 0;
int maxcount = dt1->width * dt1->height;

CvScalar sdt1, sdt2;
for (int i=0; i < dt1->height; i++)
{
 for(int j=0; j < dt1->width; j++)
 {

 sdt1 = cvGet2D(dt1, i, j);
 sdt2 = cvGet2D(dt2, i, j);
 if(abs(sdt1.val[0] - sdt2.val[0]) < 35) // threshold
 count ++;

 }
}

float ratio = (float)count/(float)maxcount;
std :: cout << "\tcount : " << count;
std :: cout << "\tmaxcount : " << maxcount;
std :: cout << "\tratio : " << ratio;
std :: cout << endl;

if ((ratio >= 0.5 and ratio <= 1.0) and (val >= 0.0 and val <=0.4))
//0.2
{
 std::cout << "\nMatch Found with DT";
 found = 1;

 return res;
}
else
{
 std::cout << "No Match Found";
 res = cvLoadImage("no_match.jpg");
 //cvShowImage("no match", res);
 return res;

}

}

/* This function computes the distance transform of the binary image */
IplImage* computeDistTransform(int flag)
{

 IplImage* dist = 0;
 IplImage* dist8u1 = 0;
 IplImage* dist8u2 = 0;
 IplImage* dist8u = 0;
 IplImage* dist32s = 0;
 IplImage* edge = 0;
 IplImage* gray = 0;

 if(flag == 1)
 {
 gray = cvLoadImage("rot1.jpg", 0);
 edge = cvLoadImage("s1.jpg", 0);
 }
 else
 {
 gray = cvLoadImage("rot2.jpg", 0);
 edge = cvLoadImage("s2.jpg", 0);
 }

 dist8u1 = cvCloneImage(gray);
 dist8u2 = cvCloneImage(gray);
 dist8u = cvCreateImage(cvGetSize(gray), IPL_DEPTH_8U, 3);
 dist32s = cvCreateImage(cvGetSize(gray), IPL_DEPTH_32S, 1);

 dist = cvCreateImage(cvGetSize(scale_img1), IPL_DEPTH_32F, 1);
 int edge_thresh = 50;
 int msize = mask_size;
 int _dist_type = dist_type;
 cvThreshold(gray, edge, (float)edge_thresh, (float)edge_thresh,
CV_THRESH_BINARY);
 cvDistTransform(edge, dist, _dist_type, msize, NULL, NULL);
/*
Note: This is the distance transform function that we wrote, although
it did not work as expected, so we ended up using cvDistTransform()
above. The definitions for distanceFunction1() and
distanceFunction2(), which are used in this function, are shown below
the function.
 IplImage* dist_origin = cvCloneImage(edge);

 dist_origin->depth = dist->depth;

 for(int a = 0; a < dist->height; a++)
 {

 cout << "Row " << a << "/" << dist->height << ": ";

 for(int b = 0; b < dist->width; b++)
 {

 CvScalar dTFvalue = cvGet2D(dist_origin, a, b);

 dTFvalue.val[0] = distanceFunction2(b, a, dist_origin);

 cvSet2D(dist, a, b, dTFvalue);
 cout << dTFvalue.val[0] << " ";

 }

 cout << endl;
 }
*/

 cvConvertScale(dist, dist, 150.0, 0);
 cvPow(dist, dist, 0.5);
 cvConvertScale(dist, dist32s, 1.0, 0.5);
 cvAndS(dist32s, cvScalarAll(255), dist32s, 0);
 cvConvertScale(dist32s, dist8u1, 1, 0);

 return dist8u1;

}

/* These functions are used in our implementation of the distance
transform algorithm.
int distanceFunction1(int x, int y, IplImage *Input)
{

 if(x >= 0 && x < Input->width && y >= 0 && y < Input->height)

 {
 CvScalar P = cvGet2D(Input, y, x);

 if(P.val[0] > 0)

 {

 return distanceFunction1(x - 1, y, Input) + 1;
 }

 else

 {
 return 0;

 }

 }
}

int distanceFunction2(int x, int y, IplImage *Input)
{

 int df1 = distanceFunction1(x, y, Input);

 if(df1 != 0)

 {
 return min(df1, distanceFunction2(x + 1, y, Input) + 1);

 }

 else
 {

 return 0;

 }
}*/

/* This function uses the Bounding Box information obtained from the

//contours. The Bounding Box data structure gives us information about
//center of the bounding box, the angle of inclination and also the
//height and width of the bounding box.
//
// A new image is created which is nothing but the image contained
//within the bounding box.
*/

IplImage* inverse_warp_rotate(IplImage* before, CvBox2D box)
{
 float pi = 3.141592653;
 float angle = box.angle * pi/180;
 //float angle = box.angle;

 IplImage* after = cvCreateImage(cvSize(box.size.height,
box.size.width),before->depth, before->nChannels);
/*
 std::cout << "CLONING COMPLETE: Before " << before->width << " " <<
before->height << std::endl;
 std::cout << "CLONING COMPLETE: After " << after->width << " " <<
after->height << std::endl;
 std::cout << "Box2D angle " << angle << std::endl;
 std::cout << "Box2D width " << box.size.width << std::endl;
 std::cout << "Box2D height " << box.size.height << std::endl;
*/
 // selector chooses between nearest neighbor interpolation (0) or
bilinear interpolation (1).
 //after->width = box.size.width;
 //after->height = box.size.height;

 //double b4centerx = ((double)before->width)/2;
 // double b4centery = ((double)before->height)/2;
 double aftercenterx = ((double)after->width)/2;
 double aftercentery = ((double)after->height)/2;

 // std::cout << "Error between centers: (" << aftercenterx -
box.center.x << ", " << aftercentery - box.center.y << ")" <<
std::endl;

 for(int a = 0; a < after->width; a++)
 {
 for(int b = 0; b < after->height; b++)
 {
 // coordinates in downsampled image corresponding to window
center in original image
 double dscoordx = box.center.x;//u/5; //FIXME: don't know
what this should be
 double dscoordy = box.center.y;//v/5;
 double translatedx = a - aftercenterx;
 double translatedy = b - aftercentery;
 double rotatedx = translatedx * cos(angle) + translatedy *
(sin(angle));
 double rotatedy = translatedx * (-sin(angle)) + translatedy
* cos(angle);
 double transbackx = rotatedx + dscoordx;
 double transbacky = rotatedy + dscoordy;

 // P, Q, R, S coordinates where P, Q, R, S are the nearest
neighboring pixels
 std::vector<int>Nx;
 std::vector<int>Ny;
 int Px = floor(transbackx);
 Nx.push_back(Px);
 int Py = floor(transbacky);
 Ny.push_back(Py);
 int Qx = floor(transbackx)+1;
 Nx.push_back(Qx);
 int Qy = floor(transbacky);
 Ny.push_back(Qy);
 int Rx = floor(transbackx);
 Nx.push_back(Rx);
 int Ry = floor(transbacky)+1;
 Ny.push_back(Ry);
 int Sx = floor(transbackx)+1;
 Nx.push_back(Sx);
 int Sy = floor(transbacky)+1;
 Ny.push_back(Sy);

 for(int o = 0; o < Nx.size(); o++)
 {
 if(Nx[o] < 0)
 {
 Nx[o] = 0;
 }
 else if(Nx[o] >= before->width)
 {
 Nx[o] = before->width-1;
 }
 if(Ny[o] < 0)
 {
 Ny[o] = 0;
 }
 else if(Ny[o] >= before->height)
 {
 Ny[o] = before->height-1;
 }
 }

 double alpha = transbackx - Nx[0];
 double beta = transbacky - Ny[0];

 CvScalar P = cvGet2D(before, Ny[0], Nx[0]);
 CvScalar Q = cvGet2D(before, Ny[1], Nx[1]);
 CvScalar R = cvGet2D(before, Ny[2], Nx[2]);
 CvScalar S = cvGet2D(before, Ny[3], Nx[3]);

 CvScalar MOPSpixel = cvGet2D(before, Ny[3], Nx[3]);
 MOPSpixel.val[0] = (1-alpha)*(1-beta)*P.val[0] + alpha*(1-
beta)*Q.val[0] + (1-alpha)*beta*R.val[0] + alpha*beta*S.val[0];

 cvSet2D(after, b, a, MOPSpixel);
 }
 }

 // apply threshold: those pixels that have intensities > 0 will
have them set to 1.
 for(int a = 0; a < after->height; a++)
 {
 for(int b = 0; b < after->width; b++)
 {
 CvScalar Afterpixel = cvGet2D(after, a, b);
 Afterpixel.val[0] = (Afterpixel.val[0] > 0 ? 255 : 0);
 cvSet2D(after, a, b, Afterpixel);
 }
 }

 //std::cout << "DOWN WITH ROTATING" << std::endl;
 return after;
}

/* This function converts a 1-channel image to a 3-channel image */

IplImage* convert3channel(IplImage *toch)
{
IplImage* rot3ch1 = cvCreateImage(cvSize(toch->width, toch-
>height),IPL_DEPTH_8U,3);

CvScalar s, s1;

for (int i=0; i < toch->height; i++)
{
 for(int j=0; j < toch->width; j++)
 {

 s = cvGet2D(toch, i, j);
 if(s.val[0] > 0)
 {
 s1.val[0] = 255;
 s1.val[1] = 255;
 s1.val[2] = 255;
 }
 else
 {
 s1.val[0] = 0;
 s1.val[1] = 0;
 s1.val[2] = 0;
 }
 cvSet2D(rot3ch1,i,j,s1);

 }
 //std::cout << std::endl;
}

return rot3ch1;
}

