
CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 1

CS52600:

Information Security

Policy

13 September 2010

Prof. Chris Clifton

2

Security Policy

• What is a security policy?

– Defines what it means for a system to be
secure

• Formally: Partition system into

– Secure (authorized) states

– Non-secure (unauthorized) states

• Secure system:

– Starts in authorized state

– Can’t enter unauthorized state

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 2

3

Secure System - Example

• Is this Finite State Machine Secure?
– A and B are authorized states

– B is start state

– C is start state

– A, B, and C are authorized states

• A PC is just a big Finite State Machine:
– Is Microsoft Windows Secure?

A B C D

4

Additional Definitions:

• Breach of security
– Transition causing system to enter unauthorized state

• Let X be a set of entities, I be information.
– I has confidentiality with respect to X if no member

of X can obtain information on I

– I has integrity with respect to X if all members of X
trust I

– I has availability with respect to X if all members of X
can access I

• Security Policy defines all of the above
– Now just need to define obtain, trust, access

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 3

5

Confidentiality Policy

• What does ―obtain‖ information mean?

• Formally: information flow

– Transfer of rights

– Transfer of information without transfer of
rights

• Model often depends on trust

– Parts of system where information could flow

– Trusted entity must participate to enable flow

• Highly developed in Military/Government

6

Integrity Policy

• Defines how information can be altered

– Entities allowed to alter data

– Conditions under which data can be altered

– Limits to change of data

• Examples:

– Purchase over $1000 requires signature

– Check over $10,000 must be signed by two officers

• Separation of duties

• Highly developed in commercial world

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 4

7

Availability Policy

• Defines what it means for information to

be accessible

– Time limits (quality of service)

– Access methods

• On-line access vs. telephone vs. mail

• Integrity and availability may interrelate

– Fast old copy vs. slow current version

8

Security Mechanism

• Policy describes what is allowed

• Mechanism enforces (part of) policy

The two need not be the same!

• Example Policy: Students should not copy
homework

– Mechanism: Disallow access to files owned
by other users

• Does mechanism enforce policy?

– Is mechanism too strict?

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 5

9

Security Model

• Security Policy: What is/isn’t authorized

• Problem: Policy specification often

informal

– Implicit vs. Explicit

– Ambiguity

• Security Model: Model that represents a

particular policy (policies)

– Model must be explicit, unambiguous

10

Trust

• Trusted Entity

– Entity that can violate security

• What are typical Trusted Entities?

– People with access to information

– System developers

– Hardware

– ?

Where does it end?

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 6

11

Common Mechanisms:

Access Control

• Discretionary Access Control (DAC)
– Owner determines access rights

– Typically identity-based access control: Owner specifies other
users who have access

• Mandatory Access Control (MAC)
– Rules specify granting of access

– Also called rule-based access control

• Originator Controlled Access Control (ORCON)
– Originator controls access

– Originator need not be owner!

• Role Based Access Control (RBAC)
– Identity governed by role user assumes

12

Policy Languages

• Security Policy isn’t enough
– Need to express it to get Policy Model

• Policy Language: Means of expression

• High-level: Independent of mechanisms
– Example: Domain-Type Enforcement Language

• Subjects partitioned into domains

• Objects partitioned into types

• Each domain has set of rights over each type

• Low-level: Acts on mechanisms
– Example: Tripwire: Flags what has changed

• Configuration file specifies settings to be checked

• History file keeps old (good) example

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 7

13

Creating a Secure System

• Can we make it

secure?

– Easy!

• But can we make it

precise?

• Next Time: Model

allowing us to capture

this

secureprecise

set of reachable states

set of secure states

CS52600:

Information Security

Policy

15 September 2010

Prof. Chris Clifton

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 8

15

Modeling Secure/Precise:

Confidentiality (Jones and Lipton ‘75)

• What are we modeling? A program
– p: I1 … In R is a program

• Defined in terms of inputs and outputs

– Goal: Determine if p can violate confidentiality

• Observability
– Output of function p(i1,…,in) encodes all available

information on inputs i1,…,in
– Output may include things not normally thought of as

part of function result
• Data accessed

• Timing

• Anything that can be observed

16

Modeling Secure/Precise:

Confidentiality

• Protection Mechanism
m: I1 … In R E such that:

– m(i1,…,in) = p(i1,…,in), or
• Acceptable result

– m(i1,…,in) E
• Protection violation (result of p would disclose

confidential information)

• Confidentiality Policy for program p:
c: I1 … In A

– A I1 … In is inputs that can be revealed

http://doi.acm.org/10.1145/800213.806538
http://doi.acm.org/10.1145/800213.806538

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 9

17

Modeling Secure/Precise:

Confidentiality

• Secure Program: Given confidentiality

policy c for program p, and mechanism m

for p

– m is secure iff m’:A R E such that

ik Ik, m(i1, …, in) = m’(c(i1, …, in))

• What does this mean?

– Must be able to generate results from non-

confidential inputs

18

Modeling Secure/Precise:

Confidentiality

• m1 as precise as m2 if ik Ik
– m2(i1, …, in) = p(i1, …, in)

m1(i1, …, in) = p(i1, …, in)

– Write m1 ≈ m2

• m1 more precise than m2 if ik Ik s.t.

– m1(i1, …, in) = p(i1, …, in)

– m2(i1, …, in) p(i1, …, in)

– Write m1 ~ m2

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 10

19

Modeling Secure/Precise:

Confidentiality

• m3 = m1 m2 defined as

– p(i1, …, in) when m1(i1, …, in) = p(i1, …, in) or

m2(i1, …, in) = p(i1, …, in)

– else m1(i1, …, in)

– Less restrictive than either

• Theorem: if m1 and m2 secure,

– m1 m2 secure

– m1 m2 ≈ m1 and m1 m2 ≈ m2

20

Modeling Secure/Precise:

Confidentiality

• Theorem: if m1 and m2 secure,

– m1 m2 secure

– m1 m2 ≈ m1 and m1 m2 ≈ m2

• Proof Sketch

– Result = result of p
• Only if same as m1 or m2

• m1 and m2 secure

– Result = result of m1

• m1 secure

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 11

21

Modeling Secure/Precise:

Confidentiality

• Theorem: Given p and c, a precise, secure
mechanism m* such that secure m for p and c, m* ≈ m
– Proof: Induction from previous theorem

• Theorem: Impossible to construct m*
– Proof: Reduction from Halting Problem

– c = constant function (reveal no information)

– p such that m either non-constant or undefined

• Non-constant not allowed

• Undefined corresponds to p halts

– Contradiction: Either m non-constant, or we know p halts

• p defined as in halting problem

22

Modeling Secure/Precise:

Integrity

• Integrity Policy: Set of valid outputs for
given input

• Mechanism: Given program, policy,
produce output allowed by policy

– Program output if allowed

– Valid output otherwise
• probably includes error

• Precision: Does mechanism produce
program result whenever allowed?

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 12

CS52600:

Information Security

Bell-LaPadula Model

17 September, 2010

Prof. Chris Clifton

24

Confidentiality Policy:

Bell-LaPadula Model

• Formally models military-style
classification

– Multi-level access control

• Mandatory Access Control

– Clearance

• Discretionary Access Control

– Need to Know

• First real attempt to model and prove
security of real systems

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 13

25

Bell-LaPadula: Basics

• Mandatory access control (Security Level)

– Subject has clearance L(S) = ls

– Object has classification L(O) = lo

– Clearance/Classification ordered

• li < li+1

• Discretionary access control

– Matrix: Subject has read (write) on Object

• Need both to perform operation

26

Access Rules

(Preliminary)

• S can read O if and only if
– lo ≤ ls and

– S has discretionary read access to O

• S can write O if and only if
– ls ≤ lo and

– S has discretionary write access to O

• Secure system: One with above properties

• Theorem: Let Σ be a system with secure initial state σ0,
T be a set of state transformations
– If every element of T follows rules, every state σi secure

– Proof - induction

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 14

27

Categories

• Total order of classifications not flexible enough
– Alice cleared for missiles

– Bob cleared for warheads

– Both cleared for targets

• Solution: Categories
– Set of compartments

– S can access O if C(S) C(O)

• Combining with clearance:
– (L,C) dominates (L’,C’) L’ ≤ L and C’ C

– Induces lattice instead of levels

28

Access Rules

• Simple Security Condition: S can read O if and
only if
– S dom O and

– S has discretionary read access to O

• *-Property: S can write O if and only if
– O dom S and

– S has discretionary write access to O

• Secure system: One with above properties

• Theorem: Let Σ be a system with secure initial
state σ0, T be a set of state transformations
– If every element of T follows rules, every state σi

secure

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 15

29

Problem: No write-down

Cleared subject can’t talk to non-cleared subject

• Any write from li to lk, i > k, would violate *-
property
– Subject at li can only write to li and above

• Any read from lk to li, i > k, would violate simple
security property
– Subject at lk can only read from lk and below

• Subject at level i can’t write something readable
by subject at k
– Not very practical

30

Solution: Active Level

• Subject has maximum and current level

– Maximum must dominate current

– Rules apply to current security level

• What does this mean for security?

– Subject is trusted when maximum current

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 16

31

Instantiating the Model

• What must be defined?

– Levels

– Categories

– Subjects, objects

– Meaning of read and write

33

Formalizing Bell-LaPadula:

System consists of

• Set of subjects S

• Set of objects O

• Set of rights P = { r (read), a (write), w (read/write),
e (empty)}

• Set of possible access control matrices M

• Set of classifications C

• Set of categories K
• Levels L = C K

• Set F of tuples (fs, fo, fc) representing
– fs: Maximum security level of subject

– fo: Security level of object

– fc: Current security level of subject

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 17

34

Formalizing Bell-LaPadula

• Objects in a hierarchy h: O P(O)
– oi oj h(oi) h(oj) = (no two nodes at same point)

– There is no { o1, o2, …, ok } O such that i = 1,…,k, oi+1 h(oi) and
ok+1 = o1 (no cycles)

• State v V is a 4-tuple (b,m,f,h)
– b P(S O P) indicates which subjects can access which objects

and what the rights are

• R denotes requests for access

• D set of outcomes
– yes, no, illegal, error

• Actions W R D V V
– Request leads to outcome, moving from one state to another

• System Σ(R, D, W, z0) RN DN VN

– Set of states that result from a given set of actions

– (r,d,v,v’) W an action of Σ iff time t, (x,y,z) Σ such that
(r,d,v,v’) = (xt,yt,zt,zt-1)

35

A System is Secure if it Satisfies:

• Simple security condition satisfied for
(s, o, p) S O P relative to f iff
– p = e or p = a

– p = r or p = w and fs(s) dom fo(o)

• *-property satisfied for (b, m, f, h) iff s S
– b(s:a) [o b(s: a) [fo(o) dom fc(s)]]

– b(s:w) [o b(s: w) [fo(o) = fc(s)]]

– b(s:r) [o b(s: r) [fc(s) dom fo(o)]]

• Discretionary security property satisfied for
(b, m, f, h) iff (s, o, p) b, p m[s,o]

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 18

37

Theorem:

Simple Security Condition

• Σ(R, D, W, z0) satisfies simple security condition

for any secure z0 iff actions

(r, d, (b, m, f, h), (b’, m’, f’, h’)), W satisfies

– (s, o, p) b – b’ ssc satisfied relative to f

– (s, o, p) b’ not satisfying ssc relative to f,

• (s, o, p) b

• Proof:

– If: Induction – each transition maintains secure state

– Only if: A transition from a secure to non-secure state

requires an action not satisfying ssc

38

Theorem:

*-property

• Σ(R, D, W, z0) satisfies *-property relative to S’
S for any secure z0 iff actions
(r, d, (b, m, f, h), (b’, m’, f’, h’)), W satisfies s
S’
– (s, o, p) b – b’, *-property satisfied for S’

– (s, o, p) b not satisfying *-property for S’,
• (s, o, p) b’

• Proof similar

• Similar theorem for ds-property

• Basic Security Theorem: Σ(R, D, W, z0) secure if
z0 secure and W satisfies conditions of above
theorems

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 19

CS526: Information Security

Chris Clifton

20 September 2010

Bell-LaPadula Model:

Application to Multics

40

Transformation Rules

• ρ:R V D V

– Takes request and state, produces outcome and state

• ρ is ssc-preserving if (r,v) R V where v

satisfies ssc rel f,

– ρ(r,v) = (d,v’) v’ satisfies ssc rel f’

• ω = {ρ1, …, ρm }. For r R, d D, and v,v’ V

– (r, d, v, v’) W(ω) d i and 1≤i ≤m such that

ρi(r,v) = (d,v’)

– If request is legal and only one rule causes change,

corresponding action exists

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 20

41

Transformation Theorems

• Let ω be a set of ssc-preserving rules, z0 a
state satisfying ssc.

– Σ(R, D, W(ω), z0) satisfies the simple security
condition

• Proof: Assume zt not secure, zt-1 secure.

– Forces rule not meeting ssc-preserving rule
definition

• Similar definitions, theorems for other
properties

43

Multics: Background

• Early time-sharing operating system
– Previous computers processed batch jobs one at a

time
• Security policy easy to enforce

– Time sharing introduces new challenges

• Five categories of rules
– Requests for access

– Permission granting

– Object reclassification

– Delete object

– Subject reclassification

• Trusted users: *-property not enforced

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 21

44

Rule List

(all rules return yes/no)

• Access requests: R(1) = Q S O M
– get-read, get-append, get-execute, get-write

– release-read, append, execute, write

• Permission granting: R(2) = S Q S O M
– give/rescind read/append/execute/write

• Object reclassification: R(3) = Q S O L
– create-object, change-object-security-level

• Delete object: R(4) = S O
– delete-object-group deletes object and children

• Subject reclassification: R(5) = S L
– change-subject-current-security-level

45

Modeling with Bell-LaPadula:

get-read

• r = (get, s, o, r) R(1) request

• v = (b, m, f, h) system state

• if (r Δ(ρ1)) then ρ1(r,v) = (i, v) bad arguments
else if (fs(s) dom fo(o) ssc preserving

and [s ST or fc(s) dom fo(o)] *-property
and r m[s,o]) discretionary access control

then ρ1(r,v) = (y, (b { (s, o, r) }, m, f, h))
else ρ1(r,v) = (n, v)

• Theorem: get-read is secure
– Assume v secure

– Either v’ = v, or v’ = v with { (s, o, r) } added to accesses
• (s, o, r) must satisfy security properties to reach where it is added

• Similar rules for get-append, execute, write

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 22

46

Modeling with Bell-LaPadula:

give-read

• Idea: give-read allowed if requester can write to parent of object
– Based on hierarchy of objects

– Special handling of root: set of subjects allowed requests

• r = (s1, give, s2, o, r) R(2), v = (b, m, f, h)

• if (r Δ(ρ6)) then ρ6(r,v) = (i, v)
else if ([o root(o) and parent(o) root(o) and parent(o) b(s1: w)
] or [parent(o) = root(o) and canallow(s1, o, v)]

or [o = root(o) and canallow(s1, root(o), v)])
then ρ6(r,v) = (y, (b, m + m[s2,o] r, f, h))
else ρ6(r,v) = (n, v)

• Theorem: give-read is secure
– Only possible change is to access control matrix

• No effect on mandatory access control policies

– discretionary security property definition: (s,o,p) b, p m[s,o]
• b = b’, m m’

47

Multics: Other Rules

• State v = (b, m, f, h)

• Create/reclassify

– What needs to be checked?

• Delete

– Does this affect mandatory access control?

• Change security level

• How do we model these?

– See the homework

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 23

48

Will this guarantee Multics is

Secure?

• Demonstrates design secure

– Implementation must enforce rules

• Reduces problem

– Smaller ―compartments‖ that must be
validated

• Examples

– Rule returns right answer

– access only if in b

– Others?

50

Announcements

• Mid-Semester Course Evaluation

– Open to Friday 10/1, I get summary results Monday after

that

– https://portals.cs.purdue.edu , Course Evaluation, Mid-

Semester Evaluations

• Midterm Wednesday 10/20

– In class?

– Or evening exam (in a larger room)?

• Assignment 4 should be out today

• Guest lecturer, Prof. Ninghui Li, Friday and Monday.

https://portals.cs.purdue.edu/
https://portals.cs.purdue.edu/

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 24

CS526: Information Security

Chris Clifton

22 September 2010

Bell-LaPadula Model:

Tranquility

52

Tranquility

• Classification changes make things
difficult

– Declassification violates properties

– What about increasing classification of
object?

• Principle of Strong Tranquility

– Security levels do not change

• Principle of Weak Tranquility

– Security level changes cannot violate policy

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 25

53

Follow-on work:

McLean

• Problems with Bell-LaPadula

• Basically, Bell-LaPadula trivial
– Definitions capture policy

– Only thing interesting is showing induction

• McLean proposed very similar policy
– Provably bad

– But not easy to see why not okay by Bell-LaPadula

• Key: Axiomatic vs. ―models real world‖
definitions of security

• Read discussion

54

Integrity Policy

• Principles:
– Separation of Duty: Single person can’t mess up the

system
• No coding on live system

– Separation of function
• No development on production data

– Auditing
• Controlled/audited process for updating code on production

system

• This enables validated code to maintain integrity
– But how do we ensure we’ve accomplished these?

– Is this overkill?

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 26

56

Biba’s Integrity Policy Model

• Based on Bell-LaPadula

– Subject, Objects

– Ordered set of Integrity Levels

• Higher levels are more reliable/trustworthy

• Information transfer path:

Sequence of subjects, objects where

– si r oi

– si w oi+1

57

Policies

• Ring Policy
– s r o

– s w o i(o) ≤ i(s)

– s1 x s2 i(s2) ≤ i(s1)

• Low-Water-Mark Policy
– s r o i’(s) = min(i(s), i(o))

– s w o i(o) ≤ i(s)

– s1 x s2 i(s2) ≤ i(s1)

• Biba’s Model: Strict Integrity Policy
– s r o i(s) ≤ i(o)

– s w o i(o) ≤ i(s)

– s1 x s2 i(s2) ≤ i(s1)

• Theorem for induction similar to Bell-LaPadula

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 27

58

Lipner: Integrity Matrix

• Security Levels
– Audit: AM

• Audit/management functions

– System Low: SL

• Everything else

• Categories
– Development

– Production Code

– Production Data

– System Development

– Software Tools

• Not related to sensitive/protected data

• Follow Bell-LaPadula security properties

59

Lipner: Integrity Matrix

• Users:
– Ordinary (SL,{PC, PD})

– Developers (SL,{D,T})

– System Programmers (SL,{SD, T})

– Managers (AM,{D,PC,PD,SD,T})

– Controllers (SL,{D,PC,PD,SD,T}

• Objects
– Development code/data (SL,{D,T})

– Production code (SL,{PC})

– Production data (SL,{PC,PD})

– Tools (SL,{T})

– System Programs (SL,)

– System Program update (SL,{SD,T})

– Logs (AM, {…})

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 28

60

Clark/Wilson

• Transaction based
– State before/after transaction

• Consistency definitions
– What states of system are acceptable

• Well-Formed Transaction
– State before transaction consistent state after transaction

consistent

• Components
– Constrained Data Items

– Unconstrained Data Items

– Integrity Verification Procedures

– Transformation Procedures

61

Clark/Wilson:

Certification Rules

• When any IVP is run, it must ensure all CDIs are
in valid state

• A TP transforms a set of CDIs from a valid state
to another valid state
– Must have no effect on CDIs not in set

• Relations between (user, TP, {CDI}) must
support separation of duty

• All TPs must log undo information to append-
only CDI

• A TP taking a UDI as input must either reject it
or transform it to a CDI

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 29

62

Clark/Wilson:

Enforcement Rules

• System must maintain certified relations

– TP/CDI sets enforced

• System must control users

– user/TP/CDI mappings enforced

• Users must be authenticated to execute

TP

• Only certifier of a TP may change

associated CDI set

63

Domain-specific Policy Models

• Military Confidentiality

– Bell-LaPadula

• Database Integrity

– Clark/Wilson

• Corporate Anti-Trust

– Chinese Wall

• Clinical Information Systems

• Others?

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 30

64

Overview

• Chinese Wall Model

– Focuses on conflict of interest

• CISS Policy

– Combines integrity and confidentiality

• ORCON

– Combines mandatory, discretionary access controls

• RBAC

– Base controls on job function

65

Chinese Wall Model

• Supports confidentiality and integrity

• Models conflict of interest
– object sets CD

– conflict of interest sets COI

• Principle: Information can’t flow between items
in a COI set
– S can read O one of the following holds

• O’ PreviousRead(S) such that CD(O’) = CD(O)

• O’, O’ PR(S) COI(O’) COI(O), or

• O has been ―sanitized‖

See reading for more details

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 31

66

Chinese Wall Model

Problem:

– Tony advises American Bank about

investments

– He is asked to advise Toyland Bank about

investments

• Conflict of interest to accept, because his

advice for either bank would affect his

advice to the other bank

67

Organization

• Organize entities into ―conflict of interest‖
classes

• Control subject accesses to each class

• Control writing to all classes to ensure
information is not passed along in violation
of rules

• Allow sanitized data to be viewed by
everyone

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 32

68

Definitions

• Objects: items of information related to a
company

• Company dataset (CD): contains objects related
to a single company
– Written CD(O)

• Conflict of interest class (COI): contains datasets
of companies in competition
– Written COI(O)

– Assume: each object belongs to exactly one COI
class

69

Example

Bank of America

Citibank Bank of the West

Bank COI Class

Shell Oil

Union ’76

Standard Oil

ARCO

Gasoline Company COI Class

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 33

70

Temporal Element

• If Anthony reads any CD in a COI, he can

never read another CD in that COI

– Possible that information learned earlier may

allow him to make decisions later

– Let PR(S) be set of objects that S has already

read

71

CW-Simple Security Condition

• s can read o iff either condition holds:
1. There is an o such that s has accessed o and

CD(o) = CD(o)
– Meaning s has read something in o’s dataset

2. For all o O, o PR(s) COI(o) ≠ COI(o)
– Meaning s has not read any objects in o’s conflict of

interest class

• Ignores sanitized data (see below)

• Initially, PR(s) = , so initial read request
granted

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 34

72

Sanitization

• Public information may belong to a CD
– As is publicly available, no conflicts of interest

arise

– So, should not affect ability of analysts to read

– Typically, all sensitive data removed from such
information before it is released publicly (called
sanitization)

• Add third condition to CW-Simple Security
Condition:

3. o is a sanitized object

73

Writing

• Anthony, Susan work in same trading

house

• Anthony can read Bank 1’s CD, Gas’ CD

• Susan can read Bank 2’s CD, Gas’ CD

• If Anthony could write to Gas’ CD, Susan

can read it

– Hence, indirectly, she can read information

from Bank 1’s CD, a clear conflict of interest

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 35

74

CW-*-Property

• s can write to o iff both of the following
hold:

1. The CW-simple security condition permits
s to read o; and

2. For all unsanitized objects o , if s can read
o , then CD(o) = CD(o)

• Says that s can write to an object if all the
(unsanitized) objects it can read are in the
same dataset

75

Formalism

• Goal: figure out how information flows
around system

• S set of subjects, O set of objects, L =
C D set of labels

• l1:O C maps objects to their COI classes

• l2:O D maps objects to their CDs

• H(s, o) true iff s has or had read access to
o

• R(s, o): s’s request to read o

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 36

76

Axioms

• Axiom 7-1. For all o, o O,
if l2(o) = l2(o), then l1(o) = l1(o)

– CDs do not span COIs.

• Axiom 7-2. s S can read o O iff,
for all o O such that H(s, o), either

l1(o) ≠ l1(o) or l2(o) = l2(o)

– s can read o iff o is either in a different COI
than every other o that s has read, or in the
same CD as o.

77

More Axioms

• Axiom 7-3. H(s, o) for all s S and o

O is an initially secure state

– Description of the initial state, assumed

secure

• Axiom 7-4. If for some s S and all o O,

H(s, o), then any request R(s, o) is

granted

– If s has read no object, it can read any object

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 37

78

Which Objects Can Be Read?

• Suppose s S has read o O. If s can

read o O, o ≠ o, then l1(o) ≠ l1(o) or

l2(o) = l2(o).

– Says s can read only the objects in a single

CD within any COI

79

Proof

Assume false. Then

H(s, o) H(s, o) l1(o) = l1(o) l2(o) ≠ l2(o)

Assume s read o first. Then H(s, o) when s read o, so by

Axiom 7-2, either l1(o) ≠ l1(o) or l2(o) = l2(o), so

(l1(o) ≠ l1(o) l2(o) = l2(o)) (l1(o) = l1(o) l2(o) ≠ l2(o))

Rearranging terms,

(l1(o) ≠ l1(o) l2(o) ≠ l2(o) l1(o) = l1(o))

(l2(o) = l2(o) l2(o) ≠ l2(o) l1(o) = l1(o))

which is obviously false, contradiction.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 38

80

Lemma

• Suppose a subject s S can read an

object o O. Then s can read no o for

which l1(o) = l1(o) and l2(o) ≠ l2(o).

– So a subject can access at most one CD in

each COI class

– Sketch of proof: Initial case follows from

Axioms 7-3, 7-4. If o ≠ o, theorem

immediately gives lemma.

81

COIs and Subjects

• Theorem: Let c C and d D. Suppose there
are n objects oi O, 1 ≤ i ≤ n, such that l1(oi) = d
for 1 ≤ i ≤ n, and l2(oi) ≠ l2(oj), for 1 ≤ i, j ≤ n, i ≠ j.
Then for all such o, there is an s S that can
read o iff n ≤ |S|.
– If a COI has n CDs, you need at least n subjects to

access every object

– Proof sketch: If s can read o, it cannot read any o in
another CD in that COI (Axiom 7-2). As there are n
such CDs, there must be at least n subjects to meet
the conditions of the theorem.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 39

82

Sanitized Data

• v(o): sanitized version of object o

– For purposes of analysis, place them all in a

special CD in a COI containing no other CDs

• Axiom 7-5. l1(o) = l1(v(o)) iff l2(o) = l2(v(o))

83

Which Objects Can Be

Written?

• Axiom 7-6. s S can write to o O iff the

following hold simultaneously

1. H(s, o)

2. There is no o O with H(s, o), l2(o) ≠ l2(o), l2(o) ≠

l2(v(o)), l2(o) = l2(v(o)).

– Allow writing iff information cannot leak from one

subject to another through a mailbox

– Note handling for sanitized objects

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 40

84

How Information Flows

• Definition: information may flow from o to

o if there is a subject such that H(s, o) and

H(s, o).

– Intuition: if s can read 2 objects, it can act on

that knowledge; so information flows between

the objects through the nexus of the subject

– Write the above situation as (o, o)

85

Key Result

• Set of all information flows is
{ (o, o) | o O o O l2(o) = l2(o) l2(o) = l2(v(o)) }

• Sketch of proof: Definition gives set of flows:
F = {(o, o) | o O o O s S such that H(s, o) H(s, o))}

Axiom 7-6 excludes the following flows:
X = { (o, o) | o O o O l2(o) ≠ l2(o) l2(o) ≠ l2(v(o)) }

So, letting F* be transitive closure of F,
F* – X = {(o, o) | o O o O (l2(o) ≠ l2(o)

l2(o) ≠ l2(v(o))) }

which is equivalent to the claim.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 41

86

Compare to Bell-LaPadula

• Fundamentally different
– CW has no security labels, B-LP does

– CW has notion of past accesses, B-LP does not

• Bell-LaPadula can capture state at any time
– Each (COI, CD) pair gets security category

– Two clearances, S (sanitized) and U (unsanitized)
• S dom U

– Subjects assigned clearance for compartments
without multiple categories corresponding to CDs in
same COI class

87

Compare to Bell-LaPadula

• Bell-LaPadula cannot track changes over time
– Susan becomes ill, Anna needs to take over

• C-W history lets Anna know if she can

• No way for Bell-LaPadula to capture this

• Access constraints change over time
– Initially, subjects in C-W can read any object

– Bell-LaPadula constrains set of objects that a subject
can access

• Can’t clear all subjects for all categories, because this
violates CW-simple security condition

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 42

88

Compare to Clark-Wilson

• Clark-Wilson Model covers integrity, so
consider only access control aspects

• If ―subjects‖ and ―processes‖ are
interchangeable, a single person could use
multiple processes to violate CW-simple
security condition
– Would still comply with Clark-Wilson Model

• If ―subject‖ is a specific person and includes
all processes the subject executes, then
consistent with Clark-Wilson Model

89

Clinical Information Systems

Security Policy

• Intended for medical records
– Conflict of interest not critical problem

– Patient confidentiality, authentication of records and
annotators, and integrity are

• Entities:
– Patient: subject of medical records (or agent)

– Personal health information: data about patient’s
health or treatment enabling identification of patient

– Clinician: health-care professional with access to
personal health information while doing job

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 43

90

Assumptions and Principles

• Assumes health information involves 1

person at a time

– Not always true; OB/GYN involves father as

well as mother

• Principles derived from medical ethics of

various societies, and from practicing

clinicians

91

Access

• Principle 1: Each medical record has an
access control list naming the individuals
or groups who may read and append
information to the record. The system
must restrict access to those identified on
the access control list.

– Idea is that clinicians need access, but no-one
else. Auditors get access to copies, so they
cannot alter records

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 44

92

Access

• Principle 2: One of the clinicians on the

access control list must have the right to

add other clinicians to the access control

list.

– Called the responsible clinician

93

Access

• Principle 3: The responsible clinician must
notify the patient of the names on the
access control list whenever the patient’s
medical record is opened. Except for
situations given in statutes, or in cases of
emergency, the responsible clinician must
obtain the patient’s consent.

– Patient must consent to all treatment, and
must know of violations of security

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 45

94

Access

• Principle 4: The name of the clinician, the
date, and the time of the access of a
medical record must be recorded. Similar
information must be kept for deletions.

– This is for auditing. Don’t delete information;
update it (last part is for deletion of records
after death, for example, or deletion of
information when required by statute). Record
information about all accesses.

95

Creation

• Principle: A clinician may open a record,
with the clinician and the patient on the
access control list. If a record is opened as
a result of a referral, the referring clinician
may also be on the access control list.

– Creating clinician needs access, and patient
should get it. If created from a referral,
referring clinician needs access to get results
of referral.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 46

96

Deletion

• Principle: Clinical information cannot be

deleted from a medical record until the

appropriate time has passed.

– This varies with circumstances.

97

Confinement

• Principle: Information from one medical

record may be appended to a different

medical record if and only if the access

control list of the second record is a subset

of the access control list of the first.

– This keeps information from leaking to

unauthorized users. All users have to be on

the access control list.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 47

98

Aggregation

• Principle: Measures for preventing aggregation
of patient data must be effective. In particular, a
patient must be notified if anyone is to be added
to the access control list for the patient’s record
and if that person has access to a large number
of medical records.
– Fear here is that a corrupt investigator may obtain

access to a large number of records, correlate them,
and discover private information about individuals
which can then be used for nefarious purposes (such
as blackmail)

99

Enforcement

• Principle: Any computer system that
handles medical records must have a
subsystem that enforces the preceding
principles. The effectiveness of this
enforcement must be subject to evaluation
by independent auditors.

– This policy has to be enforced, and the
enforcement mechanisms must be auditable
(and audited)

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 48

100

Compare to Bell-LaPadula

• Confinement Principle imposes lattice

structure on entities in model

– Similar to Bell-LaPadula

• CISS focuses on objects being accessed;

B-LP on the subjects accessing the

objects

– May matter when looking for insiders in the

medical environment

101

Compare to Clark-Wilson

– CDIs are medical records

– TPs are functions updating records, access control lists

– IVPs certify:
• A person identified as a clinician is a clinician;

• A clinician validates, or has validated, information in the
medical record;

• When someone is to be notified of an event, such notification
occurs; and

• When someone must give consent, the operation cannot
proceed until the consent is obtained

– Auditing (CR4) requirement: make all records append-
only, notify patient when access control list changed

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 49

102

ORCON

• Problem: organization creating document

wants to control its dissemination

– Example: Secretary of Agriculture writes a

memo for distribution to her immediate

subordinates, and she must give permission

for it to be disseminated further. This is

―originator controlled‖ (here, the ―originator‖ is

a person).

103

Requirements

• Subject s S marks object o O as ORCON on

behalf of organization X. X allows o to be

disclosed to subjects acting on behalf of

organization Y with the following restrictions:

1. o cannot be released to subjects acting on behalf

of other organizations without X’s permission; and

2. Any copies of o must have the same restrictions

placed on it.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 50

104

DAC Fails

• Owner can set any desired permissions

– This makes 2 unenforceable

105

MAC Fails

• First problem: category explosion
– Category C contains o, X, Y, and nothing else. If a

subject y Y wants to read o, x X makes a copy o .
Note o has category C. If y wants to give z Z a
copy, z must be in Y—by definition, it’s not. If x wants
to let w W see the document, need a new category
C containing o, X, W.

• Second problem: abstraction
– MAC classification, categories centrally controlled,

and access controlled by a centralized policy

– ORCON controlled locally

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 51

106

Combine Them

• The owner of an object cannot change the
access controls of the object.

• When an object is copied, the access control
restrictions of that source are copied and bound
to the target of the copy.
– These are MAC (owner can’t control them)

• The creator (originator) can alter the access
control restrictions on a per-subject and per-
object basis.
– This is DAC (owner can control it)

108

RBAC

• Access depends on function, not identity

– Example:

• Allison, bookkeeper for Math Dept, has access to

financial records.

• She leaves.

• Betty hired as the new bookkeeper, so she now

has access to those records

– The role of ―bookkeeper‖ dictates access, not

the identity of the individual.

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 52

109

Definitions

• Role r: collection of job functions
– trans(r): set of authorized transactions for r

• Active role of subject s: role s is currently in
– actr(s)

• Authorized roles of a subject s: set of roles s is
authorized to assume
– authr(s)

• canexec(s, t) iff subject s can execute
transaction t at current time

110

Axioms

• Let S be the set of subjects and T the set of
transactions.

• Rule of role assignment: (s
S)(t T) [canexec(s, t) actr(s) ≠].

– If s can execute a transaction, it has a role

– This ties transactions to roles

• Rule of role authorization: (s
S) [actr(s) authr(s)].

– Subject must be authorized to assume an active role
(otherwise, any subject could assume any role)

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 53

111

Axiom

• Rule of transaction authorization: (s

S)(t T)

[canexec(s, t) t trans(actr(s))].

– If a subject s can execute a transaction, then

the transaction is an authorized one for the

role s has assumed

112

Containment of Roles

• Trainer can do all transactions that trainee

can do (and then some). This means role r

contains role r (r > r). So:

(s S)[r authr(s) r > r r authr(s)]

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 54

113

Separation of Duty

• Let r be a role, and let s be a subject such that r

auth(s). Then the predicate meauth(r) (for

mutually exclusive authorizations) is the set of

roles that s cannot assume because of the

separation of duty requirement.

• Separation of duty:

(r1, r2 R) [r2 meauth(r1)

[(s S) [r1 authr(s) r2 authr(s)]]]

114

Key Points

• Hybrid policies deal with both

confidentiality and integrity

– Different combinations of these

• ORCON model neither MAC nor DAC

– Actually, a combination

• RBAC model controls access based on

functionality

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 55

CS526: Information Security

Chris Clifton

September 28, 2004

Noninterference

116

Problem: Consistent Policies

• Policies defined by different organizations

– Different needs

– But sometimes subjects/objects overlap

• Can all policies be met?

– Different categories

• Build lattice combining them

– Different security levels

• Need to be levels – thus must be able to order

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 56

117

What is Consistent?

• Principle of autonomy:

– Access allowed by security policy of a

component must be allowed by composition

• Principle of security:

– Access denied by security policy of a

component must be denied by composition

• Must prove new ―composed‖ policy meets

these principles

118

Interference

• Expanded notion of ―write‖
– noninterference ―single subject‖ view of the system

– Any evidence of another subject acting corresponds
to write

• Noninterference Definition – A,G :| G’ :
– G, G’ Subjects, A C (commands)

– cS C*, s G’:
• proj(s,cS, σi) = proj(s,πG,A(cS),σi)

• Security Policy: Set of noninterference
assertions
– Example: How do you prevent write-down?

CS18000: Programming I 9/22/2010

© 2010 Chris Clifton 57

119

Key Theorem: Unwinding

• Induction property for interference: For policy r,
non-interference secure if
– output consistent: Given a command, the output seen

under r for subjects not granted rights under r for any
command c is the same for any initial states that
appear the same to that subject

– transition consistent: If the view of subjects under r of
two states is the same, then the view of the system
states after the same command applied to both is the
same

– Locally respects r: View of state after a command is
the same as the view before the command

