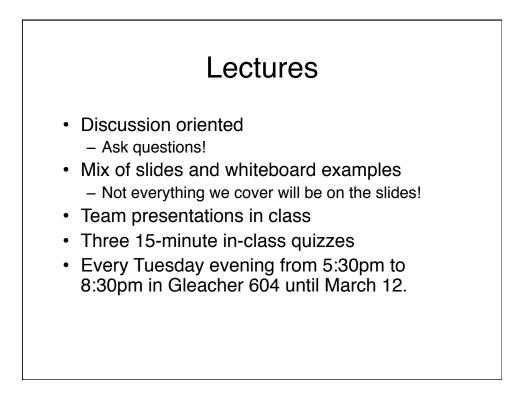
CSPP 53017: Data Warehousing Winter 2013

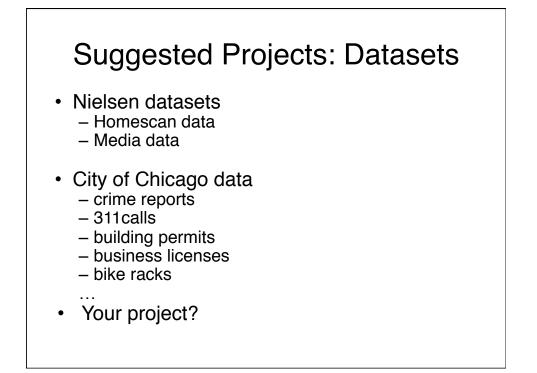

Lecture 1 Svetlozar Nestorov

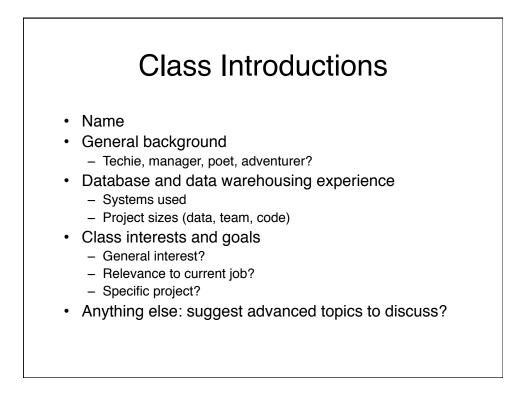
Class Organization

- Lectures
- Mailing list
- Office hours
- Homework
- Team Projects
- Team Presentations
- Quizzes
- Grades

Class Details

- Recommended books:
 - The Data Warehouse Toolkit (2nd edition)
 - The Data Warehouse Lifecycle Toolkit (2nd edition)
 - The Data Warehouse ETL Toolkit
 - all three books by Kimball and Ross
 - Building the Data Warehouse (4th edition) by Inmon
- Gradiance
 - Online homework and assessment system.
- Emails
 - Please, use csppdw in the subject of your email.

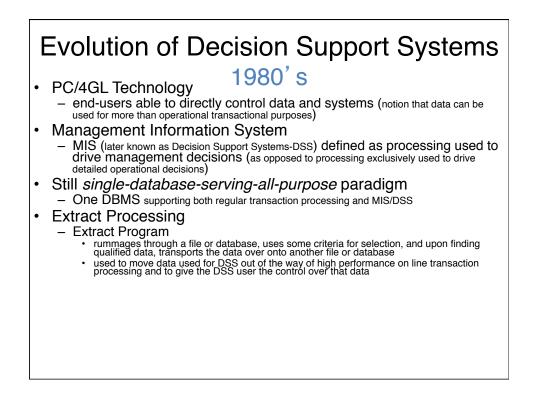



Course Work

- Occasional online homework
 - Solve and submit online on Gradiance.
 - Class token: EFEE5549
- Weekly multipart project:
 - Design and develop a (limited) real world data warehouse
- Exams: 3 in-class 15-minute quizzes

Class Overview

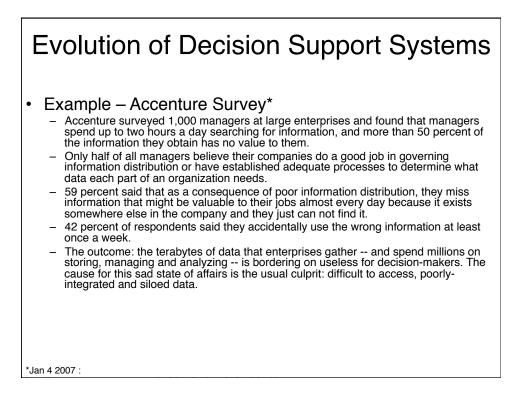
- Data warehousing history and motivation
- · Basic elements and processes
- The Lifecycle approach
- · Data design: dimensional modeling and the star schema
- On-Line Analytical Processing (OLAP)
- · ETL design and development
- Metadata
- DW growth and development
- Data mining



Initial Terminology

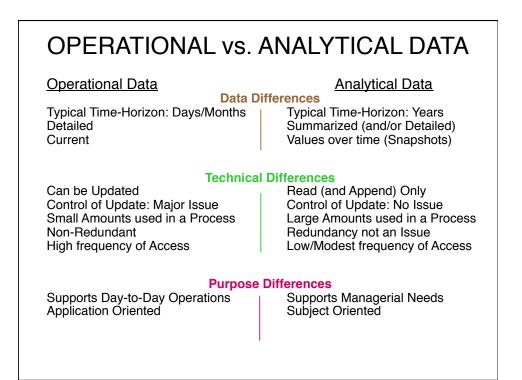
- DBMS Data Base Management Systems
- DSS Decision Support Systems
 - systems that facilitate data processing used to drive management decisions (as opposed to transaction processing exclusively used to drive detailed operational decisions)

Evolution of Decision Support Systems 1970's


- DASD
 - Direct Access Storage Devices
- DBMS
 - Data Base Management Systems
- OLTP On Line Transaction Processing A type of computer processing in which the computer responds <u>immediately</u> to user requests
- OLTP on Databases
- Database defined as a single source of data for all processing

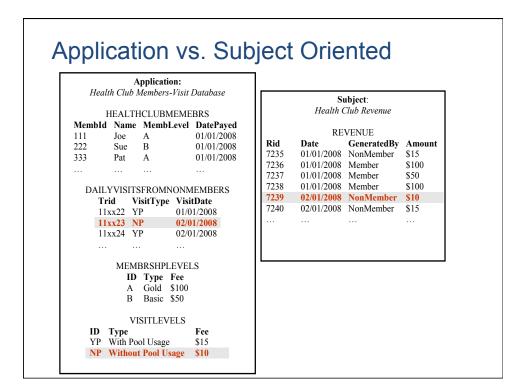
Evolution of Decision Support Systems 1990's

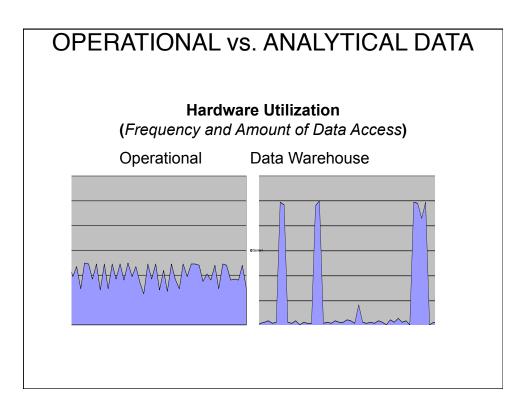
- Proliferation of Extracts
 - Extracts everywhere (and extracts of extracts, and extracts of extracts, and ...)
- Productivity Problems
 - In order to write a corporate report
 - Data must be located
 - Lots of customized programs must be written
 - The programs must cross every technology that the company has
- Often, inability to go from Data to Information
 - Due to the following:
 - Data Applications were built to serve the needs of current transaction processing
 - They were never designed to hold the historical data needed for DSS analysis


Evolution of Decision Support Systems Early 1990's • Lack of Credibility of Data E.g. Market share activity report done by 2 analysts - No common time basis for data (e.g. one analyst extracts data on Monday morning, another extracts data on Wednesdäy afternoon) - Algorithmic differential (e.g. one analyst extracts data on all sales, another extracts data on all food related sales) - The levels of extraction - each additional level of extraction increases the probability of discrepancy (e.g. one analyst uses an extract, another uses an extract of an extract) - External data (e.g. one analyst is bringing in Wall Street Journal data, another is bringing in Business Week data, and they both strip the data identity) - No common source of data (e.g. analysts are extracting data from different databases within the company) Final Result: Analyst A Analyst B Activity is up 10% Activity is down 15%

Evolution of Decision Support Systems

- Approach Change
 - Realization that Naturally Evolving Architecture (direct result of extract processing method) is not sufficient
- Architected Environment
 - Recognition that there are fundamentally two kinds of data
 - OPERATIONAL DATA
 - ANALYTICAL DATA
 - Data Warehouse emerged as the New DSS Architecture

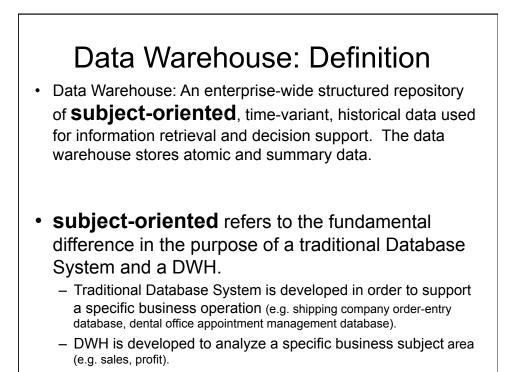




11xx23 NP 0 11xx24 YP 0 	sit Database MBERS vel DatePayed 01/01/2008 01/01/2008 NMEMBERS /isitDate 1/01/2008 2/01/2008 2/01/2008 VELS	Rid 7235 7236 7237 7238 7239 7240 	01/01/2008 01/01/2008 01/01/2008 02/01/2008	Member	Amount \$15 \$100 \$50 \$100 \$10 \$15
ID Type Fe A Gold \$1 B Basic \$5	00				
VISITLEVEL ID Type YP With Pool Usage NP Without Pool Usage	Fee \$15				

Application: Health Club Members-Visit Database HEALTHCLUBMEMBERS Membld Name MembLevel DatePayed 111 Joe A 01/01/2008 222 Sue B 01/01/2008 333 Pat A 01/01/2008 DAILYVISITSFROMNONMEMBERS Trid VisitType VisitDate 11xx22 YP 01/01/2008 11xx23 NP 02/01/2008 11xx24 YP 02/01/2008	Subject: Health Club Revenue REVENUE Rid Date GeneratedBy Amount 7235 01/01/2008 NonMember \$15 7236 01/01/2008 Member \$100 7237 01/01/2008 Member \$50 7238 01/01/2008 Member \$100 7239 02/01/2008 NonMember \$10 7240 02/01/2008 NonMember \$15
MEMBRSHPLEVELS ID Type Fee A Gold \$100 B Basic \$50 VISITLEVELS ID Type Fee YP With Pool Usage \$15 NP Without Pool Usage \$10	

HEA Membld N 111 Ju 222 S 333 Pa 	ae B at A	MEBRS el DatePayed 01/01/2008 01/01/2008 01/01/2008 	Rid 7235 7236 7237 7238	Health 0 RE 01/01/2008 01/01/2008 01/01/2008	Member	\$15 \$100 \$50
Trid 11xx2 11xx2 11xx2	3 NP 0. 4 YP 0.	isitDate 1/01/2008 2/01/2008 2/01/2008	7238 7239 7240		Member NonMember NonMember	\$100 \$10 \$15
Ν	MEMBRSHPLEV ID Type Fee A Gold \$10 B Basic \$50 VISITLEVEL	e 00)				


 Data Warehouse: An enterprise-wide structured repository of subject-oriented, time-variant, historical data used for information retrieval and decision support. The data warehouse stores atomic and summary data.

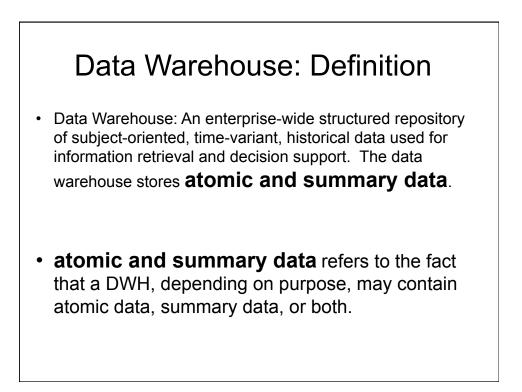
Bill Inmon (paraphrased by Oracle Data Warehouse Method)

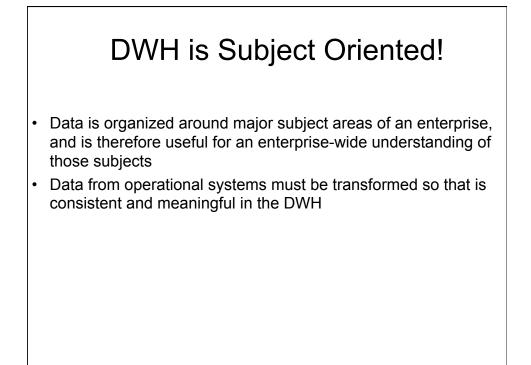
Data Warehouse: Definition

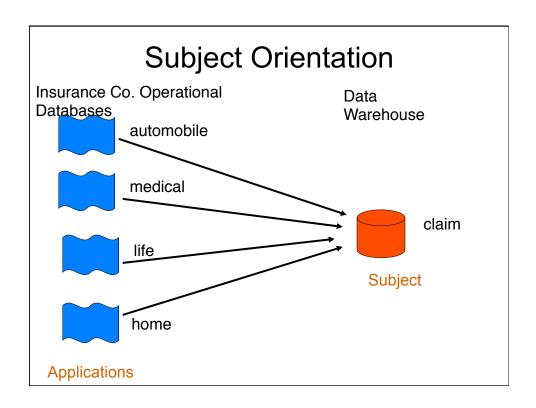
- Data Warehouse: An **enterprise-wide** structured repository of subject-oriented, time-variant, historical data used for information retrieval and decision support. The data warehouse stores atomic and summary data.
- enterprise-wide refers to the fact that a DWH provides a company-wide view of the information it contains

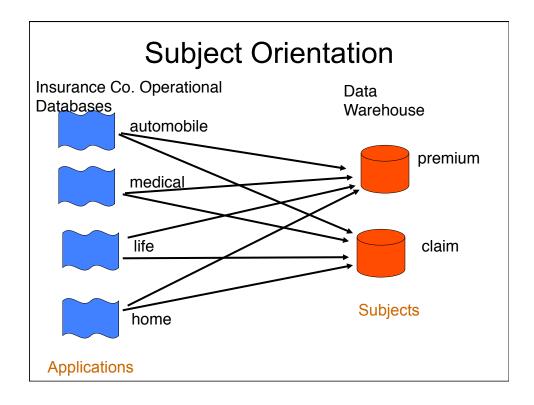
- Data Warehouse: An enterprise-wide **structured repository** of subject-oriented, time-variant, historical data used for information retrieval and decision support. The data warehouse stores atomic and summary data.
- structured repository refers to the fact that a DWH is a structured data repository like any other database

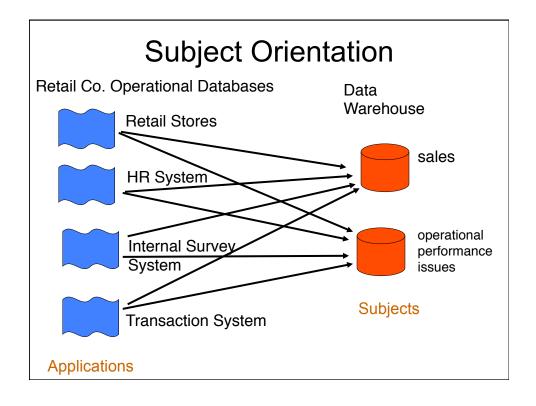
- Data Warehouse: An enterprise-wide structured repository of subject-oriented, time-variant, historical data used for information retrieval and decision support. The data warehouse stores atomic and summary data.
- time-variant refers to the fact that a DWH contains slices of data across different periods of time. With these data slices, the user can view reports based on current as well as past data.


Data Warehouse: Definition


- Data Warehouse: An enterprise-wide structured repository of subject-oriented, time-variant, **historical** data used for information retrieval and decision support. The data warehouse stores atomic and summary data.
- historical refers to the fact that a DWH typically contains several years worth of data (as opposed to the typical 60-90 days time horizon for data in many traditional operational databases).


 Data Warehouse: An enterprise-wide structured repository of subject-oriented, time-variant, historical data used for information retrieval and decision support. The data warehouse stores atomic and


summary data.


• **information retrieval and decision support** refers to the fact that a DWH is a facility for getting information to answer questions (it is not meant for direct data entry; batch updates are the norm for refreshing data warehouses) of analytical and strategic nature

DW is Integrated!

- In many organizations, data resides in diverse independent systems, making it difficult to acquire meaningful information for analysis.
- In DWH data is completely integrated, even when the underlying sources store data differently
- Unfortunately, there is no magic wand
 - Instead we have the transformation and integration process (which involves ETL – extraction, transformation, and load)
 - Building the ETL infrastructure and using it to move data from source systems into a data warehouse (data staging) can be time consuming and costly
 - In many cases, the majority of time within a DWH project is spent on the data staging phase (building and utilizing ETL infrastructure)

Common Example of a Data Warehouse Purpose

- Data warehouse is often designed and implemented to answer TWO fundamental questions:
 - Who is buying what?
 - When and where are they doing so?
- More specific
 - Who [which customer] is buying [buying / using / delivering / shipping / ordering / returning] what [products / services] from where [outlet / store / clinic / branch] on what occasion [when], how [credit card / cash / check / exchange / debit] and why [causation]?

Some Uses of a Data Warehouse

- Airlines for aircraft deployment, analysis of route profitability, frequent flyer promotions, and maintenance
- Banks for promotion of products and services, and customer service
- · Health care for cost reduction
- Investment and insurance companies for customer analysis, risk assessment, and portfolio management
- Retail stores for buying pattern analysis, promotions, customer profiling, and pricing
- Telecommunications for product and service promotions.