
CS5412 / Lecture 22
Apache Spark and RDDs Kishore Pusukuri, Spring 2021

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 1

Recap

2

MapReduce
• For easily writing applications to process vast amounts of data in-

parallel on large clusters in a reliable, fault-tolerant manner
• Takes care of scheduling tasks, monitoring them and re-executes

the failed tasks

HDFS & MapReduce: Running on the same set of nodes 
compute nodes and storage nodes same (keeping data close
to the computation)  very high throughput

YARN & MapReduce: A single master resource manager, one
slave node manager per node, and AppMaster per application

Today’s Topics

3

•Motivation
•Spark Basics
•Spark Programming

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

History of Hadoop and Spark

4HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Apache Spark

5

Yet Another Resource
Negotiator (YARN)

Spark
Stream

Spark
SQL

Other
Applications

Data
Ingestion
Systems

e.g.,
Apache
Kafka,

Flume, etc
Ha doop NoSQL Da ta ba se (HBa se)

Ha doop Distributed File System (HDFS)

S3, Cassandra etc.,
other storage systems

Mesos etc.Spark Core
(Standalone
Scheduler)

Data
Storage

Resource
manager

Hadoop Spark

Processing

** Spark can connect to several types of cluster managers (either
Spark’s own standalone cluster manager, Mesos or YARN)

Spark ML

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Apache Hadoop Lacks Unified Vision

6

• Sparse Modules
• Diversity of APIs
• Higher Operational Costs

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Ecosystem: A Unified Pipeline

7

Note: Spark is not designed for IoT real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur
steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For IoT use cases, Spark would not be suitable.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With Spark , se r ious e f fo r t to s tandard ize a round the idea tha t peop le a re
writing pa ra lle l code tha t often runs for ma ny “cycles” or “ite ra tions” in
which a lot of reuse of informa tion occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the
informa tion be ing reused.

8HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

How this works

You express your applicat ion as a graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs
a ctua lly needed for the output you ha ve requested.

Then Spark can be told to cache the reusea ble informa tion e ither in
memory, in SSD stora ge or even on disk, ba sed on when it will be needed
again, how big it is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints
9HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Motivation (1)

10

MapReduce: The original scalable, general, processing
engine of the Hadoop ecosystem

• Disk-ba sed da ta processing fra mework (HDFS files)
• Persists inte rmedia te results to disk
• Da ta is re loa ded from disk with every query → Costly I/O
• Best for ETL like workloa ds (ba tch processing)
• Costly I/O → Not a ppropria te for ite ra tive or strea m

processing workloa ds

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Motivation (2)

11

Spark: General purpose computational framework that
substantially improves performance of MapReduce, but
retains the basic model

• Memory ba sed da ta processing fra mework → a voids costly
I/O by keeping inte rmedia te results in memory

• Levera ges distributed memory
• Remembers opera tions a pplied to da ta se t
• Da ta loca lity ba sed computa tion → High Performa nce
• Best for both ite ra tive (or strea m processing) a nd ba tch

workloa ds
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Motivation - Summa ry

12

Softwa re engineering point of view
 Ha doop code ba se is huge
 Contributions/Extensions to Ha doop a re cumbersome
 J a va -only hinders wide a doption, but J a va support is funda menta l

System/Fra mework point of view
 Unified pipe line
 Simplified da ta flow
 Fa ste r processing speed

Da ta a bstra ction point of view
 New funda menta l a bstra ction RDD
 Ea sy to extend with new opera tors
 More descriptive computing mode l

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Today’s Topics

13

•Motivation
•Spark Basics
•Spark Programming

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Basics(1)

14

Spa rk: Flexible , in-memory da ta processing fra mework written in Sca la

Goa ls:
• Simplic ity (Ea sie r to use):

 Rich APIs for Sca la , J a va , a nd Python

• Genera lity: APIs for diffe rent types of workloa ds
 Ba tch, Strea ming, Ma chine Lea rning, Gra ph

• Low La tency (Performa nce) : In-memory processing a nd
ca ching

• Fa ult-tole ra nce : Fa ults shouldn’t be specia l ca se

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Basics(2)

15

There a re two wa ys to ma nipula te da ta in Spa rk
• Spa rk She ll:

 Inte ra ctive – for lea rning or da ta explora tion
 Python or Sca la

• Spa rk Applica tions
 For la rge sca le da ta processing
 Python, Sca la , or J a va

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Core: Code Base (2012)

16HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Shell

17

The Spa rk She ll provides inte ra ctive da ta explora tion
(REPL)

REPL: Repeat/Evaluate/Print Loop

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Fundamentals

18

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an
application:

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Context (1)

19

•Every Spark application requires a spark context: the main
entry point to the Spark API

•Spark Shell provides a preconfigured Spark Context called “sc”

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Context (2)

20

•Standalone applications  Driver code  Spark Context
•Spark Context holds configuration information and represents
connection to a Spark cluster

Standalone Application
(Drives Computation)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Context (3)

21

Spa rk context works a s a c lient a nd represents connection to a Spa rk c luste r

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Fundamentals

22

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an application:

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Resilient Distributed Dataset (RDD)

23

The RDD(Resilient Distributed Dataset) is the fundamental unit of data in Spark: An
Immutable collection of objects (or records, or elements) that can be operated on “in
parallel” (spread across a cluster)
Resilient -- if data in memory is lost, it can be recreated

• Recover from node fa ilures
• An RDD keeps its linea ge informa tion  it ca n be recrea ted from

pa rent RDDs
Distributed -- processed a cross the c luste r

• Ea ch RDD is composed of one or more pa rtitions  (more pa rtitions –
more pa ra lle lism)

Dataset -- initia l da ta ca n come from a file or be crea ted

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs

24

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

• Orga nize the RDDs into a DAG showing how da ta flows.
• RDD ca n be sa ved a nd reused or recomputed. Spa rk ca n

sa ve it to disk if the da ta se t does not fit in memory
• Built through pa ra lle l tra nsforma tions (ma p, filte r, group-by,

join, e tc). Automa tica lly rebuilt on fa ilure
• Controlla ble persistence (e .g. ca ching in RAM)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs are designed to be “immutable”

25

• Crea te once , then reuse without cha nges. Spa rk knows
linea ge  ca n be recrea ted a t a ny time  Fa ult-tole ra nce

• Avoids da ta inconsistency problems (no simulta neous
upda tes)  Correctness

• Ea sily live in memory a s on disk  Ca ching  Sa fe to sha re
a cross processes/ta sks  Improves performa nce

• Tra deoff: (Fault-tolerance & Correctness) vs (Disk Memory & CPU)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Creating a RDD

26

Three wa ys to crea te a RDD
• From a file or se t of file s
• From da ta in memory
• From a nother RDD

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: A File-ba sed RDD

27HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Fundamentals

28

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an application:

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Operations

29

Two types of operations
Transformations: Define a
new RDD based on current
RDD(s)
Actions: return values

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Transformations

30

•Set of operations on a RDD that define how they should
be transformed

•As in relational algebra, the application of a
transformation to an RDD yields a new RDD (because
RDD are immutable)

•Transformations are lazily evaluated, which allow for
optimizations to take place before execution

•Examples: map(), filter(), groupByKey(), sortByKey(),
etc.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: map and filter Transformations

31HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Actions

32

•Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

•Some actions only store data to an external data source (e.g.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the
driver

•Some common actions
count() – return the number of elements
take(n) – return an array of the first n elements
collect()– return an array of all elements
saveAsTextFile(file) – save to text file(s)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Graph of RDDs

 A collection of RDDs ca n be understood a s a gra ph

 Nodes in the gra ph a re the RDDs, which mea ns the code but a lso the
a ctua l da ta object tha t could would crea te a t runtime when executed on
specific pa ra mete rs + da ta . Reminder: Ha doop is a “rea d only” model, so
we ca n “ma te ria lize” a n RDD a ny time we like .

 Edges represent how da ta objects a re a ccessed: RDD B might consume
the object crea ted by RDD A. This gives us a directed edge A → B

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 33

Lazy Execution of RDDs (1)

34

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (2)

35

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (3)

36

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (4)

37

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (5)

38

Data in RDDs is not processed
until an action is performed

Output Action “triggers” computation, pull model

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Opportunities This Enables

 On-demand optimization : Spark can behave like a compiler by first building a
potentially complex RDD graph, but then trimming away unneeded
computations that for today’s purpose, won’t be used.

 Caching for later reuse.
 Graph transformations : A significant amount of effort is going into this area. It

is a lot like compiler-managed program transformation and aims at simplifying
and speeding up the computation that will occur.

 Dynamic decisions about what to schedule and when . Concept: minimum
adequate set of input objects: RDD can run if all its inputs are ready

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 39

Example: Mine error logs

40

Loa d e rror messa ges from a log into memory, then inte ra ctive ly
sea rch for va rious pa tte rns:

lines = spark.textFile(“hdfs://...”) HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR”)) FilteredRDD

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

Result: full-text sea rch of Wikipedia in 0.5 sec (vs 20 sec for on-disk da ta)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Key Idea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark wi l l sp read the t ask over the nodes where da ta res ides , o f fe r s a h igh ly
concurrent execution tha t minimizes de la ys. Term: “pa rtitioned computa tion” .

If some component crashes or even is just slow, Spark simply kil ls that task and
la unches a substitute .

41HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD and Partitions (Parallelism example)

42HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Graph: Data Set vs Partition Views

43

Much like in Hadoop MapReduce, each RDD is associated to
(input) partitions

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs: Data Locality

44

•Data Locality Principle
 Keep high-value RDDs precomputed, in cache or SDD
 Run tasks that need the specific RDD with those same inputs

on the node where the cached copy resides.
 This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs -- Summa ry

45

RDD a re pa rtitioned, loca lity a wa re , distributed
collections
 RDD a re immuta ble

RDD a re da ta structures tha t:
 Either point to a direct da ta source (e .g. HDFS)
 Apply some tra nsforma tions to its pa rent RDD(s) to

genera te new da ta e lements
Computa tions on RDDs
 Represented by la zily eva lua ted linea ge DAGs composed

by cha ined RDDs

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lifetime of a Job in Spark

46HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Anatomy of a Spark Application

47

Cluster Manager
(YARN/Mesos)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Typical RDD pattern of use
Instead of doing a lot of work in each RDD, developers split
ta sks into lots of sma ll RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute a nd
hints to Spa rk tha t it should ca che those .

48HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same
nodes.

If MapReduce jobs were arbi trary programs, this wouldn’t help because reuse
would be very ra re .

But in fac t the MapReduce mode l i s ve ry repe t i t ious and i t e ra t ive , and of ten
a pplies the sa me tra nsforma tions a ga in a nd a ga in to the sa me input file s.

 Those pa rticula r RDDs become grea t ca ndida tes for ca ching.

 Ma pReduce progra mmer ma y not know how ma ny ite ra tions will occur, but
Spa rk itse lf is sma rt enough to evic t RDDs if they don’t a ctua lly ge t reused.

49HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Iterative Algorithms: Spark vs MapReduce

50HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Today’s Topics

51

•Motivation
•Spark Basics
•Spark Programming

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (1)

52

Crea ting RDDs
Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (2)

53

Ba sic Tra nsforma tions

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (3)

54

Ba sic Actions
nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (4)

55

Working with Key-Va lue Pa irs
Spark’s “distributed reduce” transformations operate on RDDs of
key-value pairs

Python: pair = (a, b)

pair[0] # => a

pair[1] # => b

Scala: val pair = (a, b)

pair._1 // => a

pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a

pair._2 // => b
HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (5)

56

Some Key-Va lue Opera tions

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: Word Count

57

lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ “))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: Spark Streaming

58

Represents strea ms a s a se ries of RDDs over time (typica lly sub second inte rva ls, but it
is configura ble)

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))

.print()

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark: Combining Libraries (Unified Pipeline)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 59

Load data using Spark SQL

points = spark.sql(“select latitude, longitude from tweets”)

Train a machine learning model

model = KMeans.train(points, 10)

Apply it to a stream

sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a + b)

Spark: Setting the Level of Parallelism

60

All the pa ir RDD opera tions ta ke a n optiona l second
pa ra mete r for number of ta sks

words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Summary

Spark is a powerful “manager” for big data computing.
It centers on a job scheduler for Hadoop (Ma pReduce) tha t is sma rt
a bout where to run ea ch ta sk: co-loca te ta sk with da ta .
The da ta ob jec t s a re “RDDs”: a k ind of rec ipe fo r genera t ing a f i l e f rom
a n underlying da ta collection. RDD ca ching a llows Spa rk to run mostly
from memory-ma pped da ta , for speed.

61

• Online tutorials: spark.apache.org/docs/latest
HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

	CS5412 / Lecture 22�Apache Spark and RDDs
	Recap
	Today’s Topics
	History of Hadoop and Spark
	Apache Spark
	Apache Hadoop Lacks Unified Vision
	Spark Ecosystem: A Unified Pipeline
	Key ideas
	How this works
	Motivation (1)
	Motivation (2)
	Motivation - Summary
	Today’s Topics
	Spark Basics(1)
	Spark Basics(2)
	Spark Core: Code Base (2012)
	Spark Shell
	Spark Fundamentals
	Spark Context (1)
	Spark Context (2)
	Spark Context (3)
	Spark Fundamentals
	Resilient Distributed Dataset (RDD)
	RDDs
	RDDs are designed to be “immutable”
	Creating a RDD
	Example: A File-based RDD
	Spark Fundamentals
	RDD Operations
	RDD Transformations
	Example: map and filter Transformations
	RDD Actions
	Graph of RDDs
	Lazy Execution of RDDs (1)
	Lazy Execution of RDDs (2)
	Lazy Execution of RDDs (3)
	Lazy Execution of RDDs (4)
	Lazy Execution of RDDs (5)
	Opportunities This Enables
	Example: Mine error logs
	Key Idea: Elastic parallelism	
	RDD and Partitions (Parallelism example)
	RDD Graph: Data Set vs Partition Views
	RDDs: Data Locality
	RDDs -- Summary
	Lifetime of a Job in Spark
	Anatomy of a Spark Application
	Typical RDD pattern of use
	Why is this a good strategy?
	Iterative Algorithms: Spark vs MapReduce
	Today’s Topics
	Spark Programming (1)
	Spark Programming (2)
	Spark Programming (3)
	Spark Programming (4)
	Spark Programming (5)
	Example: Word Count
	Example: Spark Streaming
	Spark: Combining Libraries (Unified Pipeline)
	Spark: Setting the Level of Parallelism
	Summary

