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Recap

MapReduce
* For easily writing applications to process vast amounts of data in-
parallel on large clusters in a reliable, fault-tolerant manner
« Takes care of scheduling tasks, monitoring them and re-executes
the failed tasks

HDFS & MapReduce: Running on the same set of nodes -
compute nodes and storage nodes same (keeping data close

to the computation) - very high throughput

YARN & MapReduce: A single master resource manager, one
slave node manager per node, and AppMaster per application



Today's Topics

*Motivation
*Spark Basics
*Spark Programming
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History of Hadoop and Spark

2004 2010
MapReduce paper Spark paper

2002 2008 2014

MapReduce @ Google Hadoop Summit Apache Spark top-level
2006
Hadoop @ Yahoo!
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Apache Spark

** Spark can connect to several types of cluster managers (either
Spark’s own standalone cluster manager, Mesos or YARN)

Processing Spark Spark Other
[ SQL Spark ML Applications

Stream
Resource Spark Core /" Data
manager L(Stangalone } Mesos etc. [ Y?\} An?'thter RYGXELSCG } Ingestion
Scheduler) egotiator ( ) Systems
e.g.,
Apache
Data S3, Cassandra etc., [ Hadoop NoSQLDatabase (HBase) } Kpafka,
St other storage systems _ , Flume. etc
orage [ Hadoop Distributed File System (HDFS) } N ’ P

] [
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- Apache Hadoop Lacks Unified Vision

‘ Specialized systems

General
Batching
Streaming Iterative Ad-hoc / SQL Graph
MapReduce Storm Mahout Pig _
S4 Hive
Samza Drill
Impala

« Sparse Modules
« Diversity of APls
* Higher Operational Costs
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Spark Ecosystem: A Unified Pipeline

Spark SQL+ Spark MLIib

DataFrames § Streaming machine
structured data real-time learning

Spark Core

Note: Spark is not designed for loT real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur

steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For loT use cases, Spark would not be suitable.
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Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With Spark, serious effort to standardize around the idea that people are
writing parallelcode that often runs formany “cycles” or “iterations” in
which a lot ofreuse of mformation occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the
mformation being reused.
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How this works

You express your application as a graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs
actuallyneeded for the output you have requested.

Then Spark can be told to cache the reuseable information either in
memory,in SSD storage oreven on disk,based on when it will be needed
again, how big it is, and how costly it would be fo recreate.

You write the RDD logic and control all of this via hints
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Motivation (1)

MapReduce: The original scalable, general, processing
engine of the Hadoop ecosystem

- Disk-based data processing framework (HDFS files)

- Persists mtermediate results to disk
- Data 1s reloaded from disk with every query — Costly /O
- Best for ETL like workloads (batch processing)

. Costly /O — Not appropriate for iterative or stream
processing workloads
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Motivation (2)

Spark: General purpose computational framework that
substantially improves performance of MapReduce, but
retains the basic model

Memory based data processing framework — avoids costly
/O bykeepmg mtermediate results m memory

Leverages distributed memory
Remembers operations applied to dataset
Data localty based computation — High Performance

Best for both iterative (or stream processmg)and batch
workloads

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 11



Motivation - Summary

Software engineering point of view
Hadoop code base is huge
Contributions/Extensions to Hadoop are cumbersome

Java-only hinders wide adoption, but Java supportis fundamental
System/Framework pomnt of view

Unified pipeline

Simplified data flow

Faster processing speed
Data abstraction point of view

New fundamentalabstraction RDD

Easy to extend with new operators

More descriptive computing model
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"I'oday’s Topics

*Spark Basics
*Spark Programming
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Spark Basics(1)

Spark: Flexible, n-memory data processing framework written in Scala

Goals:
Simplicity (Easier to use):
Rich APIs for Scala,Java,and Python

Generality: APIs for different types of workloads
Batch, Streaming, Machine Learning, Graph

Low Latency (Performance):In-memory processmg and
caching

Fault-tolerance:Faults shouldn’t be specialcase
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Spark Basics(2)

There are two ways to manipulate data m Spark
Spark Shell:

Interactive — forlearning or data exploration
Python or Scala

Spark Applications
Forlarge scale data processing

Python, Scala,orJava
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Spark Core: Code Base (2012)

Spark core: 16,000 LOC

Operators: 2000 Scheduler: 2500
Interpreter:
Block manager: 2700 | Networking: 1200 3300 LOC
Accumulators: 200 Broadcast: 3500

Hadoop 1/O: Mesos backend: | | Standalone backend:
400 LOC 700 LOC 1700 LOC
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Spark Shell

(REPL)

Python Shell: pyspark

The Spark Shellprovides mteractive data exploration

Scala Shell: spark-shell

S pyspark

Welcome to

A TR 4R
XNE_NE T

' R ) W N o D version 1.3.0

/_1

Using Python version 2.7.8 (default, Aug 27
2015 05:23:36)
SparkContext available as sc¢, HiveContext
available as sqglCtx.

2>

REPL: Repeat/Evaluate/Print Loop

% spark-shell

Welcome to

A A A
NN _ N
/I__/ . IN_,_/ [/ [_/\\ version 1.3.0
/_/
Using Scala version 2.10.4 (Java HotSpot(TM)
64-Bit Server VM, Java 1.7.0_6&7)
Created spark context..
Spark context available as sc.
SQL context available as sglContext.

scala>

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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Spark Fundamentals

Example of an
application:

*Spark Context

val sc = new SparkContext ("spark://...", "MyJob", home,
jars) ags . .
* Resilient Distributed
val file = sc.textFile("hdfs://...") // This is an RDD [)ata
val errors = file.filter(_.contains("ERROR")) // This is ]
an RDD * Transformations

errors.cache ()

 Actions

errors.count () // This is an action
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Spark Context (1)

LEvery Spark application requires a spark context. the main
entry point to the Spark API

*Spark Shell provides a preconfigured Spark Context called “sc”

Using Python version 2.7.8 (default, Aug 27 2015 05:23:36)

SparkContext available as sc,]HiveCmnt&xt available as sglCtx.
Python

»>>> sc.appName

u'PySparkShell’

[ Spark context available as sc. ]

SQL context available as sqlContext.
Scala

scala> sc.appName

res0: String = Spark shell
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Spark Context (2)

LStandanne applications - Driver code = Spark Context
« Spark Context holds configuration information and represents

connection to a Spark cluster

Standalone Application

(Drives Computation)

Worker Node

Executor

Driver Program

_—

Cache

—
/ Task

Task

SparkCnntext:|<—» Cluster Manager

T

\

Worker Node l

—

Executor

Cache

¥ | Task

Task
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Spark Context (3)

‘ Spark context works as a client and represents connection to a Spark cluster

Spark client

(app master) Spark worker
Your program
RDD graph Cluster )
Tas
SC = mew aparkContext . manaqger
f e sc.texcritecy | Scheduler J threads
iy R gty ’,
ffilzer(.) <
“Count () Block tracker Block
" manager
Shuffle tracker

i e

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 21



Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...",
jars)

"MyJob", home,

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains("ERROR")) // This is

an RDD

errors.cache ()

errors.count () // This is an action

* Resilient Distributed
Data

 Transformations

* Actions

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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Resilient Distributed Dataset (RDD)

The RDD(Resilient Distributed Dataset) is the fundamental unit of data in Spark: An
Immutable collection of objects (or records, or elements) that can be operated on “in
parallel” (spread across a cluster)

Resilient -- if data in memory is lost, it can be recreated

- Recover from node failures

- An RDD keeps its lineage mformation =2 it can be recreated from
parent RDDs

Distributed -- processed across the cluster

- Each RDDis composed ofone or more partitions = (more partitions —
more parallelism)

Dataset -- initialdata can come from a file orbe created
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RDDs

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

Organize the RDDs nto a DAG showmg how data flows.

RDDcan be saved and reused orrecomputed. Sparkcan
save 1t to diskifthe dataset does not fit m memory

Built through paralleltransformations (map, filter, group-by,
jom, etc). Automatically rebuilt on failure

Controllable persistence (¢.g.cachmmg m RAM)
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RDDs are designed to be "immutable’

Create once,then reuse without changes. Spark knows
lineage 2 canbe recreated atanytime - Fault-tolerance

Avoids data mconsistency problems (no simultaneous
updates) > Correctness

Easily live n memoryas on disk 2 Caching - Safe to share
across processes/tasks = Improves performance

Tradeoff: (Fault-tolerance & Correctness) vs Disk Memory & CPU
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Creating a RDD

Three ways to create a RDD
From a file orset of files

From data m memory
From another RDD

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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Example: A Filebased RDD

File: purplecow.txt
I"ve never seen a purple
COW .

I never hope to see one;

But I can tell you, anyhow,
I'd rather see than be one.

> wal mydata = sc.textFile ("purplecow.txt")

W

"‘—-—-.._____________..-—-‘

> mydata.count () RDD: mydata

™ z
I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.
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Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...", "MyJob", home, o
jars)
val file = sc.textFile("hdfs://...") // This is an RDD °
val errors = file.filter(_.contains("ERROR")) // This is
an RDD

e Transformations

errors.cache ()

errors.count () // This is an action 'ACtlons
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RDD Operations

LFwo types of operations

Transformations: Define a
new RDD based on current
RDD(S) > value

Actions: return values

val sc = new SparkContext ("spark://...", "MyJob", home,
jars)

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains ("ERROR")) // This is
an RDD

errors.cache ()

rrrrrrrrrrr () Tt
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RDD Transformations

*Set of operations on a RDD that define how they should
be transformed

*As in relational algebra, the application of a
transformation to an RDD vyields a new RDD (because
RDD are immutable)

* Transformations are lazily evaluated, which allow for
optimizations to take place before execution

«Examples: map(), filter(), groupByKey(), sortByKey(),
etc.
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| Example: map and filter Transformations

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

map (lambda line:

line.upper()) map (line => line.toUpperCase)

N

I'VE NEVER SEEN A FUEFLE COW.

I NEVEER HOFE TO S5EE ONE;

BOT T CAN TELL YOU, ANYHOW,

I'D RATHER SEE THAN BE ONE.

filter(lambda line: line.startswith('I')) filter(line => line.startsWith('I'))

S

I'VE NEVER SEEN A PURFPLE COW.

I HEVEE HOFPE TO SEE ONE;

I'D RATHEE SEE THAN BE ONE.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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RDD Actions

* Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

*Some actions only store data to an external data source (e.qg.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the

driver
*Some common actions
»count() — return the number of elements
»take(n) — return an array of the first n elements
»collect()— return an array of all elements
>saveAsTextFile(file) — save to text file(s)
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Graph of RDDs

A collection of RDDs can be understood as a graph

Nodes n the graph are the RDDs, which means the code butalso the
actualdata objectthat could would create at runtime when executed on
specific parameters +data. Reminder: Hadoop 1s a “read only”’model, so
we can “materialize”’an RDD any time we like.

Edges represent how data objects are accessed: RDD B might consume
the object created by RDD A. This gives us a directed edge A— B

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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Lazy Execution of RDDs (1)

Data in RDDs is not processed e T |
until an action is performed R
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Lazy Execution of RDDs (2)

Data in RDDs is not processed
until an action is performed

> wal mydata = sc.textFile ("purplecow.txt")

RDD: mydata
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Lazy Execution of RDDs (3)

Data in RDDs is not processed
until an action is performed

> wal mydata = sc.textFile ("purplecow.txt")
> wal mydata uc = mydata.map(line =>
line.toUpperCase())

File: purplecow.txt |

z

I've never seen a purple cow.
I never hope to see one;

But I can tell you, anvhow,
I'd rather see than be

P

RDD: mydata 5

one

RDD: mydata uc

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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Lazy Execution of RDDs (4)

Data in RDDs is not processed e puplecon.t

I've never seen a purple cow.
I never hope to see one;

until an action is performed ot T T D

I'd rather see than be one.

e ==

RDD: mydata = 7
> wal mydata = sc.textFile ("purplecow.txt")
> wal mydata uc = mydata.map(line =>
line. toUpperCase())
RDD: myd i
> wal mydata filt = mydata uc.filter(line GEEEE -
=> line.startsWith("I")})
RDD: mydata_filt
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Lazy Execution of RDDs (5)

Data in RDDs is not processed e purplonw

I've never seen a purple cow.
I never hope to see one;

until an action is performed e 3 o tart e, e
P

RDD: mydata E Z

T I Ve NEver seen a purple cow.
val mydata = sc.textFile ("purplecow.txt") I never hope to see one;
val myn:iata_uc: = mydata.map (line => But I can tell you, anyhow,
line. toUpperCase () ) I'd rather see than be one.

> wal mydata filt = mydata uc.filter(line RDD: mydata_uc . L

=>» line.startsWith{("I")) " | I'VE NEVER SEEN A PURPLE COW.
= mydata_filt.c:}unt{} I WEVER HOPE TO SEE ONE;
3 BUT I CAN TELL YOU, ANYHOW,

I'D BRATHEE SEE THRN EE ONE.

RDD: mydata_filt
I'VE HEVER SEEN A PURFLE COW.

I NEVER HOPE TO SEE OKE:

I'D RATHER SEE THAN BE ONE.

A4

Output Action “triggers” computation, pull model
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Opportunities This Enables

On-demand optimization : Spark can behave like a compiler by first building a
potentially complex RDD graph, but then trimming away unneeded
computations that for today’s purpose, won't be used.

Caching for later reuse.

Graph transformations : A significant amount of effort is going into this area. It
IS a lot like compile-managed program transformation and aims at simplifying
and speeding up the computation that will occur.

Dynamic decisions about what to schedule and when . Concept: minimum
adequate set of input objects: RDD can run ifa// its inputs are ready
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Example: Mine error logs

‘h)ad errormessages from a log mto memory, then mteractively
search for various patterns:

lines = spark.textFile (“hdfs://...”) HadoopRDD
errors = lines.filter(lambda s: s.startswith (“"ERROR”)) FilteredRDD

messages = errors.map (lambda s: s.split (“\t”)[2])

messages.cache ()

messages.filter (lambda s: “foo” 1n s).count ()

Result: full-text search of Wikipedia m 0.5 sec (vs 20 sec for on-disk data)
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Key ldea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark will spread the task over the nodes where data resides, offers a highly
concurrent execution that minimizes delays. Term: “partitioned computation™.

If some component crashes or even is just slow, Spark simply kills that task and
launches a substitute.
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'RDD and Partitions (Parallelism example)

RDD 1 Partition Partition Partition Partition
1 2 3 4

Cluster
Nodes

RDD 2 Partition Partition Partition
1 2 3
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'RDD Graph: Data Set vs Partition Views

Nuch like in Hadoop MapReduce, each RDD is associated to
(input) partitions

Worker 1 Worker 2 Worker 3 Worker 4

[ NS W 4 AW 4 h |
} J -— file RDD
L. A . A L% L
HadoopRDD T
val sc = new SparkContext ("spark://...", "MyJob", home,
jars) path = hdfs://
val file = sc.textFile("hdfs://...") // This is an RDD
val errors = file.filter(_.contains ("ERROR")) // This is
an RDD
\J
errors.cache () FilteredRDD v v ' ‘
errors.count () // This is an action func = contains(...)
sh:‘;u'l(i_(‘,ac'ne = true -+—— crrors RDD
- L L

TT T

Task 1 Task 2 Task 3 Task 4
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RDDs: Data Locality

*Data Locality Principle
> Keep high-value RDDs precomputed, in cache or SDD

> Run tasks that need the specific RDD with those same inputs
on the node where the cached copy resides.

> This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.
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RDDs-- Summary

RDD are partitioned, locality aware, distributed

collections
RDD are mmutable

RDD are data structures that:

Either pomt to a direct data source (e.g. H

FS)

Apply some transformations to its parent RDD(s)to

generate new data elements

Computations on RDDs

Represented by laziy evaluated Ineage DAGs composed

by chamed RDDs
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Lifetime of a Job in Spark

RDD Objects DAG Scheduler

.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

Task Scheduler

Cluster
manager

Worker

Threads

Block
manager
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Anatomy of a Spark Application

Submit App

{mode=cluster)

QN |m| >

/large/file

-.h
Spark
Master
MName Dara Cara Data Data
Naode MNade | MNaode 2 MNode 3 MNode 4
AllC B| |C AllIB AlIB

RF 3

allocates resources
(cores and memory)

Worker

D

Worker

Worker

D

Spark
VWorker

-

HDFS  Spark

Cluster Manager

(YARN/Mesos)
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Typical RDD pattern of use

Instead of doing a lot of work in each RDD, developers split
tasks mto lots of smallRDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute and
hints to Spark thatit should cache those.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 48



Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same
nodes.

I[f MapReduce jobs were arbitrary programs, this wouldn’t help because reuse
would be veryrare.

Butin fact the MapReduce model 1s very repetitious and iterative, and often
applies the same transformations agam and again to the same mput files.

Those particular RDDs become great candidates forcaching.

MapReduce programmer maynot know how many iterations willoccur, but
Sparkitselfis smart enough to evict RDDs ifthey dontactually get reused.
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lterative Algorithms: Spark vs MapReduce

‘ K-means Clustering

g4 ‘ ‘ = Spark
121 “ Hadoop MR
0 50 100 150 sec
Logistic Regression
'I 0.96 \ ‘ ‘ ‘ = Spark
80 “ Hadoop MR
*

0 20 40 60 80 100 sec
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Today's Topics

*Spark Programming

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 51



Spark Programming (1)

Creatmg RDDs

# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile (M file.txt”)

sc.textFile (“directory/*.txt”)

sc.textFile (“hdfs://namenode:9000/path/file”)

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile (keyClass, valClass, 1nputFmt, conf)
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Spark Programming (2)

Basic Transformations

nums = sc.parallelize([1l, 2, 3])

# Pass each element through a function
squares = nums.map (lambda x: x*x) // {1, 4, 9}

# Keep elements passing a predicate

even = squares.filter(lambda x: x % 2 == 0) // {4}

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP
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Spark Programming (3)

Basic Actions
nums = sc.parallelize([1l, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect () # => [1, 2, 3]

# Return first K elements
nums.take (2) # => [1, 2]

# Count number of elements
nums.count () # => 3

# Merge elements with an associative function
nums.reduce (lambda x, y: x + y) # => 06
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‘Spark Programming (4)

orking with Key-Value Pairs

Spark’s %“distributed reduce” transformations operate on RDDs of

key-value pairs

Python: pair = (a, b)
pair[0] # => a
pair[1l] # => Db
Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // => b
Java: Tuple2 palr = new TupleZ(a,

pair. 1 // => a
pair. 2 // => Db

b) ;
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| Spark Programming (5)

%ome Key-Value Operations

pets = sc.parallelize([ (“cat”, 1), ((“dog”, 1), (“cat”, 2)1])
pets.reduceByKey (lambda x, y: X + V) # => {(cat, 3), (dog, 1)}
pets.groupByKey () # => {(cat, [1, 2]1), (dog, [11)}

pets.sortByKey () # => {(cat, 1), (cat, 2), (dog, 1)}
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'Example: Word Count

lines = sc.textFile (“hamlet.txt”)

counts = lines.flatMap(lambda line: line.split (™ %))

.map (lambda word:

(word, 1))

.reduceByKey (lambda x, vy: x + vy)

iltOH

“to be off —— O€
iior!!

ilnot!!

“not to bg” — “10”
Hbe!!

gjoe’ 11)) (be, 2)
(or,’1) (not, 1)
EFoOtH; ) (or, 1)
b é, 1) (to, 2)
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- Example: Spark Streaming
|Time S
T T

Represents streams as a series of RDDs over time (typically sub second mtervals, but it
is configurable)

>

val spammers = sc.sequencefFile (“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains (“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user,

t)) .join (spammers) )
.print ()
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| Spark: Combining Libraries (Unified Pipeline)

# Load data using Spark SQL

poilints = spark.sgl (“select latitude, longitude from tweets”)

# Train a machine learning model

model = KMeans.train (points, 10)

# Apply it to a stream
sc.twitterStream(...)
.map (lambda t: (model.predict(t.location), 1))

.reduceByWindow (“5s”, lambda a, b: a + b)
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Spark: Setting the Level of Parallelism

Allthe pair RDD operations take an optionalsecond
parameter fornumber oftasks

words.reduceByKey (lambda x, y: x + vy, 9)
words.groupByKey (5)

visits.jolin (pageViews, 5)
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-Summary

Spark 1s a powerful “manager” for big data computing.

It centers on a job scheduler for Hadoop MapReduce)thatis smart
about where to run each task:co-locate task with data.

The data objects are “RDDs”: a kind of recipe for generating a file from
anunderlying data collection. RDD caching allows Spark to run mostly
from memory-mapped data, for speed.

+ Online tutorials: spark.apache.org/docs/latest
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