ZANTVZANTVZANYIZANTZANTYZANT /AN

INONININARIL
NANNRNANNRNININR
NNNNINNINL
NN

FJANVIANVIANVIANVIANVIANVIANYS

CS5412 | Lecture 22 R
Apache Spark and RDDs |~ o

Recap

MapReduce
* For easily writing applications to process vast amounts of data in-
parallel on large clusters in a reliable, fault-tolerant manner
« Takes care of scheduling tasks, monitoring them and re-executes
the failed tasks

HDFS & MapReduce: Running on the same set of nodes -
compute nodes and storage nodes same (keeping data close

to the computation) - very high throughput

YARN & MapReduce: A single master resource manager, one
slave node manager per node, and AppMaster per application

Today's Topics

*Motivation
*Spark Basics
*Spark Programming

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 3

History of Hadoop and Spark

2004 2010
MapReduce paper Spark paper

2002 2008 2014

MapReduce @ Google Hadoop Summit Apache Spark top-level
2006
Hadoop @ Yahoo!

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

Apache Spark

** Spark can connect to several types of cluster managers (either
Spark’s own standalone cluster manager, Mesos or YARN)

Processing Spark Spark Other
[SQL Spark ML Applications

Stream
Resource Spark Core /" Data
manager L(Stangalone } Mesos etc. [Y?\} An?'thter RYGXELSCG } Ingestion
Scheduler) egotiator () Systems
e.g.,
Apache
Data S3, Cassandra etc., [Hadoop NoSQLDatabase (HBase) } Kpafka,
St other storage systems _ , Flume. etc
orage [Hadoop Distributed File System (HDFS) } N ’ P

] [

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 5

- Apache Hadoop Lacks Unified Vision

‘ Specialized systems

General
Batching
Streaming Iterative Ad-hoc / SQL Graph
MapReduce Storm Mahout Pig _
S4 Hive
Samza Drill
Impala

« Sparse Modules
« Diversity of APls
* Higher Operational Costs

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 6

Spark Ecosystem: A Unified Pipeline

Spark SQL+ Spark MLIib

DataFrames § Streaming machine
structured data real-time learning

Spark Core

Note: Spark is not designed for loT real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur

steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For loT use cases, Spark would not be suitable.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 7

Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With Spark, serious effort to standardize around the idea that people are
writing parallelcode that often runs formany “cycles” or “iterations” in
which a lot ofreuse of mformation occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the
mformation being reused.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 8

How this works

You express your application as a graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs
actuallyneeded for the output you have requested.

Then Spark can be told to cache the reuseable information either in
memory,in SSD storage oreven on disk,based on when it will be needed
again, how big it is, and how costly it would be fo recreate.

You write the RDD logic and control all of this via hints

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 9

Motivation (1)

MapReduce: The original scalable, general, processing
engine of the Hadoop ecosystem

- Disk-based data processing framework (HDFS files)

- Persists mtermediate results to disk
- Data 1s reloaded from disk with every query — Costly /O
- Best for ETL like workloads (batch processing)

. Costly /O — Not appropriate for iterative or stream
processing workloads

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 10

Motivation (2)

Spark: General purpose computational framework that
substantially improves performance of MapReduce, but
retains the basic model

Memory based data processing framework — avoids costly
/O bykeepmg mtermediate results m memory

Leverages distributed memory
Remembers operations applied to dataset
Data localty based computation — High Performance

Best for both iterative (or stream processmg)and batch
workloads

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 11

Motivation - Summary

Software engineering point of view
Hadoop code base is huge
Contributions/Extensions to Hadoop are cumbersome

Java-only hinders wide adoption, but Java supportis fundamental
System/Framework pomnt of view

Unified pipeline

Simplified data flow

Faster processing speed
Data abstraction point of view

New fundamentalabstraction RDD

Easy to extend with new operators

More descriptive computing model

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 12

"I'oday’s Topics

*Spark Basics
*Spark Programming

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 13

Spark Basics(1)

Spark: Flexible, n-memory data processing framework written in Scala

Goals:
Simplicity (Easier to use):
Rich APIs for Scala,Java,and Python

Generality: APIs for different types of workloads
Batch, Streaming, Machine Learning, Graph

Low Latency (Performance):In-memory processmg and
caching

Fault-tolerance:Faults shouldn’t be specialcase

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 14

Spark Basics(2)

There are two ways to manipulate data m Spark
Spark Shell:

Interactive — forlearning or data exploration
Python or Scala

Spark Applications
Forlarge scale data processing

Python, Scala,orJava

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 15

Spark Core: Code Base (2012)

Spark core: 16,000 LOC

Operators: 2000 Scheduler: 2500
Interpreter:
Block manager: 2700 | Networking: 1200 3300 LOC
Accumulators: 200 Broadcast: 3500

Hadoop 1/O: Mesos backend: | | Standalone backend:
400 LOC 700 LOC 1700 LOC

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 16

Spark Shell

(REPL)

Python Shell: pyspark

The Spark Shellprovides mteractive data exploration

Scala Shell: spark-shell

S pyspark

Welcome to

A TR 4R
XNE_NE T

' R) W N o D version 1.3.0

/_1

Using Python version 2.7.8 (default, Aug 27
2015 05:23:36)
SparkContext available as sc¢, HiveContext
available as sqglCtx.

2>

REPL: Repeat/Evaluate/Print Loop

% spark-shell

Welcome to

A A A
NN _ N
/I__/ . IN_,_/ [/ [_/\\ version 1.3.0
/_/
Using Scala version 2.10.4 (Java HotSpot(TM)
64-Bit Server VM, Java 1.7.0_6&7)
Created spark context..
Spark context available as sc.
SQL context available as sglContext.

scala>

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

17

Spark Fundamentals

Example of an
application:

*Spark Context

val sc = new SparkContext ("spark://...", "MyJob", home,
jars) ags . .
* Resilient Distributed
val file = sc.textFile("hdfs://...") // This is an RDD [)ata
val errors = file.filter(_.contains("ERROR")) // This is]
an RDD * Transformations

errors.cache ()

 Actions

errors.count () // This is an action

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 18

Spark Context (1)

LEvery Spark application requires a spark context. the main
entry point to the Spark API

*Spark Shell provides a preconfigured Spark Context called “sc”

Using Python version 2.7.8 (default, Aug 27 2015 05:23:36)

SparkContext available as sc,]HiveCmnt&xt available as sglCtx.
Python

»>>> sc.appName

u'PySparkShell’

[Spark context available as sc.]

SQL context available as sqlContext.
Scala

scala> sc.appName

res0: String = Spark shell

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 19

Spark Context (2)

LStandanne applications - Driver code = Spark Context
« Spark Context holds configuration information and represents

connection to a Spark cluster

Standalone Application

(Drives Computation)

Worker Node

Executor

Driver Program

_—

Cache

—
/ Task

Task

SparkCnntext:|<—» Cluster Manager

T

\

Worker Node l

—

Executor

Cache

¥ | Task

Task

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

20

Spark Context (3)

‘ Spark context works as a client and represents connection to a Spark cluster

Spark client

(app master) Spark worker
Your program
RDD graph Cluster)
Tas
SC = mew aparkContext . manaqger
f e sc.texcritecy | Scheduler J threads
iy R gty ’,
ffilzer(.) <
“Count () Block tracker Block
" manager
Shuffle tracker

i e

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 21

Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...",
jars)

"MyJob", home,

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains("ERROR")) // This is

an RDD

errors.cache ()

errors.count () // This is an action

* Resilient Distributed
Data

 Transformations

* Actions

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

22

Resilient Distributed Dataset (RDD)

The RDD(Resilient Distributed Dataset) is the fundamental unit of data in Spark: An
Immutable collection of objects (or records, or elements) that can be operated on “in
parallel” (spread across a cluster)

Resilient -- if data in memory is lost, it can be recreated

- Recover from node failures

- An RDD keeps its lineage mformation =2 it can be recreated from
parent RDDs

Distributed -- processed across the cluster

- Each RDDis composed ofone or more partitions = (more partitions —
more parallelism)

Dataset -- initialdata can come from a file orbe created

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 23

RDDs

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

Organize the RDDs nto a DAG showmg how data flows.

RDDcan be saved and reused orrecomputed. Sparkcan
save 1t to diskifthe dataset does not fit m memory

Built through paralleltransformations (map, filter, group-by,
jom, etc). Automatically rebuilt on failure

Controllable persistence (¢.g.cachmmg m RAM)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 24

RDDs are designed to be "immutable’

Create once,then reuse without changes. Spark knows
lineage 2 canbe recreated atanytime - Fault-tolerance

Avoids data mconsistency problems (no simultaneous
updates) > Correctness

Easily live n memoryas on disk 2 Caching - Safe to share
across processes/tasks = Improves performance

Tradeoff: (Fault-tolerance & Correctness) vs Disk Memory & CPU

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 25

Creating a RDD

Three ways to create a RDD
From a file orset of files

From data m memory
From another RDD

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

26

Example: A Filebased RDD

File: purplecow.txt
I"ve never seen a purple
COW .

I never hope to see one;

But I can tell you, anyhow,
I'd rather see than be one.

> wal mydata = sc.textFile ("purplecow.txt")

W

"‘—-—-.._____________..-—-‘

> mydata.count () RDD: mydata

™ z
I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 27

Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...", "MyJob", home, o
jars)
val file = sc.textFile("hdfs://...") // This is an RDD °
val errors = file.filter(_.contains("ERROR")) // This is
an RDD

e Transformations

errors.cache ()

errors.count () // This is an action 'ACtlons

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 28

RDD Operations

LFwo types of operations

Transformations: Define a
new RDD based on current
RDD(S) > value

Actions: return values

val sc = new SparkContext ("spark://...", "MyJob", home,
jars)

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains ("ERROR")) // This is
an RDD

errors.cache ()

rrrrrrrrrrr () Tt

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 29

RDD Transformations

*Set of operations on a RDD that define how they should
be transformed

*As in relational algebra, the application of a
transformation to an RDD vyields a new RDD (because
RDD are immutable)

* Transformations are lazily evaluated, which allow for
optimizations to take place before execution

«Examples: map(), filter(), groupByKey(), sortByKey(),
etc.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 30

| Example: map and filter Transformations

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

map (lambda line:

line.upper()) map (line => line.toUpperCase)

N

I'VE NEVER SEEN A FUEFLE COW.

I NEVEER HOFE TO S5EE ONE;

BOT T CAN TELL YOU, ANYHOW,

I'D RATHER SEE THAN BE ONE.

filter(lambda line: line.startswith('I')) filter(line => line.startsWith('I'))

S

I'VE NEVER SEEN A PURFPLE COW.

I HEVEE HOFPE TO SEE ONE;

I'D RATHEE SEE THAN BE ONE.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

31

RDD Actions

* Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

*Some actions only store data to an external data source (e.qg.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the

driver
*Some common actions
»count() — return the number of elements
»take(n) — return an array of the first n elements
»collect()— return an array of all elements
>saveAsTextFile(file) — save to text file(s)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 32

Graph of RDDs

A collection of RDDs can be understood as a graph

Nodes n the graph are the RDDs, which means the code butalso the
actualdata objectthat could would create at runtime when executed on
specific parameters +data. Reminder: Hadoop 1s a “read only”’model, so
we can “materialize”’an RDD any time we like.

Edges represent how data objects are accessed: RDD B might consume
the object created by RDD A. This gives us a directed edge A— B

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

33

Lazy Execution of RDDs (1)

Data in RDDs is not processed e T |
until an action is performed R

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 34

Lazy Execution of RDDs (2)

Data in RDDs is not processed
until an action is performed

> wal mydata = sc.textFile ("purplecow.txt")

RDD: mydata

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 35

Lazy Execution of RDDs (3)

Data in RDDs is not processed
until an action is performed

> wal mydata = sc.textFile ("purplecow.txt")
> wal mydata uc = mydata.map(line =>
line.toUpperCase())

File: purplecow.txt |

z

I've never seen a purple cow.
I never hope to see one;

But I can tell you, anvhow,
I'd rather see than be

P

RDD: mydata 5

one

RDD: mydata uc

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

36

Lazy Execution of RDDs (4)

Data in RDDs is not processed e puplecon.t

I've never seen a purple cow.
I never hope to see one;

until an action is performed ot T T D

I'd rather see than be one.

e ==

RDD: mydata = 7
> wal mydata = sc.textFile ("purplecow.txt")
> wal mydata uc = mydata.map(line =>
line. toUpperCase())
RDD: myd i
> wal mydata filt = mydata uc.filter(line GEEEE -
=> line.startsWith("I")})
RDD: mydata_filt

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 37

Lazy Execution of RDDs (5)

Data in RDDs is not processed e purplonw

I've never seen a purple cow.
I never hope to see one;

until an action is performed e 3 o tart e, e
P

RDD: mydata E Z

T I Ve NEver seen a purple cow.
val mydata = sc.textFile ("purplecow.txt") I never hope to see one;
val myn:iata_uc: = mydata.map (line => But I can tell you, anyhow,
line. toUpperCase ()) I'd rather see than be one.

> wal mydata filt = mydata uc.filter(line RDD: mydata_uc . L

=>» line.startsWith{("I")) " | I'VE NEVER SEEN A PURPLE COW.
= mydata_filt.c:}unt{} I WEVER HOPE TO SEE ONE;
3 BUT I CAN TELL YOU, ANYHOW,

I'D BRATHEE SEE THRN EE ONE.

RDD: mydata_filt
I'VE HEVER SEEN A PURFLE COW.

I NEVER HOPE TO SEE OKE:

I'D RATHER SEE THAN BE ONE.

A4

Output Action “triggers” computation, pull model

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 38

Opportunities This Enables

On-demand optimization : Spark can behave like a compiler by first building a
potentially complex RDD graph, but then trimming away unneeded
computations that for today’s purpose, won't be used.

Caching for later reuse.

Graph transformations : A significant amount of effort is going into this area. It
IS a lot like compile-managed program transformation and aims at simplifying
and speeding up the computation that will occur.

Dynamic decisions about what to schedule and when . Concept: minimum
adequate set of input objects: RDD can run ifa// its inputs are ready

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 39

Example: Mine error logs

‘h)ad errormessages from a log mto memory, then mteractively
search for various patterns:

lines = spark.textFile (“hdfs://...”) HadoopRDD
errors = lines.filter(lambda s: s.startswith (“"ERROR”)) FilteredRDD

messages = errors.map (lambda s: s.split (“\t”)[2])

messages.cache ()

messages.filter (lambda s: “foo” 1n s).count ()

Result: full-text search of Wikipedia m 0.5 sec (vs 20 sec for on-disk data)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 40

Key ldea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark will spread the task over the nodes where data resides, offers a highly
concurrent execution that minimizes delays. Term: “partitioned computation™.

If some component crashes or even is just slow, Spark simply kills that task and
launches a substitute.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 41

'RDD and Partitions (Parallelism example)

RDD 1 Partition Partition Partition Partition
1 2 3 4

Cluster
Nodes

RDD 2 Partition Partition Partition
1 2 3

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 42

'RDD Graph: Data Set vs Partition Views

Nuch like in Hadoop MapReduce, each RDD is associated to
(input) partitions

Worker 1 Worker 2 Worker 3 Worker 4

[NS W 4 AW 4 h |
} J -— file RDD
L. A . A L% L
HadoopRDD T
val sc = new SparkContext ("spark://...", "MyJob", home,
jars) path = hdfs://
val file = sc.textFile("hdfs://...") // This is an RDD
val errors = file.filter(_.contains ("ERROR")) // This is
an RDD
\J
errors.cache () FilteredRDD v v ' ‘
errors.count () // This is an action func = contains(...)
sh:‘;u'l(i_(‘,ac'ne = true -+—— crrors RDD
- L L

TT T

Task 1 Task 2 Task 3 Task 4

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 43

RDDs: Data Locality

*Data Locality Principle
> Keep high-value RDDs precomputed, in cache or SDD

> Run tasks that need the specific RDD with those same inputs
on the node where the cached copy resides.

> This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 44

RDDs-- Summary

RDD are partitioned, locality aware, distributed

collections
RDD are mmutable

RDD are data structures that:

Either pomt to a direct data source (e.g. H

FS)

Apply some transformations to its parent RDD(s)to

generate new data elements

Computations on RDDs

Represented by laziy evaluated Ineage DAGs composed

by chamed RDDs

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 45

Lifetime of a Job in Spark

RDD Objects DAG Scheduler

.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

Task Scheduler

Cluster
manager

Worker

Threads

Block
manager

46

Anatomy of a Spark Application

Submit App

{mode=cluster)

QN |m| >

/large/file

-.h
Spark
Master
MName Dara Cara Data Data
Naode MNade | MNaode 2 MNode 3 MNode 4
AllC B| |C AllIB AlIB

RF 3

allocates resources
(cores and memory)

Worker

D

Worker

Worker

D

Spark
VWorker

-

HDFS Spark

Cluster Manager

(YARN/Mesos)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 47

Typical RDD pattern of use

Instead of doing a lot of work in each RDD, developers split
tasks mto lots of smallRDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute and
hints to Spark thatit should cache those.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 48

Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same
nodes.

I[f MapReduce jobs were arbitrary programs, this wouldn’t help because reuse
would be veryrare.

Butin fact the MapReduce model 1s very repetitious and iterative, and often
applies the same transformations agam and again to the same mput files.

Those particular RDDs become great candidates forcaching.

MapReduce programmer maynot know how many iterations willoccur, but
Sparkitselfis smart enough to evict RDDs ifthey dontactually get reused.

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 49

lterative Algorithms: Spark vs MapReduce

‘ K-means Clustering

g4 ‘ ‘ = Spark
121 “ Hadoop MR
0 50 100 150 sec
Logistic Regression
'I 0.96 \ ‘ ‘ ‘ = Spark
80 “ Hadoop MR
*

0 20 40 60 80 100 sec

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 50

Today's Topics

*Spark Programming

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 51

Spark Programming (1)

Creatmg RDDs

Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile (M file.txt”)

sc.textFile (“directory/*.txt”)

sc.textFile (“hdfs://namenode:9000/path/file”)

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile (keyClass, valClass, 1nputFmt, conf)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 52

Spark Programming (2)

Basic Transformations

nums = sc.parallelize([1l, 2, 3])

Pass each element through a function
squares = nums.map (lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate

even = squares.filter(lambda x: x % 2 == 0) // {4}

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

53

Spark Programming (3)

Basic Actions
nums = sc.parallelize([1l, 2, 3])

Retrieve RDD contents as a local collection
nums.collect () # => [1, 2, 3]

Return first K elements
nums.take (2) # => [1, 2]

Count number of elements
nums.count () # => 3

Merge elements with an associative function
nums.reduce (lambda x, y: x + y) # => 06

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 54

‘Spark Programming (4)

orking with Key-Value Pairs

Spark’s %“distributed reduce” transformations operate on RDDs of

key-value pairs

Python: pair = (a, b)
pair[0] # => a
pair[1l] # => Db
Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // => b
Java: Tuple2 palr = new TupleZ(a,

pair. 1 // => a
pair. 2 // => Db

b) ;

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

55

| Spark Programming (5)

%ome Key-Value Operations

pets = sc.parallelize([(“cat”, 1), ((“dog”, 1), (“cat”, 2)1])
pets.reduceByKey (lambda x, y: X + V) # => {(cat, 3), (dog, 1)}
pets.groupByKey () # => {(cat, [1, 2]1), (dog, [11)}

pets.sortByKey () # => {(cat, 1), (cat, 2), (dog, 1)}

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 56

'Example: Word Count

lines = sc.textFile (“hamlet.txt”)

counts = lines.flatMap(lambda line: line.split (™ %))

.map (lambda word:

(word, 1))

.reduceByKey (lambda x, vy: x + vy)

iltOH

“to be off —— O€
iior!!

ilnot!!

“not to bg” — “10”
Hbe!!

gjoe’ 11)) (be, 2)
(or,’1) (not, 1)
EFoOtH;) (or, 1)
b é, 1) (to, 2)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP

57

- Example: Spark Streaming
|Time S
T T

Represents streams as a series of RDDs over time (typically sub second mtervals, but it
is configurable)

>

val spammers = sc.sequencefFile (“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains (“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user,

t)) .join (spammers))
.print ()

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 58

| Spark: Combining Libraries (Unified Pipeline)

Load data using Spark SQL

poilints = spark.sgl (“select latitude, longitude from tweets”)

Train a machine learning model

model = KMeans.train (points, 10)

Apply it to a stream
sc.twitterStream(...)
.map (lambda t: (model.predict(t.location), 1))

.reduceByWindow (“5s”, lambda a, b: a + b)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 59

Spark: Setting the Level of Parallelism

Allthe pair RDD operations take an optionalsecond
parameter fornumber oftasks

words.reduceByKey (lambda x, y: x + vy, 9)
words.groupByKey (5)

visits.jolin (pageViews, 5)

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 60

-Summary

Spark 1s a powerful “manager” for big data computing.

It centers on a job scheduler for Hadoop MapReduce)thatis smart
about where to run each task:co-locate task with data.

The data objects are “RDDs”: a kind of recipe for generating a file from
anunderlying data collection. RDD caching allows Spark to run mostly
from memory-mapped data, for speed.

+ Online tutorials: spark.apache.org/docs/latest

HTTP//WWW.CS.CORNELLEDU/COURSES/CS5412/2021SP 61

	CS5412 / Lecture 22�Apache Spark and RDDs
	Recap
	Today’s Topics
	History of Hadoop and Spark
	Apache Spark
	Apache Hadoop Lacks Unified Vision
	Spark Ecosystem: A Unified Pipeline
	Key ideas
	How this works
	Motivation (1)
	Motivation (2)
	Motivation - Summary
	Today’s Topics
	Spark Basics(1)
	Spark Basics(2)
	Spark Core: Code Base (2012)
	Spark Shell
	Spark Fundamentals
	Spark Context (1)
	Spark Context (2)
	Spark Context (3)
	Spark Fundamentals
	Resilient Distributed Dataset (RDD)
	RDDs
	RDDs are designed to be “immutable”
	Creating a RDD
	Example: A File-based RDD
	Spark Fundamentals
	RDD Operations
	RDD Transformations
	Example: map and filter Transformations
	RDD Actions
	Graph of RDDs
	Lazy Execution of RDDs (1)
	Lazy Execution of RDDs (2)
	Lazy Execution of RDDs (3)
	Lazy Execution of RDDs (4)
	Lazy Execution of RDDs (5)
	Opportunities This Enables
	Example: Mine error logs
	Key Idea: Elastic parallelism	
	RDD and Partitions (Parallelism example)
	RDD Graph: Data Set vs Partition Views
	RDDs: Data Locality
	RDDs -- Summary
	Lifetime of a Job in Spark
	Anatomy of a Spark Application
	Typical RDD pattern of use
	Why is this a good strategy?
	Iterative Algorithms: Spark vs MapReduce
	Today’s Topics
	Spark Programming (1)
	Spark Programming (2)
	Spark Programming (3)
	Spark Programming (4)
	Spark Programming (5)
	Example: Word Count
	Example: Spark Streaming
	Spark: Combining Libraries (Unified Pipeline)
	Spark: Setting the Level of Parallelism
	Summary

