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Recap

2

MapReduce
• For easily writing applications to process vast amounts of data in-

parallel on large clusters in a reliable, fault-tolerant manner
• Takes care of scheduling tasks, monitoring them and re-executes 

the failed tasks

HDFS & MapReduce: Running on the same set of nodes 
compute nodes and storage nodes same (keeping data close 
to the computation)  very high throughput

YARN & MapReduce: A single master resource manager, one 
slave node manager per node, and AppMaster per application



Today’s Topics
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•Motivation
•Spark Basics
•Spark Programming
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History of Hadoop and Spark
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Apache Spark
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Yet Another Resource 
Negotiator (YARN)

Spark 
Stream

Spark 
SQL

Other 
Applications

Data 
Ingestion 
Systems

e.g., 
Apache 
Kafka, 

Flume, etc
Ha doop NoSQL Da ta ba se  (HBa se)

Ha doop Distributed File  System (HDFS)

S3, Cassandra etc., 
other storage systems

Mesos etc.Spark Core
(Standalone 
Scheduler)

Data 
Storage

Resource 
manager

Hadoop Spark

Processing

** Spark can connect to several types of cluster managers (either 
Spark’s own standalone cluster manager, Mesos or YARN)

Spark ML
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Apache Hadoop Lacks Unified Vision

6

• Sparse Modules
• Diversity of APIs
• Higher Operational Costs
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Spark Ecosystem: A Unified Pipeline
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Note: Spark is not designed for IoT real-time.  The streaming layer is used for 
continuous input streams like financial data from stock markets, where events occur 
steadily and must be processed as they occur.  But there is no sense of direct I/O 
from sensors/actuators.  For IoT use cases, Spark would not be suitable.
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Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With  Spark ,  se r ious  e f fo r t  to  s tandard ize  a round  the  idea  tha t  peop le  a re  
writing pa ra lle l code  tha t often runs for ma ny “cycles” or “ite ra tions” in 
which a  lot of reuse  of informa tion occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the 
informa tion be ing reused.
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How this works

You express your applicat ion as a  graph of  RDDs.

The graph is only evaluated as needed, and they only compute the RDDs 
a ctua lly needed for the  output you ha ve  requested.

Then Spark can be told to cache the reusea ble informa tion e ither in 
memory, in SSD stora ge  or even on disk, ba sed on when it will be needed 
again, how big it is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints
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Motivation (1)
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MapReduce: The original scalable, general, processing 
engine of the Hadoop ecosystem

• Disk-ba sed da ta  processing fra mework (HDFS files)
• Persists  inte rmedia te  results  to disk
• Da ta  is  re loa ded from disk with every query → Costly I/O 
• Best for ETL like  workloa ds (ba tch processing)
• Costly I/O → Not a ppropria te  for ite ra tive  or strea m 

processing workloa ds
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Motivation (2)
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Spark: General purpose computational framework that 
substantially improves performance of MapReduce, but 
retains the basic model

• Memory ba sed da ta  processing fra mework → a voids costly 
I/O by keeping inte rmedia te  results  in memory

• Levera ges distributed memory 
• Remembers opera tions a pplied to da ta se t
• Da ta  loca lity ba sed computa tion → High Performa nce
• Best for both ite ra tive  (or strea m processing) a nd ba tch 

workloa ds
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Motivation - Summa ry
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Softwa re  engineering point of view
 Ha doop code  ba se  is  huge
 Contributions/Extensions to Ha doop a re  cumbersome
 J a va -only hinders wide  a doption, but J a va  support is  funda menta l

System/Fra mework point of view
 Unified pipe line
 Simplified da ta  flow
 Fa ste r processing speed

Da ta  a bstra ction point of view
 New funda menta l a bstra ction RDD
 Ea sy to extend with new opera tors
 More  descriptive  computing mode l
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Today’s Topics
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•Motivation
•Spark Basics
•Spark Programming
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Spark Basics(1)
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Spa rk: Flexible , in-memory da ta  processing fra mework written in Sca la

Goa ls:
• Simplic ity (Ea sie r to use ):

 Rich APIs for Sca la , J a va , a nd Python

• Genera lity: APIs for diffe rent types of workloa ds
 Ba tch, Strea ming, Ma chine  Lea rning, Gra ph

• Low La tency (Performa nce) : In-memory processing a nd 
ca ching

• Fa ult-tole ra nce : Fa ults  shouldn’t be  specia l ca se
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Spark Basics(2)

15

There  a re  two wa ys to ma nipula te  da ta  in Spa rk
• Spa rk She ll:

 Inte ra ctive  – for lea rning or da ta  explora tion
 Python or Sca la

• Spa rk Applica tions
 For la rge  sca le  da ta  processing
 Python, Sca la , or J a va
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Spark Core: Code Base (2012)
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Spark Shell
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The  Spa rk She ll provides inte ra ctive  da ta  explora tion 
(REPL)

REPL: Repeat/Evaluate/Print Loop
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Spark Fundamentals
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•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an 
application:
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Spark Context (1)
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•Every Spark application requires a spark context: the main 
entry point to the Spark API

•Spark Shell provides a preconfigured Spark Context called “sc”
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Spark Context (2)
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•Standalone applications  Driver code  Spark Context
•Spark Context holds configuration information and represents 
connection to a Spark cluster

Standalone Application 
(Drives Computation)
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Spark Context (3)
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Spa rk context works a s a  c lient a nd represents connection to a  Spa rk c luste r
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Spark Fundamentals

22

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an application:
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Resilient Distributed Dataset (RDD)
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The RDD(Resilient Distributed Dataset) is the fundamental unit of data in Spark: An 
Immutable collection of objects (or records, or elements) that can be operated on “in 
parallel” (spread across a cluster)
Resilient -- if data in memory is lost, it can be recreated

• Recover from node  fa ilures
• An RDD keeps its  linea ge  informa tion  it ca n be  recrea ted from 

pa rent RDDs
Distributed -- processed a cross the  c luste r

• Ea ch RDD is  composed of one  or more  pa rtitions  (more  pa rtitions –
more  pa ra lle lism)

Dataset -- initia l da ta  ca n come from a  file  or be  crea ted
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RDDs

24

Key Idea: Write applications in terms of transformations 
on distributed datasets.  One RDD per transformation.

• Orga nize  the  RDDs into a  DAG showing how da ta  flows.
• RDD ca n be  sa ved a nd reused or recomputed.  Spa rk ca n 

sa ve  it to disk if the  da ta se t does not fit in memory
• Built through pa ra lle l tra nsforma tions (ma p, filte r, group-by, 

join, e tc).  Automa tica lly rebuilt on fa ilure
• Controlla ble  persistence  (e .g. ca ching in RAM)
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RDDs are designed to be “immutable”
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• Crea te  once , then reuse  without cha nges.  Spa rk knows 
linea ge   ca n be  recrea ted a t a ny time   Fa ult-tole ra nce

• Avoids da ta  inconsistency problems (no simulta neous 
upda tes)  Correctness

• Ea sily live  in memory a s on disk  Ca ching  Sa fe  to sha re  
a cross processes/ta sks  Improves performa nce

• Tra deoff: (Fault-tolerance & Correctness)  vs (Disk Memory & CPU)
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Creating a RDD
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Three  wa ys to crea te  a  RDD
• From a  file  or se t of file s
• From da ta  in memory
• From a nother RDD
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Example: A File-ba sed RDD
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Spark Fundamentals
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•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an application:
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RDD Operations

29

Two types of operations
Transformations: Define a 
new RDD based on current 
RDD(s)
Actions: return values
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RDD Transformations
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•Set of operations on a RDD that define how they should 
be transformed

•As in relational algebra, the application of a 
transformation to an RDD yields a new RDD (because 
RDD are immutable)

•Transformations are lazily evaluated, which allow for 
optimizations to take place before execution

•Examples: map(), filter(), groupByKey(), sortByKey(), 
etc.
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Example: map and filter Transformations
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RDD Actions
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•Apply transformation chains on RDDs, eventually performing 
some additional operations (e.g., counting)

•Some actions only store data to an external data source (e.g. 
HDFS), others fetch data from the RDD (and its transformation 
chain) upon which the action is applied, and convey it to the 
driver

•Some common actions
count() – return the number of elements
take(n) – return an array of the first n elements
collect()– return an array of all elements
saveAsTextFile(file) – save to text file(s)
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Graph of RDDs

 A collection of RDDs ca n be  understood a s a  gra ph

 Nodes in the  gra ph a re  the  RDDs, which mea ns the  code  but a lso the  
a ctua l da ta  object tha t could would crea te  a t runtime  when executed on 
specific  pa ra mete rs + da ta .  Reminder: Ha doop is  a  “rea d only” model, so 
we  ca n “ma te ria lize” a n RDD a ny time  we  like .

 Edges represent how da ta  objects a re  a ccessed: RDD B might consume 
the  object crea ted by RDD A.  This gives us a  directed edge  A → B
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Lazy Execution of RDDs (1)
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Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (2)
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Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (3)
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Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (4)
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Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (5)
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Data in RDDs is not processed 
until an action is performed

Output Action “triggers” computation, pull model
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Opportunities This Enables

 On-demand optimization : Spark can behave like a compiler by first building a 
potentially complex RDD graph, but then trimming away unneeded 
computations that for today’s purpose, won’t be used.    

 Caching for later reuse.
 Graph transformations : A significant amount of effort is going into this area.  It 

is a lot like compiler-managed program transformation and aims at simplifying 
and speeding up the computation that will occur.

 Dynamic decisions about what to schedule and when .  Concept: minimum 
adequate set  of input objects: RDD can run if all  its inputs are ready
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Example: Mine error logs
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Loa d e rror messa ges from a  log into memory, then inte ra ctive ly 
sea rch for va rious pa tte rns:

lines = spark.textFile(“hdfs://...”)  HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR”)) FilteredRDD

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

Result: full-text sea rch of Wikipedia  in 0.5 sec  (vs 20 sec for on-disk da ta )
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Key Idea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark  wi l l  sp read  the  t ask  over  the  nodes  where  da ta  res ides ,  o f fe r s  a  h igh ly  
concurrent execution tha t minimizes de la ys.  Term: “pa rtitioned computa tion” .

If  some component crashes or even is  just  slow, Spark simply kil ls  that  task and 
la unches a  substitute .
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RDD and Partitions (Parallelism example)
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RDD Graph: Data Set vs Partition Views
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Much like in Hadoop MapReduce, each RDD is associated to 
(input) partitions
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RDDs: Data Locality
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•Data Locality Principle
 Keep high-value RDDs precomputed, in cache or SDD
 Run tasks that need the specific RDD with those same inputs 

on the node where the cached copy resides.
 This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you 
build the RDD, Spark runtime and optimization planner, and the 
underlying YARN resource manager.
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RDDs -- Summa ry
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RDD a re  pa rtitioned, loca lity a wa re , distributed 
collections
 RDD a re  immuta ble

RDD a re  da ta  structures tha t:
 Either point to a  direct da ta  source  (e .g. HDFS)
 Apply some tra nsforma tions to its  pa rent RDD(s) to 

genera te  new da ta  e lements
Computa tions on RDDs
 Represented by la zily eva lua ted linea ge  DAGs composed 

by cha ined RDDs
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Lifetime of a Job in Spark
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Anatomy of a Spark Application
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Cluster Manager 
(YARN/Mesos)
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Typical RDD pattern of use
Instead of doing a lot of work in each RDD, developers split 
ta sks into lots  of sma ll RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute a nd 
hints  to Spa rk tha t it should ca che  those .
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Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same 
nodes.

If  MapReduce jobs were arbi trary programs,  this  wouldn’t  help because reuse 
would be  very ra re .

But  in  fac t  the  MapReduce  mode l  i s  ve ry  repe t i t ious  and  i t e ra t ive ,  and  of ten  
a pplies the  sa me tra nsforma tions a ga in a nd a ga in to the  sa me input file s.

 Those  pa rticula r RDDs become grea t ca ndida tes for ca ching.

 Ma pReduce progra mmer ma y not know how ma ny ite ra tions will occur, but 
Spa rk itse lf is  sma rt enough to evic t RDDs if they don’t a ctua lly ge t reused.
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Iterative Algorithms: Spark vs MapReduce
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Today’s Topics
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•Motivation
•Spark Basics
•Spark Programming

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP



Spark Programming (1)
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Crea ting RDDs
# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP



Spark Programming (2)
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Ba sic Tra nsforma tions

nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}
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Spark Programming (3)
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Ba sic Actions
nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return first K elements
nums.take(2) # => [1, 2]

# Count number of elements
nums.count() # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6
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Spark Programming (4)
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Working with Key-Va lue  Pa irs
Spark’s “distributed reduce” transformations operate on RDDs of 
key-value pairs

Python:  pair = (a, b)

pair[0] # => a

pair[1] # => b

Scala:   val pair = (a, b)

pair._1 // => a

pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a

pair._2 // => b
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Spark Programming (5)
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Some Key-Va lue  Opera tions

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)    # => {(cat, 3), (dog, 1)}

pets.groupByKey()     # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey()      # => {(cat, 1), (cat, 2), (dog, 1)}
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Example: Word Count
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lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ “))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)
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Example: Spark Streaming
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Represents strea ms a s a  se ries of RDDs over time  (typica lly sub second inte rva ls, but it 
is  configura ble )

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))

.print()
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Spark: Combining Libraries (Unified Pipeline)
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# Load data using Spark SQL

points = spark.sql(“select latitude, longitude from tweets”)

# Train a machine learning model

model = KMeans.train(points, 10)

# Apply it to a stream

sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a + b)



Spark: Setting the Level of Parallelism

60

All the  pa ir RDD opera tions ta ke  a n optiona l second 
pa ra mete r for number of ta sks

words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)
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Summary

Spark is  a  powerful  “manager” for  big data computing.
It centers on a job scheduler for Hadoop (Ma pReduce) tha t is  sma rt 
a bout where  to run ea ch ta sk: co-loca te  ta sk with da ta .
The  da ta  ob jec t s  a re  “RDDs”:   a  k ind  of  rec ipe  fo r  genera t ing  a  f i l e  f rom 
a n underlying da ta  collection.  RDD ca ching a llows Spa rk to run mostly 
from memory-ma pped da ta , for speed.

61

• Online tutorials: spark.apache.org/docs/latest
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