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Recap

MapReduce

* For easily writing applications to process vast amounts of data in-
parallel on large clusters in a reliable, fault-tolerant manner

e Takes care of scheduling tasks, monitoring them and re-executes
the failed tasks

HDFS & MapReduce: Running on the same set of nodes -
compute nodes and storage nodes same (keeping data close
to the computation) - very high throughput

YARN & MapReduce: A single master resource manager, one
slave node manager per node, and AppMaster per application



Today’s Topics

e Motivation
eSpark Basics

e Spark Programming



History of Hadoop and Spark

2004 2010
MapReduce paper Spark paper

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!



Apache Spark

** Spark can connect to several types of cluster managers (either
Spark’s own standalone cluster manager, Mesos or YARN)

Processing Spark Spark Other
[ SQL Spark ML Applications

Stream

Resource Spark Core /" Data
manager Stang p Mesos etc. Yet Ano.ther Resource Ingestion

(Standalone Negotiator (YARN)

Scheduler) Systems

e.g.,
Apache

St S?{ Cassandra etc., [ Hadoop NoSQL Database (HBase) } Kpafka

other storage systems ’
Storage 2R [ Hadoop Distributed File System (HDFS) } KFlume' etc/

] [



- Apache Hadoop Lacka Unified Vision

‘ Specialized systems
General

ikl Streaming Iterative Ad-hoc / SQL Graph
MapReduce Storm Mahout Pig _
54 Hive
Samza Drill
Impala

e Sparse Modules
e Diversity of APIs
« Higher Operational Costs



Spark Ecosystem: A Unified Pipeline

Spark SQL+ Spark MLlib

DataFrames § Streaming machine
structured data real-time learning

Spark Core

Note: Spark is not designed for 10T real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur
steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For loT use cases, Spark would not be suitable.
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Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With Spark, serious effort to standardize around the idea that people are
writing parallelcode that often runs for many “cycles” or “iterations” in
which a lot ofreuse of information occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the
Information being reused.



How this works

You expressyour applicationasagraph of RDDs.

The graph isonly evaluated as needed, and they only compute the RDDs
actually needed for the output you have requested.

Then Spark can be told to cache the reuseable information either in
memory, in SSD storage oreven on disk,based on whenit willbe needed
again, how big it is,and how costly it would be to recreate.

You write the RDD logic and control all of this via hints



Motivation (1)

MapReduce: The original scalable, general, processing
engine of the Hadoop ecosystem

Disk-based data processing framework (HDFS files)

Persists intermediate results to disk

Data Is reloaded from disk with every query — Costly I/O
- Best for ETL like workloads (batch processing)

- Costly /O — Not appropriate for iterative or stream
processing workloads

10



Motivation (2)

Spark: General purpose computational framework that
substantially improves performance of MapReduce, but
retains the basic model

Memory based data processing framework — avoids costly
/O by keeping iIntermediate results in memory

_everages distributed memory
Remembers operations applied to dataset

Data locality based computation — High Performance

Best for both iterative (or stream processing)and batch
workloads

11



Motivation - Summary

Software engineering point of view

Hadoop code base is huge

Contributions/Extensions to Hadoop are cumbersome

Java-only hinders wide adoption, but Java supportis fundamental
System/Framework point of view

Unified pipeline

Simplified data flow

Faster processing speed
Data abstraction point of view

New fundamentalabstraction RDD

Easyto extend with new operators
More descriptive computing model

12



"Fod ay’s Topics

*Spark Basics
e Spark Programming




Spark Basics(1)

Spa rK: Flexible, in-memory data processing framework written in Scala

Goals:
Simplicity (Easier to use):
Rich APIs for Scala,Java,and Python

Generality: APIs for different types of workloads
Batch, Streaming, Machine Learning, Graph

Low Latency (Performance):In-memory processing and
caching

Fault-tolerance:Faults shouldn’t be specialcase

14



Spark Basics(2)

There are two ways to manipulate data in Spark
Spark Shell:

Interactive — for learning or data exploration
Python or Scala
Spark Applications
Forlarge scale data processing
Python, Scala,orJava

15



Spark Core: Code Base (2012)

Spark core: 16,000 LOC

Operators: 2000

Scheduler: 2500

Block manager: 2700 Networking: 1200 3300 LOC

Accumulators: 200 Broadcast: 3500

Interpreter:

Hadoop I/O: Mesos backend:
400 LOC 700 LOC

Standalone backend:

1700 LOC

16



Spark Shell

(REPL)

Python Shell: pyspark

[he Spark Shellprovides interactive data exploration

Scala Shell: spark-shell

S pyspark

Welcome to

P e o il

XN N Sy

SN SRR - R R st A version 1.3.0
L

/

Using Python wversion 2.7.8 (default, Aug 27
2015 05:23:36)

SparkContext available as sc¢, HiveContext
available as sqglCtx.

35>

REPL: Repeat/Evaluate/Print Loop

% spark-shell

Welcome to

/1 . I_, _/ /I /\\ version 1.3.0

Using Scala version 2.10.4 (Java HotSpot(TM)
64-Bit Server VM, Java 1.7.0_67)

Created spark context..

Spark context available as sc.

SQL context available as sglContext.

scala>

17



Spark Fundamentals

Example of an
application:

an RDD

errors.cache ()

errors.count () // This is an action

val sc = new SparkContext ("spark://..." MyJob", home
jars)

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains("ERROR")) // This is

e Spark Context

e Resilient Distributed
Data

e Transformations

e Actions

18



Spark Context (1)

LEvery Spark application requires a spark context: the main
entry point to the Spark API

e Spark Shell provides a preconfigured Spark Context called “sc”

Using Python version 2.7.8 (default, Aug 27 2015 05:23:36)

[ SparkContext available as EC,]HiTECGHt&Kt available as sglCtx.

Python
»>>> sc.appName
u'PySparkShell’

[ Spark context available as sc. ]

SQL context available as sqglContext.
Scala

scala> sc.appName

res: String = Spark shell

19



Spark Context (2)

LStandanne applications - Driver code - Spark Context

e Spark Context holds configuration information and represents
connection to a Spark cluster

o Worker Node
Standalone Application

(Drives Computation) Executor | Cache

—>
Driver Program / / Task Task

SparkContext Cluster Manager T
Worker Node l
\ Executor | Cache

¥ | Task Task

/




Spark Context (3)

Your program

Spark client
(app master)

.f\r"-\.f-lx:v‘:\f'*r E"'}
LLountd()

RDD graph

s = new SparkContext :|

f = sc.textFile(".”) |-

Scheduler

Block tracker

‘ Spark context works as a clientand represents connectiontoa Sparkcluster

Spark worker

Shuffle tracker

Cluster Tack
as
manager threads
Block
manager

21



Spark Fundamentals

Example of an application:

val sc = new SparkContext ("spark://...", "MyJob"
jars)

, home,

val file = sc.textFile("hdfs://...") // This is an RDD

val errors = file.filter(_.contains("ERROR")) // This is

an RDD
errors.cache ()

errors.count () // This is an action

e Resilient Distributed
Data

e Transformations

e Actions

22



|Resilient Distributed Dataset

‘ RDD (Resilient Distributed Dataset)is the fundamental unit of data in Spark: An
Immutable collection of objects (or records, or elements)that can be operated on “in
parallel” (spread across a cluster)

Resilient -- if data in memory is lost, it can be recreated
Recover from node failures

An RDD keepsits lineage information - it can be recreated from
parent RDDs

Distributed -- processed across the cluster

Each RDDis composed ofone or more partitions - (more partitions —
more parallelism)

Dataset -- initialdata can come from a file or be created

23



RDDs

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

Organize the RDDs into a DAG showing how data flows.

RDD can be saved and reused or recomputed. Spark can
save it to disk if the dataset does not fit in memory

Built through parallel transformations (map, filter, group-by,
join, etc). Automatically rebuilt on failure

Controllable persistence (e.g.caching in RAM)

24



RDDs are designed to be “immutable”

‘- Create once,thenreuse without changes. Spark knows
ineage - can be recreated atanytime - Fault-tolerance

Avoids data inconsistency problems (no simultaneous
updates)-> Correctness

Easily live In memoryas on disk =2 Caching - Safe to share
across processes/tasks = Improves performance

Tradeoff: (Fault-tolerance & Correctness) vs (Disk Memory & CPU)



Creating a RDD

Three ways to create a RDD
From a file or set of files
From data in memory
From another RDD

26



Example: A File-based RDD

File: purplecow.txt
I"ve never seen a purple
COW .

I never hope to see one;

But I can tell you, anyhow,
I'd rather see than be one.

> wal mydata = sc.textFile("purplecow.txt")

W

_'_‘—--_.___________.--"'

> mydata.count() RDD: mydata

™ z
I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

27



Spark Fundamentals

‘Example of an application:

val sc = new SparkContext ("spark://...", "MyJob", home,
jars)

val file = sc.textFile("hdfs://...") // This is an RDD

-

val errors = file.filter(_.contains("ERROR")) // This is

an RDD

errors.cache ()

errors.count () // This is an action

e Transformations

e Actions

28



RDD Operations

Lrwo types of operations

Transformations: Define a

new RDD based on current

RDD(S) > value
Actions: return values

29



RDD Transformations

« Set of operations on a RDD that define how they should
be transformed

*As In relational algebra, the application of a
transformation to an RDD yields a new RDD (because
RDD are immutable)

e Transformations are lazily evaluated, which allow for
optimizations to take place before execution

«Examples: map(), filter(), groupByKey(), sortByKey(),
etc.



| Example: map and filter Transformations

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

map (lambda line:

line.upper()) map (line => line.toUpperCase)

N

I'VE NEVER SEEN A FUERFLE COW.

I NEVEERE HOFE TO S5EE ONE;

BOT T CAN TELL YOU, ANYHOW,

I'D RATHER SEE THAN BE ONE.

filter(lambda line: line.startswith('I')) filter(line => line.startsWith({('I'))

I'VE NEVER SEEN A PURFPLE COW.

I WEVEE HOFE TO SEE ONE;

I'D RATHEE SEE THAN BE ONE.

31



RDD Actions

» Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

e Some actions only store data to an external data source (e.g.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the

driver
e SOmMe common actions
>count() — return the number of elements
>take(n) — return an array of the first n elements
»collect()— return an array of all elements
>saveAsTextFile(file) — save to text file(s)

32



Lazy Execution of RDDs (1)

‘Data INn RDDs Is not processed e purplecon it

until an action Is performed e




Lazy Execution of RDDs (2)
\

Data in RDDs is not processed

until an action Is performed

RDD: mydata

> wal mydata = sc.textFile ("purplecow.txt")




Lazy Execution of RDDs (3)

Data in RDDs Is not processed ]

I've never geen a purple cow
I never hope to see

until an action iIs performed et T ot e
R pee

RDD: mydata g

vhow,
one .

§e8d

> wal mydata = sc.textFile ("purplecow.txt")

> wal mydata uc = mydata.map(line =>

line. toUpperCase())

RDD: mydata uc W




Lazy Execution of RDDs (4)

‘Data INn RDDs Is not processed
until an action Is performed

> wal mydata = sc.textFile ("purplecow.txt")
> wal mydata uc = mydata.map(line =>
line. toUpperCase () )
> wal mydata filt = mydata uc.filter(line
=> line.startsWith("I")})

File: purplecow.txt

DD: mydata

I've never seen a purple cow.
I never hope to see one;

But I can tell you, anyhow,
I'd rather see than be

R s

.

il

one .

DD: mydata_uc

=

DD: mydata_filt
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‘Lazy Execution of RDDs (35)

Data in RDDs Is not processed DR

I've never seen a purple cow.
I never hope to see one;

until an action Is performed @ o oy, e
R s

RDD: mydata 5 Z
T I vE nEver seen a purple cow.

> wal mydata = sc.textFile ("purplecow.txt"”) I never hope to see one;

> wal m}rdata_ur_: = mydata.map (line => But I can tell you, anyhow,
line. toUpperCase () ) I'd rather see than be one.

> wal mydata filt = mydata uc.filter(line RDD: mydata_uc S
=> line.startsWith("1I")) " [ I'VE NEVER SEEN A PURPLE COW.
mydata_filt.cﬁunt () I WEVER HOPE TO SEE ONE;

BUT I CAN TELL YOU, ANYHOW,

I'D BEATHEE SEE THRN EE ONE.

RDD: mydata_filt
I'VE HEVER SEEN A PURFLE COW.

I NEVER HOPE TO SEE OKRE:

I'D RATHER SEE THAN BE ONE.

A4

Output Action “triggers” computation, pull model
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Example: Mine error logs

Load error messages from a log into memory, then interactively
search forvarious patterns:

lines = spark.textFile(**hdfs://..."") HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR’’)) FilteredRDD
messages = errors.map(lambda s: s.split(‘\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” 1n s).count()

Result: full-text search of Wikipedia in 0.5 sec (vs 20 sec foron-disk data)

38



Key Idea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark will spread the task over the nodes where data resides, offersa highly
concurrent execution that minimizes delays. Term:“partitioned computation”.

If some component crashes or evenis just slow, Spark simply kills that task and
launches a substitute.

39



'RDD and Partitions (Parallelism example)

RDD 1 Partition Partition Partition Partition
1 2 3 4

Cluster
Nodes

RDD 2 Partition Partition Partition
1 2 3



'RDD Graph: Data Set vs Partition Views

‘Much like In Hadoop MapReduce, each RDD Is associated to
(Input) partitions

Worker 1 Worker 2 Worker 3 Worker 4

errors.count // This is an act

|

HadoopRDD

path = hdfs://

A J

func = contains
shouldCache 1

FilteredRDD

Task 1 Task 2 Task 3 Task 4

41



RDDs: Data Locality

eData Locality Principle
> Keep high-value RDDs precomputed, in cache or SDD

> Run tasks that need the specific RDD with those same inputs
on the node where the cached copy resides.

> This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.

42



RDDs -- Summary

RDD are partitioned, locality aware, distributed
collections
RDD are immutable

RDD are data structures that:
Either pointto a direct data source (e.g. HDFS)

Apply some transformations to its parent RDD(s) to
generate new data elements

Computations on RDDs

Represented by lazilyevaluated lineage DAGs composed
by chained RDDs

43



Lifetime of a Job In Spark

aaaaaaa

aaaaaaa

o
e
= =

e
o pormer k)



Anatomy of a Spark Application

Submit App

{mode=cluster)

QN |m| >

/large/file

-.h
Spark
Master
Mame Darta LCata Data Data
Naode MNade | MNaode 2 MNode 3 MNode 4
AllC B| |C AllIB AlIB

RF 3

allocates resources
(cores and memory)

Worker

D

Worker

Worker

D

-

Spark
VWorker

HDFS @ Spark

Cluster Manager
(YARN/Mesos)

45



Typical RDD pattern of use

Instead of doing a lot of work in each RDD, developers split
tasks into lots of smallRDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute and
hints to Sparkthat it should cache those.

46



Why Is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same
nodes.

If MapReduce jobs were arbitrary programs, this wouldnt help because reuse
would be veryrare.

But in fact the MapReduce model isvery repetitious and iterative,and often
applies the same transformations again and again to the same input files.

Those particular RDDs become great candidates forcaching.

MapReduce programmer may not know how many iterations willoccur, but
Sparkitselfis smart enough to evict RDDs iftheydon’tactuallygetreused.

47



Iterative Algorithms: Spark vs MapReduce

‘ K-means Clustering

g4 ‘ ‘ = Spark
121 “ Hadoop MR
0 50 100 150 sec
Logistic Regression
'I 0.96 \ ‘ ‘ ‘ = Spark
80 “ Hadoop MR
———————————

0 20 40 60 80 100 sec
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Today’s Topics

e Spark Programming



Spark Programming (1)

Creating RDDs

# Turn a Python collection 1nto an RDD
sc.parallelize(]1, 2, 3]}])

# Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(““directory/*.txt”)
sc.textFile(**hdfs://namenode:9000/path/file’’)

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, 1nputFmt, conf)

50



Spark Programming (2)

Basic Transformations

nums = sc.parallelize(]1l, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

51



Spark Programming (3)

Basic Actions
nums = sc.parallelize([1l, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return fTirst K elements
nums.take(2) # => [1, 2]

# Count number of elements
nums.count() # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: X + y) # => 6
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Spark Programming (4)

Working with Key-Value Pairs

Spark’s “distributed reduce” transformations operate on RDDs of
key-value pairs

Python: pair = (a, b)
pair[0] # => a
pair[l] # => b

Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // => b

Java: Tuple2 pair = new Tuple2(a, b);
pair._ 1 // => a
pair. 2 // => Db

53



Spark Programming (5)

Some Key-Value Operations
pets = sc.parallelize([(*cat”, 1), (“dog”, 1), (“cat”, 2)])
pets.reduceByKey(lambda X, y: X + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1D}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

54



Example: Word Count

lines = sc.textFile(“hamlet.txt”)

counts = lines.flatMap(lambda line: line.split(®“ “))
-map(lambda word: (word, 1))
.reduceByKey(lambda x, y: X + Yy)

“10” (to, 1)

“to be or’ —» & —— (be, 1) Eggt 21))
“or” (or, 1) ’
“not” (not, 1) 1

“‘not to bg"— “to” — (to, 1) (or, 1)

nbeu (be, .1) (tO, 2)



| Example: Spark Streaming

Time
>

Time
RDD RDD RDD RDD RDD RDD

Represents streams as a series of RDDs over time (typically sub second intervals, but it
IS configurable)

val spammers = sc.sequenceFile(**hdfs://spammers.seq’)

sc.twitterStream(...)
.Filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))
-print()
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Spark: Combining Libraries (Unified Pipeline)

# Load data using Spark SQL
points = spark.sgl(““select latitude, longitude from tweets”)

# Train a machine learning model
model = KMeans.train(points, 10)

# Apply 1t to a stream

sc.twitterStream(...)
-map(lambda t: (model.predict(t.location), 1))
.reduceByWindow(*5s”, lambda a, b: a + b)

HTTP://WWW.CS.CORNELLEDU/COURSES/CS5412/2018SP 57



Spark: Setting the Level of Parallelism

Allthe pair RDD operations take an optionalsecond
parameter fornumber oftasks

words.reduceByKey(lambda x, y: x + vy, 5)
words.groupByKey(5)

visits. join(pageViews, 5)
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Summary

Spark is apowerful “manager” for big data computing.

It centers on ajob scheduler for Hadoop (MapReduce)thatis smart
about where toruneach task:co-locate task with data.

The data objectsare “RDDs”: akind of recipe for generating a file from
an underlying data collection. RDD caching allows Spark to run mostly
from memory-mapped data, forspeed.

- Online tutorials: spark.apache.org/docs/latest
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