CS6200 Information Retrieval

David Smith

College of Computer and Information Science Northeastern University

Indexing Process

Processing Text

- Converting documents to index terms
- Why?
- Matching the exact string of characters typed by the user is too restrictive
- i.e., it doesn't work very well in terms of effectiveness
- Not all words are of equal value in a search
- Sometimes not clear where words begin and end
- Not even clear what a word is in some languages
- e.g., Chinese, Korean

Text Statistics

- Huge variety of words used in text but
- Many statistical characteristics of word occurrences are predictable
- e.g., distribution of word counts
- Retrieval models and ranking algorithms depend heavily on statistical properties of words
- e.g., important words occur often in documents but are not high frequency in collection

Zipf's Law

- Distribution of word frequencies is very skewed
- a few words occur very often, many words hardly ever occur
- e.g., two most common words ("the", "of") make up about 10% of all word occurrences in text documents
- Zipf's "law" (more generally, a "power law"):
- observation that rank (r) of a word times its frequency (f) is approximately a constant (k)
- assuming words are ranked in order of decreasing frequency
- i.e., r.f $\approx k$ or r. $P_{r} \approx c$, where P_{r} is probability of word occurrence and $c \approx 0.1$ for English

Zipf’s Law

News Collection (AP89) Statistics

Total documents				
84,678				
Total word occurrences		39,749,179		
Vocabulary size		198,763		
Words occurring > 1000 times				
4,169				
Words occurring once				
Word ${ }^{\text {W0,0 }}$	Freq.	r	Pr(\%)	r.Pr
assistant	5,095	1,021	. 013	
0.13				
sewers	100	17,110	$2.56 \times 10-4$	
0.04				
toothbrush	10	51,555	$2.56 \times 10-5$	
0.01				
hazmat	1	166,945	$2.56 \times 10-6$	
0.04				

Top 50 Words from AP89

Word	Freq.	r	$P_{r}(\%)$	$r . P_{r}$	Word	Freq	r	$P_{r}(\%)$	$r . P_{r}$
the	$2,420,778$	1	6.49	0.065	has	136,007	26	0.37	0.095
of	$1,045,733$	2	2.80	0.056	are	130,322	27	0.35	0.094
to	968,882	3	2.60	0.078	not	127,493	28	0.34	0.096
a	892,429	4	2.39	0.096	who	116,364	29	0.31	0.090
and	865,644	5	2.32	0.120	they	111,024	30	0.30	0.089
in	847,825	6	2.27	0.140	its	111,021	31	0.30	0.092
said	504,593	7	1.35	0.095	had	103,943	32	0.28	0.089
for	363,865	8	0.98	0.078	will	102,949	33	0.28	0.091
that	347,072	9	0.93	0.084	would	99,503	34	0.27	0.091
was	293,027	10	0.79	0.079	bout	92,983	35	0.25	0.087
on	291,947	11	0.78	0.086	i	92,005	36	0.25	0.089
he	250,919	12	0.67	0.081	been	88,786	37	0.24	0.088
is	245,843	13	0.65	0.086	this	87,286	38	0.23	0.089
with	223,846	14	0.60	0.084	their	84,638	39	0.23	0.089
at	210,064	15	0.56	0.085	new	83,449	40	0.22	0.090
by	209,586	16	0.56	0.090	or	81,796	41	0.22	0.090
it	195,621	17	0.52	0.089	which	80,385	42	0.22	0.091
from	189,451	18	0.51	0.091	we	80,245	43	0.22	0.093
as	181,714	19	0.49	0.093	more	76,388	44	0.21	0.090
be	157,300	20	0.42	0.084	after	75,165	45	0.20	0.091
were	153,913	21	0.41	0.087	us	72,045	46	0.19	0.089
an	152,576	22	0.41	0.090	percent	71,956	47	0.19	0.091
have	149,749	23	0.40	0.092	up	71,082	48	0.19	0.092
his	142,285	24	0.38	0.092	one	70,266	49	0.19	0.092
but	140,880	25	0.38	0.094	people	68,988	50	0.19	0.093

Zipf’s Law for AP89

- Log-log plot: Note problems at high and low frequencies

Zipf's Law

- What is the proportion of words with a given frequency?
- Word that occurs n times has rank $r_{n}=k / n$
- Number of words with frequency n is
- $r_{n}-r_{n+1}=k / n-k /(n+1)=k / n(n+1)$
- Proportion found by dividing by total number of words = highest rank $=k$
- So, proportion with frequency n is $1 / n(n+1)$

Zipf's Law

- Example word frequency ranking

Rank	Word	Frequency
1000	concern	5,100
1001	spoke	5,100
1002	summit	5,100
1003	bring	5,099
1004	star	5,099
1005	immediate	5,099
1006	chemical	5,099
1007	african	5,098

- To compute number of words with frequency 5,099
- rank of "chemical" minus the rank of "summit"
$-1006-1002=4$

E×an? Pe

Number of Occurrences (n)	Predicted Proportion $(1 / n(n+1))$	Actual Proportion	Actual Number of Words
1	.500	.402	204,357
2	.167	.132	67,082
3	.083	.069	35,083
4	.050	.046	23,271
5	.033	.032	16,332
6	.024	.024	12,421
7	.018	.019	9,766
8	.014	.016	8,200
9	.011	.014	6,907
10	.009	.012	5,893

- Proportions of words occurring n times in 336,310 TREC documents
- Vocabulary size is 508,209

Vocabulary Growth

- As corpus grows, so does vocabulary size
- Fewer new words when corpus is already large
- Observed relationship (Heaps’ Law):

$$
v=k . n^{B}
$$

where v is vocabulary size (number of unique words),
n is the number of words in corpus,
k, B are parameters that vary for each corpus (typical values given are $10 \leq k \leq 100$ and $B \approx 0.5$)

AP89 Example

Heaps' Law Predictions

- Predictions for TREC collections are accurate for large numbers of words
- e.g., first 10,879,522 words of the AP89 collection scanned
- prediction is 100,151 unique words
- actual number is 100,024
- Predictions for small numbers of words (i.e. < 1000) are much worse

GOV2 (Web) Example

Web Example

- Heaps' Law works with very large corpora
- new words occurring even after seeing 30 million!
- parameter values different than typical TREC values
- New words come from a variety of sources
- spelling errors, invented words (e.g. product, company names), code, other languages, email addresses, etc.
- Search engines must deal with these large and growing vocabularies

Estimating Result Set Size

tropical fish aquarium
Search
Web results Page 1 of $3,880,000$ results

- How many pages contain all of the query terms?
- For the query " $a b c$ ":

$$
f_{a b c}=N \cdot f_{a} / N \cdot f_{b} / N \cdot f_{c} / N=\left(f_{a} \cdot f_{b} \cdot f_{c}\right) / N^{2}
$$

- Assuming that terms occur independently
- $f_{a b c}$ is the estimated size of the result set
- f_{a}, f_{b}, f_{c} are the number of documents that terms a, b, and c occur in
- N is the number of documents in the collection

GOV2 Example

Word (s)	Document Frequency	Estimated Frequency
tropical	120,990	
fish	$1,131,855$	
aquarium	26,480	
breeding	81,885	
tropical fish	18,472	5,433
tropical aquarium	1,921	127
tropical breeding	5,510	393
fish aquarium	9,722	1,189
fish breeding	36,427	3,677
aquarium breeding	1,848	86
tropical fish aquarium	1,529	6
tropical fish breeding	3,629	18

Collection size (N) is 25,205,179

Result Set Size Estimation

- Poor estimates because words are not independent
- Better estimates possible if cooccurrence information available

$$
\begin{aligned}
& P(a \cap b \cap c)=P(a \cap b) \cdot P(c \mid(a \cap b)) \\
& f_{\text {tropicalnfishnaquarium }}=f_{\text {tropicalnaquarium }} \cdot f_{\text {fishnaquarium }} / f_{\text {aquarium }} \\
& \quad=1921 \cdot 9722 / 26480=705 \\
& f_{\text {tropicalnfishnbreeding }}=f_{\text {tropicalnbreeding }} \cdot f_{\text {fishnbreeeding }} / f_{\text {breeding }} \\
& =5510 \cdot 36427 / 81885=2451
\end{aligned}
$$

Result Set Estimation

- Even better estimates using initial result set
- Estimate is simply C/s
- where s is the proportion of the total documents that have been ranked, and C is the number of documents found that contain all the query words
- E.g., "tropical fish aquarium" in GOV2
- after processing 3,000 out of the 26,480 documents that contain "aquarium", $C=258$
$f_{\text {tropicalnfishnaquarium }}=258 /(3000 \div 26480)=2,277$
- After processing 20% of the documents, $f_{\text {tropicalnfishnaquarium }}=1,778 \quad(1,529$ is real value $)$

Estimating Collection Size

- Important issue for Web search engines
- Simple technique: use independence model
- Given two words a and b that are independent

$$
\begin{gathered}
f_{a b} / N=f_{a} / N \cdot f_{b} / N \\
N=\left(f_{a} \cdot f_{b}\right) / f_{a b}
\end{gathered}
$$

- e.g., for GOV2

$$
\begin{aligned}
& f_{\text {lincoln }}=771,326 f_{\text {tropical }}=120,990 \quad f_{\text {lincoln } n \text { tropical }}=3,018 \\
& N=(120990 \cdot 771326) / 3018=30,922,045 \\
& \quad \text { (actual number is } 25,205,179)
\end{aligned}
$$

Tokenizing

- Forming words from sequence of characters
- Surprisingly complex in English, can be harder in other languages
- Early IR systems:
- any sequence of alphanumeric characters of length 3 or more
- terminated by a space or other special character
- upper-case changed to lower-case

Tokenizing

- Example:
- "Bigcorp's 2007 bi-annual report showed profits rose 10%." becomes
- "bigcorp 2007 annual report showed profits rose"
- Too simple for search applications or even large-scale experiments
- Why? Too much information lost
- Small decisions in tokenizing can have major impact on effectiveness of some queries

Tokenizing Problems

- Small words can be important in some queries, usually in combinations
- xp, ma, pm, ben e king, el paso, master p, gm, j lo, world war II
- Both hyphenated and non-hyphenated forms of many words are common
- Sometimes hyphen is not needed
- e-bay, wal-mart, active-x, cd-rom, t-shirts
- At other times, hyphens should be considered either as part of the word or a word separator
- winston-salem, mazda rx-7, e-cards, pre-diabetes, tmobile, spanish-speaking

Tokenizing Problems

- Special characters are an important part of tags, URLs, code in documents
- Capitalized words can have different meaning from lower case words
- Bush, Apple
- Apostrophes can be a part of a word, a part of a possessive, or just a mistake
- rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats, master's degree, england's ten largest cities, shriner's

Tokenizing Problems

- Numbers can be important, including decimals
- nokia 3250, top 10 courses, united 93 , quicktime 6.5 pro, 92.3 the beat, 288358
- Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other situations
- I.B.M., Ph.D., cs.umass.edu, F.E.A.R.
- Note: tokenizing steps for queries must be identical to steps for documents

Tokenizing Process

- First step is to use parser to identify appropriate parts of document to tokenize
- Defer complex decisions to other components
- word is any sequence of alphanumeric characters, terminated by a space or special character, with everything converted to lower-case
- everything indexed
- example: $92.3 \rightarrow 923$ but search finds documents with 92 and 3 adjacent
- incorporate some rules to reduce dependence on query transformation components

Tokenizing Process

- Not that different than simple tokenizing process used in past
- Examples of rules used with TREC
- Apostrophes in words ignored
- o'connor \rightarrow oconnor bob's \rightarrow bobs
- Periods in abbreviations ignored
-I.B.M. \rightarrow ibm Ph.D. \rightarrow ph d

Stopping

- Function words (determiners, prepositions) have little meaning on their own
- High occurrence frequencies
- Treated as stopwords (i.e. removed)
- reduce index space, improve response time, improve effectiveness
- Can be important in combinations
- e.g., "to be or not to be"

Stopping

- Stopword list can be created from highfrequency words or based on a standard list
- Lists are customized for applications, domains, and even parts of documents
- e.g., "click" is a good stopword for anchor text
- Best policy is to index all words in documents, make decisions about which words to use at query time

Stemming

- Many morphological variations of words
- inflectional (plurals, tenses)
- derivational (making verbs nouns etc.)
- In most cases, these have the same or very similar meanings (but cf. "building")
- Stemmers attempt to reduce morphological variations of words to a common stem
- morphology: many-many; stemming: many-one
- usually involves removing suffixes
- Can be done at indexing time or as part of query processing (like stopwords)

Stemming

- Generally a small but significant effectiveness improvement
- can be crucial for some languages
- e.g., 5-10\% improvement for English, up to 50\% in Arabic

kitab	a book
kitabi	my book
alkitab	the book
kitabuki	your book (f)
kitabuka	your book (m)
kitabuhu	his book
kataba	to write
maktaba	library, bookstore
maktab	office

Words with the Arabic root ktb

Stemming

- Two basic types
- Dictionary-based: uses lists of related words
- Algorithmic: uses program to determine related words
- Algorithmic stemmers
- suffix-s: remove ' s ' endings assuming plural
- e.g., cats \rightarrow cat, lakes \rightarrow lake, wiis \rightarrow wii
- Many false negatives: supplies \rightarrow supplie
- Some false positives: ups \rightarrow up

Porter Stemmer

- Algorithmic stemmer used in IR experiments since the 70s
- Consists of a series of rules designed to the longest possible suffix at each step
- Effective in TREC
- Produces stems not words
- Makes a number of errors and difficult to modify

Porter Stemmer

- Example step (1 of 5)

Step 1a:

- Replace sses by ss (e.g., stresses \rightarrow stress).
- Delete s if the preceding word part contains a vowel not immediately before the s (e.g., gaps \rightarrow gap but gas \rightarrow gas).
- Replace ied or ies by \boldsymbol{i} if preceded by more than one letter, otherwise by $\boldsymbol{i e}$ (e.g., ties \rightarrow tie, cries \rightarrow cri).
- If suffix is $\boldsymbol{u s}$ or $\boldsymbol{s} \boldsymbol{s}$ do nothing (e.g., stress \rightarrow stress).

Step 1b:

- Replace eed, eedly by ee if it is in the part of the word after the first non-vowel following a vowel (e.g., agreed \rightarrow agree, feed \rightarrow feed).
- Delete ed, edly, ing, ingly if the preceding word part contains a vowel, and then if the word ends in $\boldsymbol{a t}, \boldsymbol{b} \boldsymbol{l}$, or $\boldsymbol{i z}$ add \boldsymbol{e} (e.g., fished \rightarrow fish, pirating \rightarrow pirate), or if the word ends with a double letter that is not $\boldsymbol{l l}$, $\boldsymbol{s s}$ or $\boldsymbol{z z}$, remove the last letter (e.g., falling \rightarrow fall, dripping \rightarrow drip), or if the word is short, add \boldsymbol{e} (e.g., hoping \rightarrow hope).
- Whew!

Porter Stemmer

False positives	False negatives
organization/organ	european/europe
generalization/generic	cylinder/cylindrical
numerical/numerous	matrices/matrix
policy/police	urgency/urgent
university/universe	create/creation
addition/additive	analysis/analyses
negligible/negligent	useful/usefully
execute/executive	noise/noisy
past/paste	decompose/decomposition
ignore/ignorant	sparse/sparsity
special/specialized	resolve/resolution
head/heading	triangle/triangular

- Porter2 stemmer addresses some of these issues
- Approach has been used with other languages

Krovetz Stemmer

- Hybrid algorithmic-dictionary
- Word checked in dictionary
- If present, either left alone or replaced with "exception"
- If not present, word is checked for suffixes that could be removed
- After removal, dictionary is checked again
- Produces words not stems
- Comparable effectiveness
- Lower false positive rate, somewhat higher false negative

Stemmer Comparison

Original text:

Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Porter stemmer:

document describ market strategi carri compani agricultur chemic report predict market share chemic report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale market share stimul demand price cut volum sale

Krovetz stemmer:

document describe marketing strategy carry company agriculture chemical report prediction market share chemical report market statistic agrochemic pesticide herbicide fungicide insecticide fertilizer predict sale stimulate demand price cut volume sale

Phrases

- Many queries are 2-3 word phrases
- Phrases are
- More precise than single words
- e.g., documents containing "black sea" vs. two words "black" and "sea"
- Less ambiguous
- e.g., "big apple" vs. "apple"
- Can be difficult for ranking
- e.g., Given query "fishing supplies", how do we score documents with
- exact phrase many times, exact phrase just once, individual words in same sentence, same paragraph, whole document, variations on words?

Phrases

- Text processing issue - how are phrases recognized?
- Three possible approaches:
- Identify syntactic phrases using a part-ofspeech (POS) tagger
- Use word n-grams
- Store word positions in indexes and use proximity operators in queries

POS Tagging

- POS taggers use statistical models of text to predict syntactic tags of words
- Example tags:
- NN (singular noun), NNS (plural noun), VB (verb), VBD (verb, past tense), VBN (verb, past participle), IN (preposition), JJ (adjective), CC (conjunction, e.g., "and", "or"), PRP (pronoun), and MD (modal auxiliary, e.g., "can", "will").
- Phrases can then be defined as simple noun groups, for example

Pos Tagging Example

Original text:

Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Brill tagger:

Document/NN will/MD describe/VB marketing/NN strategies/NNS carried/VBD out/IN by/IN U.S./NNP companies/NNS for/IN their/PRP agricultural/JJ chemicals/NNS ,/, report/NN predictions/NNS for/IN market/NN share/NN of/IN such/JJ chemicals/NNS ,/, or/CC report/NN market/NN statistics/NNS for/IN agrochemicals/NNS ,/, pesticide/NN ,/, herbicide/NN ,/, fungicide/NN ,/, insecticide/NN ,/, fertilizer/NN ,/, predicted/VBN sales/NNS ,/, market/NN share/NN ,/, stimulate/VB demand/NN ,/, price/NN cut/NN ,/, volume/NN of/IN sales/NNS ./.

Example Noun Phrases

TREC data Frequency	Phrase	Patent data Frequency	Phrase
65824	united states	975362	present invention
61327	article type	191625	u.s. pat
33864	los angeles	147352	preferred embodiment
18062	hong kong	95097	carbon atoms
17788	north korea	87903	group consisting
17308	new york	81809	room temperature
15513	san diego	78458	seq id
15009	orange county	75850	brief description
12869	prime minister	66407	prior art
12799	first time	59828	perspective view
12067	soviet union	58724	first embodiment
10811	russian federation	56715	reaction mixture
9912	united nations	54619	detailed description
8127	southern california	54117	ethyl acetate
7640	south korea	52195	example 1
7620	end recording	52003	block diagram
7524	european union	46299	second embodiment
7436	south africa	41694	accompanying drawings
7362	san francisco	40554	output signal
7086	news conference	37911	first end
6792	city council	35827	second end
6348	middle east	34881	appended claims
6157	peace process	33947	distal end
5955	human rights	32338	cross-sectional view
5837	white house	30193	outer surface

Word N-Grams

- POS tagging can be slow for large collections
- Simpler definition - phrase is any sequence of n words - known as n-grams
- bigram: 2 word sequence, trigram: 3 word sequence, unigram: single words
- N -grams also used at character level for applications such as OCR
- N -grams typically formed from overlapping sequences of words
- i.e. move n-word "window" one word at a time in document

N-Grams

- Frequent n-grams are more likely to be meaningful phrases
- N -grams form a Zipf distribution
- Better fit than words alone
- Could index all n-grams up to specified length
- Much faster than POS tagging
- Uses a lot of storage
- e.g., document containing 1,000 words would contain 3,990 instances of word n-grams of length $2 \leq n \leq 5$

Google N-Grams

- Web search engines index n-grams
- Google sample (frequency > 40):

Number of tokens:	$1,024,908,267,229$
Number of sentences:	$95,119,665,584$
Number of unigrams:	$13,588,391$
Number of bigrams:	$314,843,401$
Number of trigrams:	$977,069,902$
Number of fourgrams:	$1,313,818,354$
Number of fivegrams:	$1,176,470,663$

- Most frequent trigram in English is "all rights reserved"
- In Chinese, "limited liability corporation"

Document Structure and Markup

- Some parts of documents are more important than others
- Document parser recognizes structure using markup, such as HTML tags
- Headers, anchor text, bolded text all likely to be important
- Metadata can also be important
- Links used for link analysis

Example Web Page

Tropical fish

From Wikipedia, the free encyclopedia
Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species. Fishkeepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.

Tropical fish are popular aquarium fish, due to their often bright coloration. In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.

Example Web Page

```
<html>
<head>
<meta name="keywords" content="Tropical fish, Airstone, Albinism, Algae eater,
Aquarium, Aquarium fish feeder, Aquarium furniture, Aquascaping, Bath treatment
(fishkeeping),Berlin Method, Biotope" />
<title>Tropical fish - Wikipedia, the free encyclopedia</title>
<head>
<body>
h1 class="firstHeading">Tropical fish</h1>
<p><b>Tropical fish</b> include <a href="/wiki/Fish" title="Fish">fish</a> found in <a
href="/wiki/Tropics" title="Tropics">tropical</a> environments around the world,
including both <a href="/wiki/Fresh_water" title="Fresh water" }>\mathrm{ freshwater }</\mathbf{a}>\mathrm{ and <a
href="/wiki/Sea_water" title="Sea water">salt water</a> species. <a
href="/wiki/Fishkeeping" title="Fishkeeping">Fishkeepers</a> often use the term
<i>tropical fish</i> to refer only those requiring fresh water, with saltwater tropical fish
referred to as <i><a href="/wiki/List_of_marine_aquarium_fish_species" title="List of
marine aquarium fish species">marine fish </a }></\mathbf{i}\rangle.</\textrm{p}
<p>Tropical fish are popular <a href="/wiki/Aquarium" title="Aquarium">aquarium</a>
fish, due to their often bright coloration. In freshwater fish, this coloration typically
derives from <a href="/wiki/Iridescence" title="Iridescence">iridescence</a>, while salt
water fish are generally <a href="/wiki/Pigment" title="Pigment">pigmented</a>.</p>
</body></html>
```


Link Analysis

- Links are a key component of the Web
- Important for navigation, but also for search
- e.g., Example website
- "Example website" is the anchor text
- "http://example.com" is the destination link
- both are used by search engines

Exercise: Link Analysis

- Assumption 1: A link on the web is a quality signal - the author of the link thinks that the linked-to page is highquality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

Anchor Text

- Used as a description of the content of the destination page
- i.e., collection of anchor text in all links pointing to a page used as an additional text field
- Anchor text tends to be short, descriptive, and similar to query text
- Retrieval experiments have shown that anchor text has significant impact on effectiveness for some types of queries
- i.e., more than PageRank

PageRank

- Billions of web pages, some more informative than others
- Links can be viewed as information about the popularity (authority?) of a web page - can be used by ranking algorithm
- Inlink count could be used as simple measure
- Link analysis algorithms like PageRank provide more reliable ratings
- less susceptible to link spam

Random Surfer Model

- Browse the Web using the following algorithm:
- Choose a random number r between 0 and 1
- If $r<\lambda$:
- Go to a random page
- If $r \geq \lambda$:
- Click a link at random on the current page
- Start again
- PageRank of a page is the probability that the "random surfer" will be looking at that page
- links from popular pages will increase PageRank of pages they point to

Dangling Links

- Random jump prevents getting stuck on pages that
- do not have links
- contains only links that no longer point to other pages
- have links forming a loop
- Links that point to the first two types of pages are called dangling links
- may also be links to pages that have not yet been crawled

PageRank

- PageRank $(P R)$ of page $\mathrm{C}=P R(\mathrm{~A}) / 2+P R(\mathrm{~B}) / 1$
- More generally,

$$
P R(u)=\sum_{v \in B_{u}} \frac{P R(v)}{L_{v}}
$$

- where B_{u} is the set of pages that point to u, and L_{v} is the number of outgoing links from page v (not counting duplicate links)

PageRank

- Don't know PageRank values at start
- Assume equal values (1/3 in this case), then iterate:
- first iteration: $P R(C)=0.33 / 2+0.33=0.5, P R(A)=$ 0.33 , and $P R(B)=0.17$
- second: $P R(\mathrm{C})=0.33 / 2+0.17=0.33, P R(\mathrm{~A})=0.5$, $P R(B)=0.17$
- third: $P R(\mathrm{C})=0.42, P R(\mathrm{~A})=0.33, P R(\mathrm{~B})=0.25$
- Converges to $P R(C)=0.4, P R(A)=0.4$, and $P R(B)=0.2$

PageRank

- Taking random page jump into account, $1 / 3$ chance of going to any page when $r<\lambda$
- $P R(\mathrm{C})=\lambda / 3+(1-\lambda) \cdot(P R(\mathrm{~A}) / 2+P R(\mathrm{~B}) / 1)$
- More generally,

$$
P R(u)=\frac{\lambda}{N}+(1-\lambda) \cdot \sum_{v \in B_{u}} \frac{P R(v)}{L_{v}}
$$

- where N is the number of pages, λ typically 0.15

```
procedure PageRank( \(G\) )
    \(\triangleright G\) is the web graph, consisting of vertices (pages) and edges (links).
    \((P, L) \leftarrow G \quad \triangleright\) Split graph into pages and links
    \(I \leftarrow\) a vector of length \(|P| \quad \triangleright\) The current PageRank estimate
    \(R \leftarrow\) a vector of length \(|P| \triangleright\) The resulting better PageRank estimate
    for all entries \(I_{i} \in I\) do
        \(I_{i} \leftarrow 1 /|P| \quad \triangleright\) Start with each page being equally likely
    end for
    while \(R\) has not converged do
        for all entries \(R_{i} \in R\) do
            \(R_{i} \leftarrow \lambda /|P| \triangleright\) Each page has a \(\lambda /|P|\) chance of random selection
        end for
        for all pages \(p \in P\) do
            \(Q \leftarrow\) the set of pages such that \((p, q) \in L\) and \(q \in P\)
            if \(|Q|>0\) then
                for all pages \(q \in Q\) do
                    \(R_{q} \leftarrow R_{q}+(1-\lambda) I_{p} /|Q| \quad \triangleright\) Probability \(I_{p}\) of being at
    page \(p\)
                end for
        else
                for all pages \(q \in P\) do
                \(R_{q} \leftarrow R_{q}+(1-\lambda) I_{p} /|P|\)
                end for
        end if
        \(I \leftarrow R \quad \triangleright\) Update our current PageRank estimate
        end for
    end while
    return \(R\)
end procedure
```


A PageRank Implementation

- Convergence check
- Stopping criteria for this types of PR algorithm typically is of the form ||new - old|| < tau where new and old are the new and old PageRank vectors, respectively.
- Tau is set depending on how much precision you need. Reasonable values include 0.1 or 0.01 . If you want really fast, but inaccurate convergence, then you can use something like tau=1.
- The setting of tau also depends on N (= number of documents in the collection), since ||new-old|| (for a fixed numerical precision) increases as N increases, so you can alternatively formulate your convergence criteria as ||new - old|| / N < tau.
- Either the L1 or L2 norm can be used.

Link Quality

- Link quality is affected by spam and other factors
- e.g., link farms to increase PageRank
- trackback links in blogs can create loops
- links from comments section of popular blogs
- Blog services modify comment links to contain rel=nofollow attribute
- e.g., "Come visit my web page."

Trackback Links

