
Getting SGD
Off The Ground

Basic Techniques We Always Use

CS6787 Lecture 2 — Fall 2021



The hidden cost of SGD

• By switching to SGD, we eliminated the costly sum over the 
dataset

• But the cost of computing the individual gradients 
remains, and we’ll need to run more steps

wt+1 = wt � ↵rf(wt;xit)

wt+1 = wt � ↵ · 1
n

nX

i=1

rf(wt, xi)
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Using gradients naively is problematic

•Hardware efficiency perspective
• Need some way to compute gradients efficiently on 

the underlying hardware

• Software engineering perspective
• If we had to express the gradients by hand, this 

requires human effort
• Also makes it difficult to change the objective, since 

we’d need to re-derive the gradient
• Also makes us prone to bugs



How do we address these problems?

• Automatic differentiation
• Compute a gradient automatically — just need to specify the 

objective
• Prime example: backpropagation
• Can also decompose the gradient computation into operators 

that will run efficiently on hardware

• Machine learning frameworks
• Make it easy to express learning tasks in a high-level language
• Support for building scalable systems



Why Automatic Differentiation?

• There are other classical approaches we have to compute 
derivatives.

• Symbolic differentiation
• Express the objective function as a mathematical expression, then 

differentiate symbolically by applying the chain rule and other rules of 
calculus.

• Numerical differentiation

f 0(x) = lim
h!0

f(x+ h)� f(x� h)

2h
⇡ f(x+ ✏)� f(x� ✏)

2✏
for small ✏
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Why might these be a bad approach for SGD?



How does automatic differentiation work?

• Main idea: transform the program that computes the 
objective directly into a program that computes the 
gradient.

• There are many ways of doing automatic differentiation
• Two broad classes: forward mode and reverse mode

• For most ML applications, we use backpropagation, a 
particular flavor of reverse-mode automatic differentiation
• One specialized to compute gradients of neural network objectives



Backpropagation

• Start with a computation graph that represents the 
function to be differentiated

• Forward pass: compute through the graph 
normally, as if we were computing the function 
value
• Save all intermediate values used in the computation—

memory cost

• Backward pass: now proceed backwards through 
the graph, computing gradients of the function 
value w.r.t. intermediates 



Backpropagation: A simple example

• Consider using backpropagation to differentiate the function

• Notice that there’s a bunch of redundant expressions here
• Backpropagation will compute, in order:

h(x) = exp(sin(cos(x)))
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h0(x) = exp(sin(cos(x))) · cos(cos(x)) · (� sin(x))
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a1 = cos(x)

a2 = sin(a1)

a3 = exp(a2)
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g3 = exp(a2)

g2 = g3 · cos(a1)
f 0(x) = g2 · (� sin(x))
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Key thing to know: Automatic differentiation 
can compute gradients…

• For any function that has differentiable 
components

• To arbitrary precision

•Using a small constant factor of additional 
compute compared with the cost to compute 
the objective



Systems tradeoffs of backpropagation

• Question: what are some aspects of backpropagation 
that are beneficial from a systems/hardware 
efficiency perspective?

• Question: what are some aspects of backpropagation 
that may present an additional systems/hardware 
efficiency cost?
• Relative to the cost of computing the function (but not the 

gradient).



This solves part of the 
problem…but there’s still a 
software engineering challenge. 
How do we build software that people can use to 
reliably and robustly build, train, and deploy 
machine learning solutions?



The answer: machine learning frameworks

• Goal: make ML easier
• From a software engineering perspective
• Make the computations more reliable, debuggable, and robust

• Goal: make ML scalable
• To large datasets running on distributed heterogeneous 

hardware

• Goal: make ML accessible
• So that even people who aren’t ML systems experts can get 

good performance



ML frameworks come in a few flavors

• General machine learning frameworks
• Goal: make a wide range of ML workloads and applications easy for 

users

• General big data processing frameworks
• Focus: computing large-scale parallel operations quickly
• Typically has machine learning as a major, but not the only, 

application

• Deep learning frameworks
• Focus: fast scalable backpropagation and inference
• Although typically supports other applications as well



How can we evaluate an ML framework?

• How popular is it?
• Use drives use — ML frameworks have a snowball effect
• Popular frameworks attract more development and eventually 

more features

• Who is behind it?
• Major companies ensure long-term support

• What are its features?
• Often the least important consideration — unfortunately



Common Features of Machine 
Learning Frameworks



What do ML frameworks support?

• Basic tensor operations
• Provides the low-level math behind all the algorithms
• Including support for running them on hardware such as GPUs

• Automatic differentiation
• Used to make it easy to run backprop on any model

• Simple-to-use composable implementations of systems 
techniques
• Including most of the techniques we will discuss in the remainder of 

this course



Tensors

• CS way to think about it: a tensor is a multidimensional 
array

• Math way to think about it: a tensor is a multilinear map

• Here the number n is called the order of the tensor
• For example, a matrix is just a 2nd-order tensor

T (x1, x2, . . . , xn) is linear in each xi, with other inputs fixed.

T : Rd1 ⇥ Rd2 ⇥ · · ·⇥ Rdn ! R , T 2 Rd1⇥d2⇥···⇥dn



Examples of Tensors in Machine Learning

• The CIFAR10 dataset consists of 60000 32x32 color 
images
• We can write the training set as a tensor

• Gradients for deep learning can also be tensors
• Example: fully-connected layer with 100 input and 100 output 

neurons, and mini-batch size b=32

TCIFAR10 2 R32⇥32⇥3⇥60000

G 2 R100⇥100⇥32



Common Operations on Tensors
• Elementwise operations — looks like vector sum

• Example: Hadamard product

• Broadcast operations — expand along one or more 
dimensions
• Example:                                         , then with broadcasting 

• Extreme version of this is the tensor product

• Matrix-multiply-like operations — sum or reduce along a 
dimension
• Also called tensor contraction

(A �B)i1,i2,...,in = Ai1,i2,...,inBi1,i2,...,in

A 2 R11⇥1, B 2 R11⇥5

(A+B)i,j = Ai,1 +Bi,j



Broadcasting makes ML easy to write

• Here’s how easy it is to write the loss and gradient for 
logistic regression
• Doesn’t even need to include a for-loop



Tensors: a systems perspective

• Loads of data parallelism
• Tensors are in some sense the structural embodiment of data 

parallelism
• Multiple dimensions à not always obvious which one best to 

parallelize over

• Predictable linear memory access patterns
• Great for locality

• Many different ways to organize the computation
• Creates opportunities for frameworks to automatically optimize



General
Machine Learning
Frameworks



and
• NumPy

• Adds large multi-dimensional array and matrix types (tensors) to 
python

• Supports basic numerical operations on tensors, on the CPU

• SciPy
• Builds on NumPy and adds tools for scientific computing
• Supports optimization, data structures, statistics, symbolic 

computing, etc.
• Also has an interactive interface (Jupyter) and a neat plotting tool 

(matplotlib)

• Great ecosystem for prototyping systems



Julia and MATLAB

• Julia
• Relatively new language (8 years old) with growing community
• Natively supports numerical computing and all the tensor ops
• Syntax is nicer than Python, and it’s often faster
• Has Flux, a library for machine learning that supports 

backpropagation
• But less support from the community and less library support

• MATLAB
• The decades-old standard for numerical computing
• Supports tensor computation, and some people use it for ML
• But has less attention from the community because it’s proprietary



• scikit-learn
• A broad, full-featured toolbox of machine learning and data analysis 

tools
• In Python
• Features support for classification, regression, clustering, 

dimensionality reduction: including SVM, logistic regression, k-
Means, PCA



Theano

• Machine learning library for python
• Created by the University of Montreal

• Supports tight integration with NumPy

• But also supports CPU and GPU integration
• Making it very fast for a lot of applications

• Development has ceased because of competition from 
other libraries



General
Big Data Processing
Frameworks



The original: MapReduce/Hadoop

• Invented by Google to handle distributed processing

• People started to use it for distributed machine 
learning
• And people still use it today

• But it’s mostly been supplanted by other libraries
• And for good reason
• Hadoop does a lot of disk writes in order to be robust against 

failure of individual machines — not necessary for machine 
learning applications



Apache Spark

• Open-source cluster computing framework
• Built in Scala, and can also embed in Python

• Developed by Berkeley AMP lab
• Now spun off into a company: DataBricks

• The original pitch: 100x faster than Hadoop/MapReduce

• Architecture based on resilient distributed datasets (RDDs)
• Essentially a distributed fault-tolerant data-parallel array



Spark MLLib

• Scalable machine learning library built on top of Spark

• Supports most of the same algorithms scikit-learn supports
• Classification, regression, decision trees, clustering, topic modeling
• Not primarily a deep learning library

• Major benefit: interaction with other processing in Spark
• SparkSQL to handle database-like computation
• GraphX to handle graph-like computation



Apache Mahout

• Backend-independent programming environment for 
machine learning
• Can support Spark as a backend
• But also supports basic MapReduce/Hadoop

• Focuses mostly on collaborative filtering, clustering, and 
classification
• Similarly to MLLib and scikit-learn

• Also not very deep learning focused



Many more here

• Lots of very good frameworks for large-scale 
parallel programming don’t end up becoming 
popular

• Takeaway: important to release code people 
can use easily
• And capture a group of users who can then help 

develop the framework



Deep Learning Frameworks



Caffe

• Deep learning framework
• Developed by Berkeley AI research

• Declarative expressions for describing network architecture

• Fast — runs on CPUs and GPUs out of the box
• And supports a lot of optimization techniques

• Huge community of users both in academia and industry



Caffe code example



TensorFlow

• End-to-end deep learning system
• Developed by Google Brain

• API primarily in Python
• With support for other languages

• Architecture: build up a computation graph in Python
• Then the framework schedules it automatically on the available 

resources
• Although recently TensorFlow has announced an eager version

• Super-popular, still very popular for deploying ML



TensorFlow code example



• Python package that focuses on
• Tensor computation (like numpy) with strong GPU acceleration
• Deep Neural Networks built on a tape-based autograd system

• Eager computation out-of-the-box

• Uses a technique called reverse-mode auto-differentiation
• Allows users to change network behavior arbitrarily with zero lag or overhead
• Fastest implementation of this method

• PyTorch is the most popular framework for ML research



PyTorch example



• Deep learning library from Apache.

• Scalable C++ backend
• Support for many frontend languages, including Python, Scala, 

C++, R, Perl…

• Focus on scalability to multiple GPUs
• Sometimes performs better than competing approaches.



MXNet Example

(from MXNet MNIST 
tutorial)



…and many other frameworks for ML

• Theano

• ONNX

• Jax

• New frameworks will continue to be developed!



ML Frameworks: Conclusion
• We use ML frameworks to both make ML code run more 

efficiently and make it easier to express learning 
procedures

• These frameworks are important to know about 
because they give you the tools you can use to build 
ML software.

• Most of you will be using an ML framework to do your 
course project.



Getting SGD
Off The Ground

Basic Techniques We Always Use

CS6787 Lecture 2 — Fall 2021

To get SGD off the ground, we don’t just use software.
Here are some basic statistical techniques that we pretty 
much always use… 



Mini-Batching



Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something 
intermediate?

wt+1 = wt � ↵t
1

N

NX

i=1

rf(wt;xi)

wt+1 = wt � ↵trf(wt;xit)



Mini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of all subsets 
of {1, … , N} of size b.
• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)



How does runtime cost of Mini-Batch compare 
to SGD and Gradient Descent?
• Takes less time to compute each update than gradient 

descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster 
than SGD?

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)



Mini-Batch SGD Converges

• Start by breaking up the update rule into expected 
update and noise

• Second moment bound

wt+1 � w⇤ = wt � w⇤ � ↵t (rh(wt)�rh(w⇤))

� ↵t
1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

E
⇥
kwt+1 � w⇤k2

⇤
= E

⇥
kwt � w⇤ � ↵t (rh(wt)�rh(w⇤)) k2

⇤

+ ↵2
tE

2

4
�����

1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

�����

2
3

5



Mini-Batch SGD Converges (continued)

Let �i = rf(wt;xi)�rh(wt), and �i =

(
1 i 2 Bt

0 i /2 Bt
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Mini-Batch SGD Converges (continued)

• Because we sampled B uniformly at random, for i ≠ j

• So we can bound our square error term as

E [�i�j ] = P (i 2 B ^ j 2 B) = P (i 2 B)P (j 2 B|i 2 B) =
b

N
· b� 1

N � 1

E
⇥
�2
i

⇤
= P (i 2 B) =

b

N

E

2

4
�����

1

|Bt|
X

i2Bt

(rf(wt;xi)�rh(wt))

�����

2
3

5 =
1

|Bt|2
E

2

4
NX

i=1

NX

j=1

�i�j�
T
i �j

3

5

=
1

b2
E

2

4
X

i 6=j

b(b� 1)

N(N � 1)
�T

i �j +
NX

i=1

b

N
k�ik2

3

5



Mini-Batch SGD Converges (continued)
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Mini-Batch SGD Converges (continued)

• Compared with SGD, squared error term decreased by 
a factor of b



Mini-Batch SGD Converges (continued)

• Recall that SGD converged to a noise ball of size at most

• Since mini-batching decreases error term by a factor of 
b, it will have

• Noise ball smaller by the same factor! 

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

2µ� ↵µ2

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

(2µ� ↵µ2)b



Advantages of Mini-Batch (reprise) 

• Takes less time to compute each update than gradient 
descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic 
gradient descent

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

(2µ� ↵µ2)b



How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a 

b-times-as-accurate answer
• But we could have gotten a b-times-as-accurate answer by just 

running SGD for b times as many steps with a step size of ⍺/b.

• But it still makes sense to run it for systems and statistical
reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more 

accurately — we’ll see this come up in Batch Normalization

• Another use case for hyperparameter optimization



Mini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a classical typical default value for batch size
• From “Practical Recommendations for Gradient-Based 

Training of Deep Architectures,” Bengio 2012.

• Nowadays larger batch sizes are more common
• b = 64, b = 128
• Some of this change is driven by systems considerations!



Overfitting,
Generalization Error, and 
Regularization



Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new 
examples
• Drawn from some real-world distribution ɸ

• Typically, we assume the training examples were drawn from this 
distribution

h(w) =
1

N

NX

i=1

f(w;xi)

h̄(w) = Ex⇠� [f(w;x)]



Overfitting

• Minimizing the training loss doesn't generally 
minimize the expected loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training 
set and the expected loss on new examples is called the 
generalization error

• Even a model that has high accuracy on the training set 
can have terrible performance on new examples
• Phenomenon is called overfitting



Demo



How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with 
little or no extra computational cost?

• Notice from the demo that some loss functions do 
better than others
• Can we modify our loss function to prevent overfitting?



Regularization

• Add an extra regularization term to the objective 
function

• Most popular type: L2 regularization

• Also popular: L1 regularization

h(w) =
1

N

NX

i=1

f(w;xi) + �2kwk22 =
1

N

NX

i=1

f(w;xi) + �2
dX

k=1

x2
k

h(w) =
1

N

NX

i=1

f(w;xi) + �kwk1 =
1

N

NX

i=1

f(w;xi) + �
dX

k=1

kxkk



Benefits of Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting

wt+1 = (1� 2↵t�
2)wt � ↵trf(wt;xit)



Demo



How to choose the regularization parameter?

• One way is to use an independent validation set to 
estimate the test error, and set the regularization 
parameter manually so that it is high enough to avoid 
overfitting
• This is what we saw in the demo

• But doing this naively can be computationally 
expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization



More general forms of regularization

•Regularization is used more generally to 
describe anything that helps prevent overfitting
• By biasing learning by making some models more 

desirable a priori

•Many techniques that give throughput 
improvements also have a regularizing effect
• Sometimes: a win-win of better statistical and 

hardware performance



Early Stopping



Asymptotically large training sets

• Setting 1: we have a distribution ɸ and we sample a very 
large (asymptotically infinite) number of points from it, then 
run stochastic gradient descent on that training set for only 
N iterations.

• Can our algorithm in this setting overfit?
• No, because its training set is asymptotically equal to the true 

distribution.

• Can we compute this efficiently?
• No, because its training set is asymptotically infinitely large



Consider a second setting
• Setting 1: we have a distribution ɸ and we sample a very 

large (asymptotically infinite) number of points from it, then 
run stochastic gradient descent on that training set for only 
N iterations.

• Setting 2: we have a distribution ɸ and we sample N points 
from it, then run stochastic gradient descent using each of 
these points exactly once.

• What is the difference between the output of SGD in these 
two settings?
• Asymptotically, there’s no difference!
• So SGD in Setting 2 will also never overfit



Early Stopping

• Motivation: if we only use each training example once 
for SGD, then we can’t overfit.

• So if we only use each example a few times, we 
probably won’t overfit too much.

• Early stopping: just stop running SGD before it 
converges.



Benefits of Early Stopping

•Cheap to compute
• Literally just does less work
• It seems like the technique was designed to make 

systems run faster

•Helps with overfitting



Questions?

•Upcoming things
• Please fill out the paper assignment survey tonight!


