## CSC 322: Computer Organization Lab

Lecture 3: Logic Design<br>Dr. Haidar M. Harmanani

## D. LAU <br> 

Lebanese American University

## CSC 322: Computer Organization Lab

Part I: Combinational Logic

Dr. Haidar M. Harmanani

## Logical Design of Digital Systems

- Complex Combinational and Sequential networks (up to thousands of gates)
-Emphasis on combined datapath + Finite state machine designs for real time applications
- Modern CAD tool usage (schematic entry, simulation, technology mapping, timing analysis, synthesis)
- Logic Synthesis via Verilog
- Modern implementation technologies such as Field Programmable Gate Arrays (FPGAs)


## Truth Tables



## Example \#1: 1 iff one (not both) $a, b=1$

| $a$ | $b$ | $y$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



## How about a 3-input XOR Gate?

- Easy. Extend the truth table
- How about $N$-input $X O R$ is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the \# of 1 s at its input is odd

| a | b | c | y |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Logic Gates (1/2)

AND


OR

NOT
$a-D o-b$

| a | b |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

Logic Gates (2/2)

## XOR

NAND

NOR

## Example 2: Design a 2-bit Unsigned Adder



How
many
rows in
the truth
table?

| A | $\mathbf{B}$ | $\mathbf{C}$ |
| :---: | :---: | :--- |
| $a_{1} a_{0}$ | $b_{1} b_{0}$ | $c_{2} c_{1} c_{0}$ |
| 00 | 00 | 000 |
| 00 | 01 | 001 |
| 00 | 10 | 010 |
| 00 | 11 | 011 |
| 01 | 00 | 001 |
| 01 | 01 | 010 |
| 01 | 10 | 011 |
| 01 | 11 | 100 |
| 10 | 00 | 010 |
| 10 | 01 | 011 |
| 10 | 10 | 100 |
| 10 | 11 | 101 |
| 11 | 00 | 011 |
| 11 | 01 | 100 |
| 11 | 10 | 101 |
| 11 | 11 | 110 |

## Example 3: Design of a 32-bit adder

| A | B | C |
| :---: | :---: | :--- |
| $000 \ldots 0$ | $000 \ldots 0$ | $000 \ldots 00$ |
| $000 \ldots 0$ | $000 \ldots 1$ | $000 \ldots 01$ |
| $\cdot$ | $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ | . |
| $111 \ldots 1$ | $111 \ldots 1$ | $111 \ldots 10$ |

# How <br> Many <br> Rows? 

## Example 5: Majority Function



Example 4: 3-input majority circuit

| a | b | c | y |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |



## Boolean Algebra

- George Boole, 19th Century mathematician
- Developed an algebra involving logic - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power f Boolean Algebra is there's a one-to-one come between circuits made up of AND, OR and NOT gates and equations.


## Boolean algebra

- Boolean algebra
$-B=\{0,1\}$
-+ is logical OR, • is logical AND
- ' is logical NOT
- All algebraic axioms hold


## An Algebraic Structure

- An algebraic structure consists of
- a set of elements B
- binary operations $\{+, \bullet\}$
- and a unary operation \{'\}
- such that the following axioms hold:

1. the set $B$ contains at least two elements, $a, b$, such that $a{ }^{\circ} b$
2. closure: $a+b$ is in $B a \bullet b$ is in $B$
3. commutativity: $a+b=b+a \quad a \bullet b=b \bullet a$
4. associativity: $\quad a+(b+c)=(a+b)+c a \bullet(b \bullet c)=(a \bullet b) \bullet c$
5. identity: $a+0=a \quad a \cdot 1=a$
6. distributivity: $\quad a+(b \bullet c)=(a+b) \bullet(a+c) \quad a \bullet(b+c)=(a \bullet b)+(a \bullet c)$
7. complementarity: $a+a^{\prime}=1 \quad a \cdot a^{\prime}=0$

## Axioms and Theorems of Boolean Algebra

- Identity

1. $X+0=X$
1D. $X \cdot 1=X$

- Null

2. $X+1=1$
2D. $x \bullet 0=0$

- Idempotency:

3. $X+X=X \quad$ 3D. $X \cdot x=X$

- Involution:

4. $\left(X^{\prime}\right)^{\prime}=X$

- Complementarity:

5. $X+X^{\prime}=1 \quad 5 D . X \bullet X^{\prime}=0$

- Commutativity:

6. $X+Y=Y+X 6 D . X \bullet Y=Y \bullet X$

- Associativity:

7. $(X+Y)+Z=X+(Y+Z) \quad$ 7D. $(X \bullet Y) \bullet Z=X \bullet(Y \bullet Z)$

## Axioms and Theorems of Boolean Algebra (cont'd)

- Distributivity:

8. $X \bullet(Y+Z)=(X \bullet Y)+(X \bullet Z) \quad$ 8D. $X+(Y \bullet Z)=(X+Y) \bullet(X+Z)$

- uniting:

9. $X \bullet Y+X \bullet Y^{\prime}=X \quad$ 9D. $(X+Y) \bullet\left(X+Y^{\prime}\right)=X$

- absorption:

10. $X+X \cdot Y=X$

10D. $X \cdot(X+Y)=X$
11. $\left(X+Y^{\prime}\right) \bullet Y=X \bullet Y$

11D. $\left(X \bullet Y^{\prime}\right)+Y=X+Y$

- factoring:

12. $(X+Y) \bullet\left(X^{\prime}+Z\right)=X \bullet Z+X^{\prime} \bullet Y \quad$ 16D. $X \bullet Y+X^{\prime} \bullet Z=(X+Z) \bullet\left(X^{\prime}+Y\right)$

- consensus:

13. $(X \bullet Y)+(Y \bullet Z)+\left(X^{\prime} \bullet Z\right)=$ $X \bullet Y+X^{\prime} \bullet Z$

17D. $(X+Y) \cdot(Y+Z) \bullet\left(X^{\prime}+Z\right)=$ $(X+Y) \bullet\left(X^{\prime}+Z\right)$

## Axioms and Theorems of Boolean Algebra (cont'd)

- de Morgan's:

14. $(X+Y+\ldots)^{\prime}=X^{\prime} \bullet Y^{\prime} \bullet \ldots \quad$ 12D. $(X \bullet Y \bullet \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

- generalized de Morgan's:

15. $f^{\prime}(X 1, X 2, \ldots, X n, 0,1,+\bullet \bullet)=f\left(X 1^{\prime}, X 2^{\prime}, \ldots, X^{\prime}, 1,0, \bullet,+\right)$

- Establishes relationship between • and +


## Axioms and theorems of Boolean algebra (cont')

- Duality
- a dual of a Boolean expression is derived by replacing
$\bullet$ by,++ by $\bullet, 0$ by 1 , and 1 by 0 , and leaving variables unchanged
- any theorem that can be proven is thus also proven for its dual!
- a meta-theorem (a theorem about theorems)
- duality:

16. $X+Y+\ldots \Leftrightarrow X \bullet Y \bullet \ldots$

- generalized duality:

17. $f(X 1, X 2, \ldots, X n, 0,1,+, \bullet) \Leftrightarrow f(X 1, X 2, \ldots, X n, 1,0, \bullet,+)$

- Different than deMorgan's Law
- this is a statement about theorems
- this is not a way to manipulate (re-write) expressions


## Logic functions and Boolean algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ',+ , and $\bullet$

| X | Y | $\mathrm{X} \bullet \mathrm{Y}$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |


| X | Y | $\mathrm{X}^{\prime}$ | $\mathrm{X}^{\prime} \cdot \mathrm{Y}$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |


| X | Y | $\mathrm{X}^{\prime}$ | $\mathrm{Y}^{\prime}$ | $X \bullet Y$ | $X^{\prime} \bullet Y^{\prime}$ | $(X \bullet Y)+\left(X^{\prime} \bullet Y^{\prime}\right)$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 |  |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | $(X \bullet Y)+\left(X^{\prime} \bullet Y^{\prime}\right) \equiv X=Y$ |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 |  |

$X, Y$ are Boolean algebra variables
Boolean expression that is true when the variables $X$ and $Y$ have the same value and false, otherwise

## Logic functions and Boolean algebra

- Thus, in order to implement an arbitrary logic function, the following procedure can be followed:
- Derive the truth table
- Create the product term that has a value of 1 for each valuation for which the output function $f$ has to be 1
- Take the logical sum of these product terms to realize f


## Example 5: Algebraic Simplification


original circuit

equation derived from original circuit
algebraic simplification
Boolean Algebra also great for circuit verification Circ $\mathrm{X}=$ Circ Y ?
use Boolean Algebra to prove!
simplified circuit


## Example 6: Boolean Algebraic Simplification

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of l's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

Canonical forms (1/2)


## Canonical forms (2/2)



## Boolean Minimization

- Reduce a Boolean equation to fewer terms - hopefully, this will result in using less gates to implement the Boolean equation.
- Pencil-Paper: Algebraic techniques, K-maps or
- Automated: Many powerful algorithms exist

| $A$ | $B$ | $C$ | $F$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

$F=B C+A C+A B$
Find Boolean adjacencies to minimize equation; eliminate redundant term

## K- maps

Graphical Aid for minimization - used to visualize Boolean adjacencies


| BC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A 00 |  | 01 | 11 | 10 |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 |



## CSC 322: Computer Organization Lab

Part II: Combinatial Blocks

## Recap



## Technology Mapping

Technology mapping maps a Boolean equation onto a given technology. The technology can affect what constraints are used when doing minimization for the function.


## Logic Synthesis

Logic Synthesis is the transformation a digital system described, at the logic level, in a Hardware Description Language (HDL) onto an implementation technology.

## Verilog Description

## Gates

//2-input multiplexor in gates
module mux2 (in0, in1, select, out);
input in0,in1,select;
output out;
wire s0,w0,w1;
not (s0, select);
and (w0, s0, in0), (w1, select, in1); Synthesis
or (out, w0, w1);
endmodule // mux2


## Propagation Delay



## Propagation Delay



## 2-1 n-bit Data Multiplexor



How many rows in TT of a 1-bit Mux?


How many rows in TT of a 1-bit Mux?

|  | s ab | c |
| :---: | :---: | :---: |
| $\rightarrow C$ | 000 | 0 |
|  | 001 | 0 |
| S | $0 \quad 10$ | 1 |
|  | $0 \quad 11$ | 1 |
| $c=\bar{s} a \bar{b}+\bar{s} a b+s \bar{a} b+s a b$ | 100 | 0 |
| $=\bar{s}(a \bar{b}+a b)+s(\bar{a} b+a b)$ | 101 | 1 |
| $=\bar{s}(a(\bar{b}+b))+s((\bar{a}+a) b)$ | 110 | 0 |
| $=\bar{s}(a(1)+s((1) b)$ | 111 | 1 |
| $=\bar{s} a+s b$ |  |  |

How do we build a 1-bit-wide max?
$\bar{s} a+s b$


4-to-1 Multiplexor?


$$
e=\overline{s_{1} s_{0}} a+\overline{s_{1}} s_{0} b+s_{1} \overline{s_{0}} c+s_{1} s_{0} d
$$

## Is there any other way to do it?



## Ans: Hierarchically!

## Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when $S=00, R=A+B$
when $S=01, R=A-B$
when $S=10, R=A$ and $B$
when $S=11, R=A$ or $B$


## A Simple ALU



## Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer


## Adder/Subtracter - One-bit adder LSB...

$$
\begin{aligned}
& +\begin{array}{ccc|c}
\mathrm{a}_{3} & \mathrm{a}_{2} & \mathrm{a}_{1} & \mathrm{a}_{0} \\
\mathrm{~b}_{3} & \mathrm{~b}_{2} & \mathrm{~b}_{1} & \mathrm{~b}_{0} \\
\hline \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0}
\end{array} \quad \begin{array}{ccc|cc}
\mathrm{a}_{0} & \mathrm{~b}_{0} & \mathrm{~s}_{0} & \mathrm{c}_{1} \\
\hline \hline 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array} \\
& \begin{array}{l}
s_{0}=a_{0} \text { XOR } b_{0} \\
c_{1}=a_{0} \text { AND } b_{0}
\end{array}
\end{aligned}
$$

## Adder/Subtracter - One-bit adder (1/2)...

$$
\begin{array}{ccc|cc}
\mathrm{a}_{i} & \mathrm{~b}_{i} & \mathrm{c}_{i} & s_{i} & \mathrm{c}_{i+1} \\
\hline \hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}
$$

## Adder/Subtracter - One-bit adder (2/2)...



## N 1-bit adders $\Rightarrow 1 \mathbf{N}$-bit adder



What about overflow?
Overflow $=c_{n}$ ?

## What about overflow?

$\therefore 10=-2+-2$ or -1
$\cdot 11=-1+-2$ only
$\circ 00=0$ NOTHING!
$\circ 01=1+1$ only

Highest adder
$\mathrm{C}_{1}=$ Carry-in $=\mathrm{C}_{\text {in }}, \mathrm{C}_{2}=$ Carry-out $=\mathrm{C}_{\text {c }}$
No $\mathrm{C}_{\text {out }}$ or $\mathrm{C}_{\text {in }} \Rightarrow$ NO overflow!
$\mathrm{C}_{\text {in }}$, and $\mathrm{C}_{\text {out }} \Rightarrow \mathrm{NO}$ overflow!
${ }^{-} \mathrm{C}_{\text {in }}$, but no $\mathrm{C}_{\text {out }} \Rightarrow A, B$ both $>0$, overflo'
$C_{\text {out, }}$, but no $C_{\text {in }} \Rightarrow A, B$ both $<0$, overflo'


## What op? <br> overflow $=c_{n}$ XOR $c_{n-1}$

## 4 Bit Ripple Carry Adder



## Extremely Clever Subtractor



## "And In conclusion..."

- Use muxes to select among input
- S input bits selects $2 S$ inputs
- Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
- Coupled with basic block elements
- N-bit adder-subtractor done using N 1-bit adders with XOR gates on input
- XOR serves as conditional inverter


## Decoder

| $\xrightarrow{\mathrm{A}[2: 0]}$ | Y0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 | if $\mathrm{A}=000$ then $\mathrm{Y} 0=1$ else $\mathrm{Y} 0=0$; if $\mathrm{A}=001$ then $\mathrm{Y} 1=1$ else $\mathrm{Y} 1=0$; if $\mathrm{A}=010$ then $\mathrm{Y} 2=1$ else $\mathrm{Y} 2=0$; if $\mathrm{A}=011$ then $\mathrm{Y} 3=1$ else $\mathrm{Y} 3=0$; if $\mathrm{A}=100$ then $\mathrm{Y} 4=1$ else $\mathrm{Y} 4=0$ if $\mathrm{A}=101$ then $\mathrm{Y} 5=1$ else $\mathrm{Y} 5=0$; if $\mathrm{A}=110$ then $\mathrm{Y} 6=1$ else $\mathrm{Y} 6=0$; if $\mathrm{A}=111$ then $\mathrm{Y} 7=1$ else $\mathrm{Y} 7=0$; |
| :---: | :---: | :---: |

## Making a Design Run Fast

- Speed is much more important than saving gates.
- Speed of a gate directly affects the maximum clock speed of digital system
- Gate speed is TECHNOLOGY dependent
- 0.35u CMOS process has faster gates than 0.8u CMOS process
- Implementation choice will affect Design speed
- A Custom integrated circuit will be faster than an FPGA implementation.
- Design approaches will affect clock speed of system
- Smart designers can make a big difference


# CSC 322: Computer Organization Lab 

Part III: Sequential Logic<br>Dr. Haidar M. Harmanani

## Sequential Systems Design

- Combinational Network
- Output value only depends on input value
- Sequential Network
- Output Value depends on input value and present state value
- Sequential network must have some way of retaining state via memory devices.
- Use a clock signal in a synchronous sequential system to control changes between states


## Sequential System Diagram

- m outputs only depend on k PS bits - Moore Machine
- REMEMBER: Moore is Less !!
- m outputs depend on k PS bits AND n inputs - Mealy Machine



## Clock Signal Review



$\tau$ - period (in seconds)
$P_{w}$ - pulse width (in seconds)
duty cycle - ratio of pulse width to period (in \%)
duty cycle $=P_{w} / \tau$

| millisecond $(\mathrm{ms})$ <br> $10^{-3}$ | Kilohertz <br> $(\mathrm{KHz})$ <br> $\mathrm{microsecond}^{3}(\mu \mathrm{~s})$ <br> $10^{-6}$ |
| :---: | :---: |
| Megahertz $(\mathrm{MHz})$ |  |
| nanosecond $(\mathrm{ns})$ | $10^{6}$ |
| $10^{-9}$ | Gigahertz $(\mathrm{GHz})$ |
| $10^{9}$ |  |



## Memory Elements

Memory elements used in sequential systems are flip-flops and latches.


Flip-flops are edge triggered (either rising or falling edge).

Latches are level sensitive. Q follows $D$ when $G=1$, latches when $G$ goes from 1 to 0 .

D FF, D Latch operation


## Other State Elements



JK useful for single bit flags with separate set(J), reset(K) control.


Useful for counter design.

## DFFs are most common

- Most FPGA families only have DFFs
- DFF is fastest, simplest (fewest transistors) of FFs
- Other FF types (T, JK) can be built from DFFs
- We will use DFFs almost exclusively in this class
- Will always used edge-triggered state elements (FFs), not level sensitive elements (latches).


## Synchronous vs Asynchronous Inputs

Synchronous input: Output will change after active clock edge Asychronous input: Output changes independent of clock


DFF with async control


## FF Timing

- Propagation Delay
- C2Q: Q will change some propagation delay after change in C . Value of Q is based on D input for DFF.
- S2Q, R2Q: Q will change some propagation delay after change on $S$ input, $R$ input
- Note that there is NO propagation delay D2Q for DFF!
- D is a Synchronous INPUT, no prop delay value for synchronous inputs


## Setup, Hold Times

- Synchronous inputs (e.g. D) have Setup, Hold time specification with respect to the CLOCK input
- Setup Time: the amount of time the synchronous input (D) must be stable before the active edge of clock
- Hold Time: the amount of time the synchronous input (D) must be stable after the active edge of clock.


## Setup, Hold Time



If changes on D input viblate either setup or hold time, then correct FF operation is not guaranteed.

Setup/Hold measured around active clock edge.

## Registers

The most common sequential building block is the register. A register is $N$ bits wide, and has a load line for loading in a new value into the register.

DIN


Register contents do not change unless LD $=1$ on active edge of clock.

A DFF is NOT a register! DFF contents change every clock edge.
ACLR used to asynchronously clear the register

## 1 Bit Register using DFF, Mux



Note that DFF simply loads old value when $L D=0$. DFF is loaded every clock cycle.

## 1 Bit Register using Gated Clock



## Counter

Very useful sequential building block. Used to generate memory addresses, or keep track of the number of times a datapath operation is performed.


LD asserted loads counter with DIN value.

CNT_EN asserted will increment counter on next active clock edge.

ACLR will asynchronously clear the counter.

## Incrementer: Combinational Building Block



## Sequential System Description

- The Q outputs of the flip-flops form a state vector
- A particular set of outputs is the Present State (PS)
- The state vector that occurs at the next discrete time (clock edge for synchronous designs) is the Next State (NS)
- A sequential circuit described in terms of state is a Finite State Machine (FSM)
- Not all sequential circuits are described this way; i.e., registers are not described as FSMs yet a register is a sequential circuit.


## Describing FSMs

- State Tables
- State Equations
- State Diagrams
- Algorithmic State Machine (ASM) Charts
- Preferred method in this class
- HDL descriptions


## Truth Table State Machine Example

| PS | Input | NS | Output |
| :---: | :---: | :---: | :---: |
| 00 | 0 | 00 | 0 |
| 00 | 1 | 01 | 0 |
| 01 | 0 | 00 | 0 |
| 01 | 1 | 10 | 0 |
| 10 | 0 | 00 | 0 |
| 10 | 1 | 00 | 1 |



Boolean Algebra (e.g., for FSM)

| PS | Input | NS | Output |
| :---: | :---: | :---: | :---: |
| 00 | 0 | 00 | 0 |
| 00 | 1 | 01 | 0 |
| 01 | 0 | 00 | 0 |
| 01 | 1 | 10 | 0 |
| 10 | 0 | 00 | 0 |
| 10 | 1 | 00 | 1 |


or equivalently...

$\mathrm{y}=\mathrm{PS}_{1} \bullet \overline{\mathrm{PS}_{0}} \bullet$ INPUT

## Example State Machine



State Diagram (Bubble Diagram)


## State Assignment

- State assignment is the binary coding used to represent the states
- Given N states, need at least $\log _{2}(\mathrm{~N})$ FFs to encode the states
- (i.e. 3 states, need at least 2 FFs for state information).
$\mathrm{S} 0=00, \mathrm{~S} 1=01, \mathrm{~S} 2=10$ ( FSM is now a modulo 3 counter)
- Do not always have to use the fewest possible number of FFs.
- A common encoding is One-Hot encoding - use one FF per state.
$-S 0=001, ~ S 1=010, ~ S 2=100$
- State assignment affects speed, gate count of FSM


## FSM Implementation

- Use DFFs, State assignment: $S 0=00, S 1=01, S 2=10$

| Inc |  |  | $\begin{gathered} \text { NS } \\ \text { Q1+ Q0 } \end{gathered}$ |  | D1 | D0 | State Table |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 |  |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | Equations |
| 0 | 1 | 1 | x | x | x | x | D1 = Inc' Q1Q0' + IncQ1' Q0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | D1 = Inc ${ }^{\prime}$ (Q $0^{\prime}+\operatorname{lncQ1}$ Q0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | D0 = Inc' Q1' Q0 + IncQ1' Q0' |
| 1 | 1 | 1 | x | x | x | x |  |

## Minimize Equations (if desired)



| D0 Q1Q0 |  |  |  |  | D1 = Inc' Q0 + Inc Q1' Q0' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | x | 0 |  |
| 1 | (1) | 0 | x | 0 |  |

## FSM Usage

- Custom counters
- Datapath control



## Memories

- Memories are $K \times N$ devices, $K$ is the \# of locations, $N$ is the number bits per location ( $16 \times 2$ would be 16 locations, each storing 2 bits)
- K locations require $\log _{2}(\mathbb{K})$ address lines for selecting a location (i.e. a 16 location memory needs 4 address lines)
- A memory that is $K \times N$, can be used to implement $N$ Boolean equations, which use $\log _{2}(K)$ variables (the $N$ Boolean equations must use the same variables).
- One address line is used for each Boolean variable, each bit of the output implements a different Boolean equation.
- The memory functions as a Look Up Table (LUT).


## Memory Example



## A gated D latch in Verilog

```
module latch (D, clk, Q);
    input D, clk;
    output reg Q;
    always @(D, clk)
    if (clk)
        Q <= D;
endmodule
```


## A D flip-flop.

```
module flipflop (D, Clock, Q);
    input D, Clock;
    output reg Q;
    always @(posedge Clock)
        Q <= D;
    endmodule
```


## A D flip-flop with asynchronous reset

```
module flipflop_ar (D, Clock, Resetn, Q);
    input D, Clock, Resetn;
    output reg Q;
    always @(posedge Clock, negedge Resetn)
    if (Resetn == 0)
        Q<=0;
    else
        Q <= D;
    endmodule
```


## A D flip-flop with synchronous reset.

```
module flipflop_sr (D, Clock, Resetn, Q);
    input D, Clock, Resetn;
    output reg Q;
    always @(posedge Clock)
        if (Resetn == 0)
        Q <= 0;
        else
        Q <= D;
    endmodule
```


## A four-bit register with asynchronous clear.

```
module reg4 (D, Clock, Resetn, Q);
    input [3:0] D;
    input Clock, Resetn;
    output reg [3:0] Q;
    always @(posedge Clock, negedge Resetn)
    if (Resetn == 0)
        Q<=4'b0000;
    else
        Q <= D;
endmodule
```


## An n-bit register with asynchronous clear and enable.

```
module regne (D, Clock, Resetn, E, Q);
    parameter n = 4;
    input [n-1:0] D;
    input Clock, Resetn, E;
    output reg [n-1:0] Q;
    always @(posedge Clock, negedge Resetn)
        if (Resetn == 0)
        Q <= 0;
    else if (E)
        Q <= D;
endmodule
```


## A three-bit shift register

```
module shift3 (w, Clock, Q);
    input w, Clock;
    output reg [1:3] Q;
    always @(posedge Clock)
    begin
    Q[3] <= w;
    Q[2] <= Q[3];
    Q[1] <= Q[2];
    end
endmodule
```


## Code for a four-bit counter

```
module count4 (Clock, Resetn, E, Q);
    input Clock, Resetn, E;
    output reg [3:0] Q;
    always @(posedge Clock, negedge Resetn)
        if (Resetn == 0)
            Q<= 0;
        else if (E)
            Q<=Q + 1;
endmodule
```


## State diagram of a simple Moore-type FSM



```
module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y, Y;
parameter A = 2'b00, B = 2'b01, C = 2'b10;
always @(w, y)
begin
case (y)
    A: if (w = = 0) Y = A;
        else Y=B;
        B: if (w = = 0) Y = A;
        else Y=C;
        C: if (w= =0) Y=A;
            else Y=C;
        default: Y=2'bxx;
        endcase
end
always @(posedge Clock, negedge Resetn)
begin
if (Resetn = = 0)
        y <= A;
    else
        y <= Y;
end
assign z=(y==C)
endmodule
```

module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y;
parameter $A=2^{\prime} b 00, B=2^{\prime} b 01, C=2^{\prime} b 10$;
Alternative version of the code for a Moore machine.
always @(posedge Clock, negedge Resetn)
begin
if (Resetn $==0$ )
y <= A;
else
case (y)
A: if $(w==0) y<=A$;
else $\mathrm{y}<=\mathrm{B}$;
B: if ( $w==0$ ) $y<=A$; else $y<=C$
C: if $(w==0) y<=A$; else $y<=C$;
default: y <= 2'bxx;
endcase
end
assign z = ( $\mathrm{y}=\mathrm{=}$ );
endmodule

```
module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn ;
output reg z
reg y, Y;
parameter A = 1' b0, B = 1' b1;
always @(w, y)
case (y)
    A: if (w==0)
        begin
        Y = A;
        z = 0;
        end
        else
        begin
        Y = B;
        z = 0;
        end
    B: if (w == 0)
        begin
        Y=A;
        z = 0;
        end
        else
        begin
        Y = B;
        Z = 1;
    end
always @(posedge Clock, negedge Resetn)
    if (Resetn = = 0)
        y<= A;
    else
```


## State diagram of a Mealy-type FSM.




## Verilog operators and bit lengths.

| Category | Examples | Bit Length |
| :---: | :---: | :---: |
| Bitwise | $\begin{aligned} & \sim A,+A,-A \\ & A \& B, A \mid B, A \sim^{\wedge} B, A^{\wedge} \sim B \end{aligned}$ | $\begin{gathered} \stackrel{L}{ }(A) \\ \operatorname{MAX}(L(A), L(B)) \end{gathered}$ |
| Logical | ! $A, A \& \& B, A \\| B$ | 1 bit |
| Reduction | \& $\mathrm{A}, \sim \& \mathrm{~A}, \mathrm{IA}, \sim \mathrm{IA}, \wedge \sim \mathrm{A}, \sim^{\wedge} \mathrm{A}$ | 1 bit |
| Relational | $\begin{aligned} & A==B, A!=B, A>B, A<B \\ & A>=B, A<=B \\ & A===B, A!==B \end{aligned}$ | 1 bit |
| Arithmetic | $\begin{aligned} & A+B, A-B, A * B, A / B \\ & A \% B \end{aligned}$ | MAX (L(A), L(B)) |
| Shift | A < ${ }^{\text {B, }} \mathrm{A} \gg \mathrm{B}$ | L(A) |
| Concatenate | \{A, .., B $\}$ | $L(A)+\cdots+L(B)$ |
| Replication | \{B $\{\mathrm{A}\}$ \} | $B * L(A)$ |
| Condition | A ? B : C | MAX ( $\mathrm{L}(B), \mathrm{L}(C)$ ) |

Losmat mexicon miverivy

## Verilog Gates

| Name | Description | Usage |
| :---: | :---: | :---: |
| and | $f=(a \cdot b \ldots)$ | and ( $f, a, b, \ldots$ ) |
| nand | $f=\overline{(a \cdot b \cdots)}$ | n |
| or | $f=(a+b+\cdots)$ | or ( $f, a, b, \ldots$ ) |
| nor | $f=\overline{(a+b+\cdots)}$ | $\operatorname{nor}(f, a, b, \ldots)$ |
| xor | $f=(a \oplus b \oplus \ldots)$ | $\boldsymbol{x o r}(f, a, b, \ldots)$ |
| xnor | $f=(a \odot b \odot \ldots)$ | $\boldsymbol{o r}(f, a, b, \ldots)$ |
| not | $f=\bar{a}$ | $\operatorname{not}(f, a)$ |
| buf | $f=a$ | buf ( $f$, a) |
| notif0 | $f=(!e ? \bar{a}: ` b z)$ | notif0(f, a, e) |
| notif1 | $f=\left(e ? \bar{a}:{ }^{\prime} b z\right)$ | notif1(f, a, e) |
| bufif0 | $f=(!e ? a: ‘ b z)$ | bufifo(f, a, e) |
| bufif1 | $f=(e ? a: ' b z)$ | bufif1 (f, a, e) |

