
CSC 322: Computer Organization Lab
Lecture 3: Logic Design

Dr. Haidar M. Harmanani

CSC 322: Computer Organization Lab
Part I: Combinational Logic

Dr. Haidar M. Harmanani

Logical Design of Digital Systems
§ Complex Combinational and Sequential networks (up to thousands of

gates)
– Emphasis on combined datapath + Finite state machine designs for real time

applications

§ Modern CAD tool usage (schematic entry, simulation, technology
mapping, timing analysis, synthesis)

§ Logic Synthesis via Verilog

§ Modern implementation technologies such as Field Programmable Gate
Arrays (FPGAs)

Spring 2018 CSC 322: Computer Organization Lab 3

Truth Tables

Spring 2018 CSC 322: Computer Organization Lab 4

0

How many Fs
(4-input devices)?

Example #1: 1 iff one (not both) a, b=1

Spring 2018 CSC 322: Computer Organization Lab 5

a b y

0 0 0

0 1 1

1 0 1

1 1 0

How about a 3-input XOR Gate?
§ Easy. Extend the truth table

§ How about N-input XOR is the only one which isn’t
so obvious
– It’s simple: XOR is a 1 iff the # of 1s at its input is odd

Spring 2018 CSC 322: Computer Organization Lab 6

Logic Gates (1/2)

Spring 2018 CSC 322: Computer Organization Lab 7

Logic Gates (2/2)

Spring 2018 CSC 322: Computer Organization Lab 8

Example 2: Design a 2-bit Unsigned Adder

Spring 2018 CSC 322: Computer Organization Lab 9

How
many
rows in
the truth
table?

Example 3: Design of a 32-bit adder

Spring 2018 CSC 322: Computer Organization Lab 10

How
Many
Rows?

Example 5: Majority Function

Spring 2018 CSC 322: Computer Organization Lab 11

y = a • b + a • c + b • c
y = ab + ac + bc

Example 4: 3-input majority circuit

Boolean Algebra
§ George Boole, 19th Century mathematician

§ Developed an algebra involving logic
– later known as “Boolean Algebra”

§ Primitive functions: AND, OR and NOT

§ The power f Boolean Algebra is there’s a one-to-one correspondence
between circuits made up of AND, OR and NOT gates and equations.

Spring 2018 CSC 322: Computer Organization Lab 13

Boolean algebra
§ Boolean algebra
– B = {0, 1}
– + is logical OR, • is logical AND
– ' is logical NOT

§ All algebraic axioms hold

Spring 2018 CSC 322: Computer Organization Lab 14

An Algebraic Structure
§ An algebraic structure consists of
– a set of elements B
– binary operations { + , • }
– and a unary operation { ' }
– such that the following axioms hold:

1. the set B contains at least two elements, a, b, such that a ° b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + ca • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0

Spring 2018 CSC 322: Computer Organization Lab 15

Axioms and Theorems of Boolean Algebra
§ Identity

1. X + 0 = X 1D. X • 1 = X
§ Null

2. X + 1 = 1 2D. X • 0 = 0
§ Idempotency:

3. X + X = X 3D. X • X = X
§ Involution:

4. (X')' = X
§ Complementarity:

5. X + X' = 1 5D. X • X' = 0
§ Commutativity:

6. X + Y = Y + X 6D. X • Y = Y • X
§ Associativity:

7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

Spring 2018 CSC 322: Computer Organization Lab 16

Axioms and Theorems of Boolean Algebra (cont’d)
§ Distributivity:

8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

§ uniting:
9. X • Y + X • Y' = X 9D. (X + Y) • (X + Y') = X

§ absorption:
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D. (X • Y') + Y = X + Y

§ factoring:
12. (X + Y) • (X' + Z) = X • Z + X' • Y 16D. X • Y + X' • Z = (X + Z) • (X' + Y)

§ consensus:
13. (X • Y) + (Y • Z) + (X' • Z) = 17D. (X + Y) • (Y + Z) • (X' + Z) =

X • Y + X' • Z (X + Y) • (X' + Z)

Spring 2018 CSC 322: Computer Organization Lab 17

Axioms and Theorems of Boolean Algebra (cont’d)
§ de Morgan's:

14. (X + Y + ...)' = X' • Y' • ... 12D. (X • Y • ...)' = X' + Y' + ...

§ generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)

§ Establishes relationship between • and +

Spring 2018 CSC 322: Computer Organization Lab 18

Axioms and theorems of Boolean algebra (cont’)
§ Duality
– a dual of a Boolean expression is derived by replacing

• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
– any theorem that can be proven is thus also proven for its dual!
– a meta-theorem (a theorem about theorems)

§ duality:
16. X + Y + ... Û X • Y • ...

§ generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) Û f(X1,X2,...,Xn,1,0,•,+)

§ Different than deMorgan’s Law
– this is a statement about theorems
– this is not a way to manipulate (re-write) expressions

Spring 2018 CSC 322: Computer Organization Lab 19

Logic functions and Boolean algebra
§ Any logic function that can be expressed as a truth table can be written

as an expression in Boolean algebra using the operators: ', +, and •

Spring 2018 CSC 322: Computer Organization Lab 20

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' (X • Y) + (X' • Y')
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X' • Y') º X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is true when the variables X
and Y have the same value and false, otherwise

Logic functions and Boolean algebra
§ Thus, in order to implement an arbitrary logic function, the following
procedure can be followed:
– Derive the truth table
– Create the product term that has a value of 1 for each valuation for which the

output function f has to be 1
– Take the logical sum of these product terms to realize f

Spring 2018 CSC 322: Computer Organization Lab 21

Example 5: Algebraic Simplification

Spring 2018 CSC 322: Computer Organization Lab 22

Boolean Algebra also great for circuit
verification Circ X = Circ Y?
use Boolean Algebra to prove!

Example 6: Boolean Algebraic Simplification

Spring 2018 CSC 322: Computer Organization Lab 23

Canonical forms (1/2)

Spring 2018 CSC 322: Computer Organization Lab 24

Sum-of-products
(ORs of ANDs)

Canonical forms (2/2)

Spring 2018 CSC 322: Computer Organization Lab 25

Boolean Minimization
§ Reduce a Boolean equation to fewer terms - hopefully, this will result in using

less gates to implement the Boolean equation.
§ Pencil-Paper: Algebraic techniques, K-maps or
§ Automated: Many powerful algorithms exist

Spring 2018 CSC 322: Computer Organization Lab 26

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F = A’BC + AB’C + ABC’ + ABC

F = BC + AC + AB
Find Boolean adjacencies to minimize equation; eliminate
redundant term

Graphical	Aid	for	minimization	- used	to	
visualize	Boolean	adjacencies

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

BC
00 01 11 10

0
A

1

0 0 01

0 1 1 1

BC
00 01 11 10

0
A

1

0 0 01

0 1 1 1F	=		BC	+	AC	+	AB

K- maps

Spring 2018 CSC 322: Computer Organization Lab 27

CSC 322: Computer Organization Lab
Part II: Combinatial Blocks

Dr. Haidar M. Harmanani

Recap

Spring 2018 CSC 322: Computer Organization Lab 29

Technology Mapping

Spring 2018 CSC 322: Computer Organization Lab 30

Technology mapping maps a Boolean equation onto a given technology. The
technology can affect what constraints are used when doing minimization for
the function.

Discrete	gates

Programmable	Logic

Custom	Integrated	

Circuits

Logic Synthesis

Spring 2018 CSC 322: Computer Organization Lab 31

//2-input multiplexor in gates
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;

not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule // mux2

Verilog Description Gates

Synthesis
out

select
in0

in1

s0

w0

w1

Logic Synthesis is the transformation a digital system described, at the logic level, in a
Hardware Description Language (HDL) onto an implementation technology.

A Y

A
H

L

Y
H

L

tphl tplh

Propagation Delay

Spring 2018 CSC 322: Computer Organization Lab 32

A
Y

H

A
H

L

Y
H

L

tplh tphl

Propagation Delay

Spring 2018 CSC 322: Computer Organization Lab 33

2-1 n-bit Data Multiplexor

Spring 2018 CSC 322: Computer Organization Lab 34

�mux�

How many rows in TT of a 1-bit Mux?

Spring 2018 CSC 322: Computer Organization Lab 35

How many rows in TT of a 1-bit Mux?

Spring 2018 CSC 322: Computer Organization Lab 36

How do we build a 1-bit-wide mux?

Spring 2018 CSC 322: Computer Organization Lab 37

4-to-1 Multiplexor?

Spring 2018 CSC 322: Computer Organization Lab 38

How many rows in TT?

Is there any other way to do it?

Spring 2018 CSC 322: Computer Organization Lab 39

Ans: Hierarchically!

Arithmetic and Logic Unit
§ Most processors contain a special logic block called “Arithmetic and Logic

Unit” (ALU)

§ We’ll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

Spring 2018 CSC 322: Computer Organization Lab 40

A Simple ALU

Spring 2018 CSC 322: Computer Organization Lab 41

Adder/Subtracter Design -- how?
§ Truth-table, then determine canonical form, then minimize and
implement as we’ve seen before

§ Look at breaking the problem down into smaller pieces that we can
cascade or hierarchically layer

Spring 2018 CSC 322: Computer Organization Lab 42

Adder/Subtracter – One-bit adder LSB…

Spring 2018 CSC 322: Computer Organization Lab 43

Adder/Subtracter – One-bit adder (1/2)…

Spring 2018 CSC 322: Computer Organization Lab 44

Adder/Subtracter – One-bit adder (2/2)…

Spring 2018 CSC 322: Computer Organization Lab 45

N 1-bit adders Þ 1 N-bit adder

Spring 2018 CSC 322: Computer Organization Lab 46

What about overflow?
Overflow = cn?

b0

+ ++

What about overflow?

Spring 2018 CSC 322: Computer Organization Lab 47

Consider a 2-bit signed # & overflow:
◦ 10 = -2 + -2 or -1
◦ 11 = -1 + -2 only
◦ 00 = 0 NOTHING!
◦ 01 = 1 + 1 only

Highest adder
◦ C1 = Carry-in = Cin, C2 = Carry-out = Cout
◦ No Cout or Cin Þ NO overflow!
◦ Cin, and Cout Þ NO overflow!
◦ Cin, but no Cout Þ A,B both > 0, overflow!
◦ Cout, but no Cin Þ A,B both < 0, overflow!

+ #

What op?

A B

S

C

i

C

o

A B

S

C

i

C

o

A B

S

C

i

C

o

A B

S

C

i

C

o

Ci

n

A(0)

Cou

t

B(0)A(1) B(1)A(2) B(2)A(3) B(3)

C(0)C(1)C(2)C(3)

Sum(0)Sum(1)Sum(2)Sum(3)

A[3:0]

B[3:0]
SUM[3:0]+

4 Bit Ripple Carry Adder

Spring 2018 CSC 322: Computer Organization Lab 48

C(4)

Extremely Clever Subtractor

Spring 2018 CSC 322: Computer Organization Lab 49

x y XOR(x,y)

0 0 0

0 1 1

1 0 1

1 1 0

+

XOR serves as
conditional inverter!

+ +

“And In conclusion…”
§ Use muxes to select among input
– S input bits selects 2S inputs
– Each input can be n-bits wide, indep of S

§ Can implement muxes hierarchically

§ ALU can be implemented using a mux
– Coupled with basic block elements

§ N-bit adder-subtractor done using N 1-bit adders with XOR gates on
input
– XOR serves as conditional inverter

Spring 2018 CSC 322: Computer Organization Lab 50

A[2:0] Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

if A= 000 then Y0=1 else Y0=0;
if A= 001 then Y1=1 else Y1=0;
if A= 010 then Y2=1 else Y2=0;
if A= 011 then Y3=1 else Y3=0;
if A= 100 then Y4=1 else Y4=0;
if A= 101 then Y5=1 else Y5=0;
if A= 110 then Y6=1 else Y6=0;
if A= 111 then Y7=1 else Y7=0;

Decoder

Spring 2018 CSC 322: Computer Organization Lab 51

Making a Design Run Fast
§ Speed is much more important than saving gates.
– Speed of a gate directly affects the maximum clock speed of digital system

§ Gate speed is TECHNOLOGY dependent
– 0.35u CMOS process has faster gates than 0.8u CMOS process

§ Implementation choice will affect Design speed
– A Custom integrated circuit will be faster than an FPGA implementation.

§ Design approaches will affect clock speed of system
– Smart designers can make a big difference

Spring 2018 CSC 322: Computer Organization Lab 52

CSC 322: Computer Organization Lab
Part III: Sequential Logic

Dr. Haidar M. Harmanani

Sequential Systems Design
§ Combinational Network
– Output value only depends on input value

§ Sequential Network
– Output Value depends on input value and present state value
– Sequential network must have some way of retaining state via memory devices.
– Use a clock signal in a synchronous sequential system to control changes

between states

Spring 2018 CSC 322: Computer Organization Lab 54

Sequential System Diagram
§ m outputs only depend on k PS bits - Moore Machine

§ REMEMBER: Moore is Less !!

§ m outputs depend on k PS bits AND n inputs - Mealy Machine

Spring 2018 CSC 322: Computer Organization Lab 55

Combinational
Logic
Circuit

Memory Elements
- flip-flop
- latch
- register
- PROM

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value

Spring 2018 CSC 322: Computer Organization Lab 56

Clock Signal Review

time

voltage

f = 1/t

Pw rising edge falling edge

t - period (in seconds) Pw - pulse width (in seconds)

f - frequency pulse width (in Hertz)

duty cycle - ratio of pulse width to period (in %) duty cycle = Pw /t

millisecond (ms)
10-3

Kilohertz (KHz)
103

microsecond (µs)
10-6

Megahertz (MHz)
106

nanosecond (ns)
10-9

Gigahertz (GHz)
109

Memory Elements

Spring 2018 CSC 322: Computer Organization Lab 57

Memory elements used in sequential systems are flip-flops and latches.

D
Q

C

D Q(t+1)
0 0
1 1

Q(t+1) is Q next state

D flip flop (DFF)

D
Q

G D latch (DL)

Flip-flops are edge triggered
(either rising or falling edge).

Latches are level sensitive. Q
follows D when G=1, latches
when G goes from 1 to 0.

Spring 2018 CSC 322: Computer Organization Lab 58

D FF, D Latch operation

C for FF, G for latch

D input

Q (FF)

Q (DL)

Other State Elements

Spring 2018 CSC 322: Computer Organization Lab 59

J
Q

C

K

J K Q(t+1)
0 0 Q(t)
0 1 0
1 0 1
1 1 Q�(t)

JK useful for single bit
flags with separate
set(J), reset(K) control.

T
Q

C

T Q(t+1)
0 Q(t)
1 Q�(t)

Useful for counter design.

DFFs are most common
§ Most FPGA families only have DFFs

§ DFF is fastest, simplest (fewest transistors) of FFs

§ Other FF types (T, JK) can be built from DFFs

§ We will use DFFs almost exclusively in this class
– Will always used edge-triggered state elements (FFs), not level sensitive

elements (latches).

Spring 2018 CSC 322: Computer Organization Lab 60

Synchronous vs Asynchronous Inputs

Spring 2018 CSC 322: Computer Organization Lab 61

Synchronous input: Output will change after active clock edge
Asychronous input: Output changes independent of clock

State elements often have async set, reset control.
D input is synchronous with respect to Clk

S, R are asynchronous. Q output affected by S, R
independent of C. Async inputs are dominant over Clk.

D
Q

C

S

R

Spring 2018 CSC 322: Computer Organization Lab 62

DFF with async control

C

D input

Q (FF)

R

S

FF Timing
§ Propagation Delay
– C2Q: Q will change some propagation delay after change in C. Value of Q is

based on D input for DFF.
– S2Q, R2Q: Q will change some propagation delay after change on S input, R

input
– Note that there is NO propagation delay D2Q for DFF!
– D is a Synchronous INPUT, no prop delay value for synchronous inputs

Spring 2018 CSC 322: Computer Organization Lab 63

Setup, Hold Times
§ Synchronous inputs (e.g. D) have Setup, Hold time specification with
respect to the CLOCK input

§ Setup Time: the amount of time the synchronous input (D) must be
stable before the active edge of clock

§ Hold Time: the amount of time the synchronous input (D) must be
stable after the active edge of clock.

Spring 2018 CSC 322: Computer Organization Lab 64

Setup, Hold Time

Spring 2018 CSC 322: Computer Organization Lab 65

tsu thd

C

D changing

Stable

If changes on D input violate either setup or hold time,
then correct FF operation is not guaranteed.
Setup/Hold measured around active clock edge.

D changing

Registers

Spring 2018 CSC 322: Computer Organization Lab 66

The most common sequential building block is the register. A register is N bits wide,
and has a load line for loading in a new value into the register.

DIN

N
CLK

LD

R
E
G

DOUT

N

Register contents do not change
unless LD = 1 on active edge of
clock.

A DFF is NOT a register! DFF
contents change every clock edge.
ACLR used to asynchronously
clear the register

ACLR

1 Bit Register using DFF, Mux

Spring 2018 CSC 322: Computer Organization Lab 67

D
Q

C

0

1

S

Y

2/1 Mux DFF

DOUTDIN

LD

CLK
R

ACLR

Note that DFF simply loads old value when LD = 0. DFF is loaded every
clock cycle.

1 Bit Register using Gated Clock

Spring 2018 CSC 322: Computer Organization Lab 68

D
Q

C

DFF

DOUT
DIN

LD

CLK

Saves power over previous design since DFF is not
clocked every clock cycle. Many FPGAs offer an
�enabled� DFF as an integrated unit.

D
Q

C

DFF

EN

RACLR

Counter

Spring 2018 CSC 322: Computer Organization Lab 69

DIN
N

CLK

LD

C
N
T
R N

CNT_EN

ACLR

LD asserted loads
counter with DIN value.
CNT_EN asserted will
increment counter on next
active clock edge.
ACLR will asynchronously
clear the counter.

Very useful sequential building block. Used to generate memory addresses, or keep
track of the number of times a datapath operation is performed.

Incrementer: Combinational Building Block

Spring 2018 CSC 322: Computer Organization Lab 70

EN

DIN
Y When EN=1, Y = DIN + 1

When EN=0, Y = DIN

EN

N
DIN0

Y0

DIN1

Y1

DIN2

Y2

Etc...

N

Sequential System Description
§ The Q outputs of the flip-flops form a state vector

§ A particular set of outputs is the Present State (PS)

§ The state vector that occurs at the next discrete time (clock edge for
synchronous designs) is the Next State (NS)

§ A sequential circuit described in terms of state is a Finite State Machine
(FSM)
– Not all sequential circuits are described this way; i.e., registers are not described

as FSMs yet a register is a sequential circuit.

Spring 2018 CSC 322: Computer Organization Lab 71

Describing FSMs
§ State Tables

§ State Equations

§ State Diagrams

§ Algorithmic State Machine (ASM) Charts
– Preferred method in this class

§ HDL descriptions

Spring 2018 CSC 322: Computer Organization Lab 72

Truth Table State Machine Example

Spring 2018 CSC 322: Computer Organization Lab 73

PS Input NS Output
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1

or equivalently…

Boolean Algebra (e.g., for FSM)

PS Input NS Output

00 0 00 0

00 1 01 0

01 0 00 0

01 1 10 0

10 0 00 0

10 1 00 1

or equivalently…

y = PS1 • PS0 • INPUT

Spring 2018 CSC 322: Computer Organization Lab 75

Example State Machine

S
0

0

S
1

0
S
2

01

1

1

State Diagram
(Bubble Diagram)

S
0

CNT 0

1
S
1

CNT 0

1
S
2

CNT 0

1
ASM Chart

State Assignment
§ State assignment is the binary coding used to represent the states

§ Given N states, need at least log2(N) FFs to encode the states
– (i.e. 3 states, need at least 2 FFs for state information).

S0 = 00, S1 = 01, S2 = 10 (FSM is now a modulo 3 counter)

§ Do not always have to use the fewest possible number of FFs.

§ A common encoding is One-Hot encoding - use one FF per state.

– S0 = 001, S1 = 010, S2 = 100

§ State assignment affects speed, gate count of FSM

Spring 2018 CSC 322: Computer Organization Lab 76

FSM Implementation
§ Use DFFs, State assignment: S0 = 00, S1 = 01, S2 = 10

Spring 2018 CSC 322: Computer Organization Lab 77

PS NS
Inc Q1 Q0 Q1+ Q0 D1 D0
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 1 0 1 0
0 1 1 x x x x
1 0 0 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 0 0 0
1 1 1 x x x x

State Table

D1 = Inc�Q1Q0� + IncQ1�Q0

D0 = Inc�Q1�Q0 + IncQ1�Q0�

Equations

Minimize Equations (if desired)

Spring 2018 CSC 322: Computer Organization Lab 78

00 01 11 10

0
Inc

1

0 0 1x

0 1 x 0

Q1Q0D1

D1 = Inc� Q1 + Inc Q0

00 01 11 10

0
Inc

1

0 1 0x

1 0 x 0

Q1Q0D0

D1 = Inc� Q0 + Inc Q1�Q0�

FSM Usage
§ Custom counters

§ Datapath control

Spring 2018 CSC 322: Computer Organization Lab 79

DIN
R
E
G

R
E
G

+
R
E
G

X
DOUT

FSM Control (reg load lines, mux selects)

Memories
§ Memories are K x N devices, K is the # of locations, N is the number bits per

location (16 x 2 would be 16 locations, each storing 2 bits)

§ K locations require log2(K) address lines for selecting a location (i.e. a 16
location memory needs 4 address lines)

§ A memory that is K x N, can be used to implement N Boolean equations,
which use log2(K) variables (the N Boolean equations must use the same
variables).

§ One address line is used for each Boolean variable, each bit of the output
implements a different Boolean equation.

§ The memory functions as a Look Up Table (LUT).

Spring 2018 CSC 322: Computer Organization Lab 80

F (A,B,C) = A xor B xor C G = AB + AC + BC

A B C F G
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Recall that Exclusive OR (xor) is
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Y = AÅB
= A xor B

A
0

A
1

A
2

8 x 2 Memory
A
B
C D

O
G

LookUp Table (LUT)

D1 F

A[2:0]	is	3	bit	address	

bus,		D[1:0]	is	2	bit	

output	bus.

Location	0	has	�00�,	
Location	1	has	�10�,
Location	2	has	�10�,	
etc….

Spring 2018 CSC 322: Computer Organization Lab 81

Memory Example

module latch (D, clk, Q);
input D, clk;
output reg Q;

always @(D, clk)
if (clk)
Q <= D;

endmodule

A gated D latch in Verilog

Spring 2018 CSC 322: Computer Organization Lab 82

module flipflop (D, Clock, Q);
input D, Clock;
output reg Q;

always @(posedge Clock)
Q <= D;

endmodule

A D flip-flop.

Spring 2018 CSC 322: Computer Organization Lab 83

module flipflop_ar (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 0;

else
Q <= D;

endmodule

A D flip-flop with asynchronous reset

Spring 2018 CSC 322: Computer Organization Lab 84

module flipflop_sr (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock)
if (Resetn == 0)
Q <= 0;

else
Q <= D;

endmodule

A D flip-flop with synchronous reset.

Spring 2018 CSC 322: Computer Organization Lab 85

module reg4 (D, Clock, Resetn, Q);
input [3:0] D;
input Clock, Resetn;
output reg [3:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 4'b0000;

else
Q <= D;

endmodule

A four-bit register with asynchronous clear.

Spring 2018 CSC 322: Computer Organization Lab 86

module regne (D, Clock, Resetn, E, Q);
parameter n = 4;
input [n-1:0] D;
input Clock, Resetn, E;
output reg [n-1:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 0;

else if (E)
Q <= D;

endmodule

An n-bit register with asynchronous clear and
enable.

Spring 2018 CSC 322: Computer Organization Lab 87

module shift3 (w, Clock, Q);
input w, Clock;
output reg [1:3] Q;

always @(posedge Clock)
begin
Q[3] <= w;
Q[2] <= Q[3];
Q[1] <= Q[2];

end

endmodule

A three-bit shift register

Spring 2018 CSC 322: Computer Organization Lab 88

module count4 (Clock, Resetn, E, Q);
input Clock, Resetn, E;
output reg [3:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= Q + 1;

endmodule

Code for a four-bit counter

Spring 2018 CSC 322: Computer Organization Lab 89

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 0 =

w 1 =

w 0 = w 1 =

State diagram of a simple Moore-type FSM

Spring 2018 CSC 322: Computer Organization Lab 90

modulemoore	(Clock,	w,	Resetn,	z);

input Clock,	w,	Resetn;
output z;
reg [1:0]	y,	Y;
parameter A	=	2'b00,	B	=	2'b01,	C	=	2'b10;

always@(w,	y)

begin
case (y)
A:		if (w	=	=	0)		Y	=	A;

else		Y	=	B;
B:		if	(w	=	=	0)		Y	=	A;

else		Y	=	C;
C:		if (w	=	=	0)		Y	=	A;

else		Y	=	C;
default:	Y	=	2'bxx;
endcase
end

always@(posedge	Clock,	negedge	Resetn)

begin
if (Resetn	=	=	0)

y	<=	A;

else
y	<=	Y;

end
assign z	=	(y	=	=	C);
endmodule

Code for a Moore machine.

Spring 2018 CSC 322: Computer Organization Lab 91

modulemoore	(Clock,	w,	Resetn,	z);

input Clock,	w,	Resetn;
output z;
reg	[1:0]	y;
parameter A	=	2'b00,	B	=	2'b01,	C	=	2'b10;

always@(posedge Clock,	negedge Resetn)
begin
if (Resetn	=	=	0)
y	<=	A;

else
case (y)
A:		if (w	=	=	0)		y	<=	A;
else y	<=	B;

B:		if (w	=	=	0)		y	<=	A;
else y	<=	C;

C:		if	(w	=	=	0)		y	<=	A;
else y	<=	C;

default:		y	<=	2'bxx;
endcase

end
assign z	=	(y	=	=	C);
endmodule

Alternative version of the code for
a Moore machine.

Spring 2018 CSC 322: Computer Organization Lab 92

module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn ;
output reg z ;
reg y, Y;
parameter A = 1�b0, B = 1�b1;

always @(w, y)
case (y)
A: if (w = = 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 0;

end
B: if (w == 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 1;

end
endcase

always @(posedge Clock , negedge Resetn)
if (Resetn = = 0)

y <= A;
else

y <= Y;
endmodule

Code for a Mealy machine.

Spring 2018 CSC 322: Computer Organization Lab 93

A

w 0 = z 0 = ⁄

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄

Reset

w 1 = z 0 = ⁄

State diagram of a Mealy-type FSM.

Spring 2018 CSC 322: Computer Organization Lab 94

module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn ;
output reg z ;
reg y, Y;
parameter A = 1�b0, B = 1�b1;

always @(w, y)
case (y)
A: if (w = = 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 0;

end
B: if (w == 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 1;

end
endcase

always @(posedge Clock , negedge Resetn)
if (Resetn = = 0)

y <= A;
else

y <= Y;
endmodule

Code for a Mealy machine.

Spring 2018 CSC 322: Computer Organization Lab 95

Category Examples Bit Length

Bitwise ~A, +A, –A L(A)
A & B, A | B, A ~ ^ B, A ^ ~ B MAX (L(A), L(B))

Logical !A, A && B, A || B 1 bit

Reduction &A, ~&A, |A, ~ |A, A, A 1 bit

Relational A = = B, A != B, A > B, A < B 1 bit
A >= B, A <= B
A = = = B, A != = B

Arithmetic A + B, A B, A * B, A / B MAX (L(A), L(B))
A % B

Shift A << B, A >> B L(A)

Concatenate {A, B} L(A) + ... L(B)

Replication {B{A}} B L(A)

Condition A ? B : C MAX (L(B), L(C))

^ ~ ~ ^

–

+…,

*

Spring 2018 CSC 322: Computer Organization Lab 96

Verilog
operators and
bit lengths.

Name Description Usage
and f = (a · b and(f , a, b,…)

nand f = nand(f , a, b, …)

or f = (a + b +) or (f , a, b, …)

nor f = (a + b +) nor(f , a, b, …)

xor f = (a Å bÅ xor(f , a, b, …)

xnor f = (a � b � xnor(f , a, b, …)

not f = a not(f , a)

buf f = a buf (f , a)

notif0 f = notif0

notif1 f = notif1

bufif0 f = bufif0

bufif1 f = bufif1

···)

(a · b···)

···

···

···)

···)

(!e ? a : ‘bz)

(e ? a : ‘bz)

(!e ? a : ‘bz)

(e ? a : ‘bz) (f, a, e)

(f, a, e)

(f, a, e)

(f, a, e)

Spring 2018 CSC 322: Computer Organization Lab 97

Verilog Gates

