

CSC 322: Computer Organization Lab

Lecture 3: Logic Design

Dr. Haidar M. Harmanani

CSC 322: Computer Organization Lab

Part I: Combinational Logic

Dr. Haidar M. Harmanani

Logical Design of Digital Systems

- Complex Combinational and Sequential networks (up to thousands of gates)
 - Emphasis on combined datapath + Finite state machine designs for real time applications
- Modern CAD tool usage (schematic entry, simulation, technology mapping, timing analysis, synthesis)
- Logic Synthesis via Verilog
- Modern implementation technologies such as Field Programmable Gate Arrays (FPGAs)

CSC 322: Computer Organization Lab

3 LAU

Truth Tables

المالية المدينة المركمة المركمة

How about a 3-input XOR Gate?

- Easy. Extend the truth table
- How about N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd

a	b	с	У
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Logic Gates (1/2)

Spring 2018

CSC 322: Computer Organization Lab

Logic Gates (2/2)

Spring 2018

Example 2: Design a 2-bit Unsigned Adder

$ \begin{array}{c} A \\ 2 \\ 2 \\ + \\ 3 \\ C \end{array} $	How many rows in the truth table?	$\begin{array}{c} A \\ a_1 a_0 \\ 00 \\ 00 \\ 00 \\ 01 \\ 01 \\ 01 \\ 01 \\ $	$\begin{array}{c} B \\ b_1 b_0 \\ 00 \\ 01 \\ 10 \\ 11 \\ 00 \\ 01 \\ 10 \\ 11 \\ 00 \\ 01 \\ 11 \\ 00 \\ 01 \\ 11 \\ 10 \\ 11 \\ 11 \\ \end{array}$	$\begin{array}{c} C \\ \hline c_2 c_1 c_0 \\ \hline 000 \\ 001 \\ 010 \\ 011 \\ 001 \\ 010 \\ 011 \\ 100 \\ 011 \\ 100 \\ 101 \\ 101 \\ 100 \\ 101 \\ 110 \\ 110 \\ \end{array}$
Spring 2018	CSC 322: Computer Organization Lab			9

Example 3: Design of a 32-bit adder

А	В	C	
000 0	000 0	000 00	
000 0	000 1	000 01	How
•	•	•	Many
•	•	•	Rows?
•	•	•	
111 1	111 1	111 10	

DLAU

Example 5: Majority Function

y = ab + ac + bc

Spring 2018

CSC 322: Computer Organization Lab

11

Example 4: 3-input majority circuit

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed an *algebra* involving logic
 later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power f Boolean Algebra is there's a one-to-one complete between circuits made up of AND, OR and NOT gates and equations.

CSC 322: Computer Organization Lab

13

Boolean algebra

- Boolean algebra
 - B = {0, 1}
 - + is logical OR, is logical AND
 - ' is logical NOT
- All algebraic axioms hold

An Algebraic Structure

- An algebraic structure consists of
- a set of elements B
- binary operations { + , }
- and a unary operation { ' }
- such that the following axioms hold:
 - 1. the set B contains at least two elements, a, b, such that a ° b
 - 2. closure: a + b is in B $a \bullet b$ is in B
 - 3. commutativity: a + b = b + a $a \bullet b = b \bullet a$
 - 4. associativity: $a + (b + c) = (a + b) + ca \bullet (b \bullet c) = (a \bullet b) \bullet c$
 - 5. identity: a + 0 = a $a \bullet 1 = a$
 - 6. distributivity: $a + (b \bullet c) = (a + b) \bullet (a + c)$ $a \bullet (b + c) = (a \bullet b) + (a \bullet c)$
 - 7. complementarity: a + a' = 1 $a \bullet a' = 0$

Spring 2018

CSC 322: Computer Organization Lab

15

Axioms and Theorems of Boolean Algebra

Identity

X + 0 = X
X • 1 = X

Null

X + 1 = 1
X • 0 = 0

Idempotency:

X + X = X
X • X = X

Involution:

(X')' = X

Complementarity:

X + Y = 1
X • Y = Y

Commutativity:

X + Y = Y + X 6D.
Y + Y = Y + X 6D.
Y + Y = Y + X + (Y + Z)

Axioms and Theorems of Boolean Algebra (cont'd)

1	Distributivity: 8. $X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$	8D. $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$
•	uniting: 9. $X \bullet Y + X \bullet Y' = X$	9D. $(X + Y) \bullet (X + Y') = X$
•	absorption: 10. X + X • Y = X 11. (X + Y') • Y = X • Y	10D. $X \bullet (X + Y) = X$ 11D. $(X \bullet Y') + Y = X + Y$
•	factoring: 12. $(X + Y) \bullet (X' + Z) = X \bullet Z + X' \bullet Y$	16D. $X \bullet Y + X' \bullet Z = (X + Z) \bullet (X' + Y)$
1	consensus: 13. $(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) =$ $X \bullet Y + X' \bullet Z$	17D. $(X + Y) \bullet (Y + Z) \bullet (X' + Z) = (X + Y) \bullet (X' + Z)$

Spring 2018

CSC 322: Computer Organization Lab

17

Axioms and Theorems of Boolean Algebra (cont'd)

- de Morgan's:
 14. (X + Y + ...)' = X' Y' ... 12D. (X Y ...)' = X' + Y' + ...
- generalized de Morgan's:
 15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)
- Establishes relationship between and +

Axioms and theorems of Boolean algebra (cont')

- Duality
- a dual of a Boolean expression is derived by replacing
- by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
- any theorem that can be proven is thus also proven for its dual!
- a meta-theorem (a theorem about theorems)
- duality:

16. $X + Y + ... \Leftrightarrow X \bullet Y \bullet ...$

- generalized duality: 17. f (X1,X2,...,Xn,0,1,+,●) ⇔ f(X1,X2,...,Xn,1,0,●,+)
- Different than deMorgan's Law
- this is a statement about theorems
- this is not a way to manipulate (re-write) expressions

Spring 2018

CSC 322: Computer Organization Lab

19 LAU

Logic functions and Boolean algebra

 Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

	Х	Y	X	• Y		Х	Y	X'	X' • Y
	0	0	0			0	0	1	0
	0	1	0			0	1	1	1
	1	0	0			1	0	0	0
	1	1	1			1	1	0	0
			Ĩ						1
	Х	Y	X'	Y'	X • Y	X' ● Y'	(X)	• Y) +	- (X' • Y')
	0	0	1	1	0	1	1		
	0	1	1	0	0 0 0 1	0	0		
	1	0	0	1	0	0	0		$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$
	1	1	0	0	1	0	1		\sim
Х, `	Y are	Boole	an alg	jebra	variables				expression that is true when the variables X ave the same value and false, otherwise

20 **المالية المركبة**

Logic functions and Boolean algebra

- Thus, in order to implement an arbitrary logic function, the following procedure can be followed:
 - Derive the truth table
 - Create the product term that has a value of 1 for each valuation for which the output function f has to be 1
 - Take the logical sum of these product terms to realize f

CSC 322: Computer Organization Lab

Example 5: Algebraic Simplification

original circuit

equation derived from original circuit

algebraic simplification

Boolean Algebra also great for circuit <u>verification</u>Circ X = Circ Y? use *Boolean Algebra* to prove!

simplified circuit

CSC 322: Computer Organization Lab

Example 6: Boolean Algebraic Simplification

$$y = ab + a + c$$

= $a(b+1) + c$ distribution, identity
= $a(1) + c$ law of 1's
= $a + c$ identity

Spring 2018

CSC 322: Computer Organization Lab

23 Charles Contraction

Canonical forms (1/2)

Spring 2018

24 Lebanse American University

Canonical forms (2/2)

Spring 2018

Sprir

CSC 322: Computer Organization Lab

LAU

AU

25

Boolean Minimization

- Reduce a Boolean equation to fewer terms hopefully, this will result in using less gates to implement the Boolean equation.
- Pencil-Paper: Algebraic techniques, K-maps or

 Automated: A B C 	Many powerful algorithms exist
	F = A'BC + AB'C + ABC' + ABC
0 0 1	
0 1 0	0
0 1 1	1 / /
1 0 0	0
1 0 1	
1 1 0	1 $F = BC + AC + AB$
1 1 1	¹ Find Boolean adjacencies to minimize equation; eliminate
	redundant term
ng 2018	CSC 322: Computer Organization Lab 26

K- maps

Spring 2018

CSC 322: Computer Organization Lab

Part II: Combinatial Blocks

Dr. Haidar M. Harmanani

Recap

Spring 2018

CSC 322: Computer Organization Lab

29

Technology Mapping

Technology mapping maps a Boolean equation onto a given technology. The technology can affect what constraints are used when doing minimization for the function.

Logic Synthesis

Logic Synthesis is the transformation a digital system described, at the logic level, in a Hardware Description Language (HDL) onto an implementation technology.

Propagation Delay

Propagation Delay

Spring 2018

CSC 322: Computer Organization Lab

33 LAU

2-1 n-bit Data Multiplexor

How many rows in TT of a 1-bit Mux?

Spring 2018

CSC 322: Computer Organization Lab

How many rows in TT of a 1-bit Mux?

Spring 2018

How do we build a 1-bit-wide mux?

Spring 2018

CSC 322: Computer Organization Lab

4-to-1 Multiplexor?

LAU Essection 38

Is there any other way to do it?

Ans: Hierarchically!

Spring 2018

CSC 322: Computer Organization Lab

39 January Hand

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

A Simple ALU

Spring 2018

CSC 322: Computer Organization Lab

41

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

					\mathbf{a}_0	b_0	s ₀	\mathbf{c}_1	
	a_3	a_2	a_1	a_0	0	0	0	0	
+	b_3	b_2	b_1	b_0	0	0 1 0 1	1	0	
	S 3	S 2	\mathbf{s}_1	Sn	1	0	1	0	
	U		T	0	1	1	0	1	

 $s_0 = a_0 ext{ XOR } b_0$ $c_1 = a_0 ext{ AND } b_0$

Spring 2018

CSC 322: Computer Organization Lab

43 **25.14U**

Adder/Subtracter – One-bit adder (1/2)...

						\mathbf{a}_i	\mathbf{b}_i	\mathbf{c}_i	\mathbf{s}_i	c_{i+1}
						0	0	0	0	0
			-			0	0	1	1	0
	a_3	a_2	a_1	\mathbf{a}_0		0	1	0	1	0
+	b_3	b_2	b_1	b_0		0	1	1	0	1
	S 3	s_2	s ₁	S 0	-	1		0		
	0	2	-			1	0	1	0	1
						1	1	0	0	1
						1	1	1	1	1

Adder/Subtracter – One-bit adder (2/2)...

Spring 2018

CSC 322: Computer Organization Lab

45 Example

N 1-bit adders \Rightarrow 1 N-bit adder

Spring 2018

CSC 322: Computer Organization Lab

What about overflow?

4 Bit Ripple Carry Adder

CSC 322: Computer Organization Lab

Extremely Clever Subtractor

х	у	XOR(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

XOR serves as conditional inverter!

Spring 2018

CSC 322: Computer Organization Lab

49

"And In conclusion..."

- Use muxes to select among input
- S input bits selects 2S inputs
- Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 Coupled with basic block elements
- N-bit adder-subtractor done using N 1-bit adders with XOR gates on input
- XOR serves as conditional inverter

Decoder

Spring 2018

CSC 322: Computer Organization Lab

51 LAU

Making a Design Run Fast

- Speed is much more important than saving gates.
 Speed of a gate directly affects the maximum clock speed of digital system
- Gate speed is TECHNOLOGY dependent
 -0.35u CMOS process has faster gates than 0.8u CMOS process
- Implementation choice will affect Design speed
 A Custom integrated circuit will be faster than an FPGA implementation.
- Design approaches will affect clock speed of system
 Smart designers can make a big difference

Spring 2018

52 LAU

CSC 322: Computer Organization Lab

Part III: Sequential Logic

Dr. Haidar M. Harmanani

Sequential Systems Design

- Combinational Network
 - Output value only depends on input value
- Sequential Network
 - Output Value depends on input value and present state value
 - Sequential network must have some way of retaining state via memory devices.
 - Use a clock signal in a synchronous sequential system to control changes between states

Sequential System Diagram

- m outputs only depend on k PS bits Moore Machine
- **REMEMBER:** Moore is Less !!
- m outputs depend on k PS bits AND n inputs Mealy Machine

Clock Signal Review

CSC 322: Computer Organization Lab

<u>10⁻⁹</u>

2 LAU

Memory Elements

Memory elements used in sequential systems are flip-flops and latches.

Other State Elements

Useful for counter design.

Spring 2018

CSC 322: Computer Organization Lab

59

DFFs are most common

- Most FPGA families only have DFFs
- DFF is fastest, simplest (fewest transistors) of FFs
- Other FF types (T, JK) can be built from DFFs
- We will use DFFs almost exclusively in this class
- Will always used edge-triggered state elements (FFs), not level sensitive elements (latches).

Synchronous vs Asynchronous Inputs

Synchronous input: Output will change after active clock edge Asychronous input: Output changes independent of clock

Spring 2018

CSC 322: Computer Organization Lab

61 Called LAU

FF Timing

- Propagation Delay
 - C2Q: Q will change some propagation delay after change in C. Value of Q is based on D input for DFF.
 - S2Q, R2Q: Q will change some propagation delay after change on S input, R input
 - Note that there is NO propagation delay D2Q for DFF!
 - D is a Synchronous INPUT, no prop delay value for synchronous inputs

CSC 322: Computer Organization Lab

63 Constant University

Setup, Hold Times

- Synchronous inputs (e.g. D) have Setup, Hold time specification with respect to the CLOCK input
- Setup Time: the amount of time the synchronous input (D) must be stable before the active edge of clock
- Hold Time: the amount of time the synchronous input (D) must be stable after the active edge of clock.

Registers

The most common sequential building block is the register. A register is N bits wide, and has a load line for loading in a new value into the register.

Register contents do not change unless LD = 1 on active edge of clock.

A DFF is NOT a register! DFF contents change every clock edge.

ACLR used to asynchronously clear the register

66 66 **LAU**

1 Bit Register using DFF, Mux

Note that DFF simply loads old value when LD = 0. DFF is loaded every clock cycle.

Spring 2018

CSC 322: Computer Organization Lab

67 LAU

Counter

Very useful sequential building block. Used to generate memory addresses, or keep track of the number of times a datapath operation is performed.

Incrementer: Combinational Building Block

Spring 2018

CSC 322: Computer Organization Lab

Sequential System Description

- The Q outputs of the flip-flops form a state vector
- A particular set of outputs is the Present State (PS)
- The state vector that occurs at the next discrete time (clock edge for synchronous designs) is the Next State (NS)
- A sequential circuit described in terms of state is a Finite State Machine (FSM)
- Not all sequential circuits are described this way; i.e., registers are not described as FSMs yet a register is a sequential circuit.

CSC 322: Computer Organization Lab

71

Describing FSMs

- State Tables
- State Equations
- State Diagrams
- Algorithmic State Machine (ASM) Charts
 Preferred method in this class
- Freiened method in this ci
- HDL descriptions

Truth Table State Machine Example

Spring 2018

CSC 322: Computer Organization Lab

73

Boolean Algebra (e.g., for FSM)

Example State Machine

State Assignment

- State assignment is the binary coding used to represent the states
- Given N states, need at least log₂(N) FFs to encode the states
- (i.e. 3 states, need at least 2 FFs for state information).

S0 = 00, S1 = 01, S2 = 10 (FSM is now a modulo 3 counter)

- Do not always have to use the fewest possible number of FFs.
- A common encoding is One-Hot encoding use one FF per state.

-S0 = 001, S1 = 010, S2 = 100

State assignment affects speed, gate count of FSM

FSM Implementation

• Use DFFs, State assignment: S0 = 00, S1 = 01, S2 = 10

	Inc	P Q1	S Q0	NS Q1+		D1	D0	State Table
_	0	0	0	0	0	0	0	
	0	0	1	0	1	0	1	
	0	1	0	1	0	1	0	Equations
	0	1	1	x	Х	x	х	D1 = Inc' Q1Q0' + IncQ1' Q0
	1	0	0	0	1	0	1	
	1	0	1	1	0	1	0	
	1	1	0	0	0	0	0	D0 = lnc' Q1' Q0 + lncQ1' Q0'
	1	1	1	x	х	x	х	

Spring 2018

CSC 322: Computer Organization Lab

77 **الملا**

Minimize Equations (if desired)

FSM Usage

- Custom counters
- Datapath control

Spring 2018

CSC 322: Computer Organization Lab

Memories

- Memories are K x N devices, K is the # of locations, N is the number bits per location (16 x 2 would be 16 locations, each storing 2 bits)
- K locations require $log_2(K)$ address lines for selecting a location (i.e. a 16 location memory needs 4 address lines)
- A memory that is K x N, can be used to implement N Boolean equations, which use log₂(K) variables (the N Boolean equations must use the same variables).
- One address line is used for each *Boolean* variable, each bit of the output implements a different Boolean equation.
- The memory functions as a Look Up Table (LUT).

Memory Example

A gated D latch in Verilog

module latch (D, clk, Q);
input D, clk;
output reg Q;

always @(D, clk) **if** (clk) Q <= D;

endmodule

A D flip-flop.

module flipflop (D, Clock, Q);
input D, Clock;
output reg Q;

always @(posedge Clock) Q <= D;

endmodule

Spring 2018

CSC 322: Computer Organization Lab

83

A D flip-flop with asynchronous reset

```
module flipflop_ar (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;
```

```
always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
    Q <= 0;
else
    Q <= D;</pre>
```

endmodule

A D flip-flop with synchronous reset.

```
module flipflop_sr (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;
```

```
always @(posedge Clock)
if (Resetn == 0)
    Q <= 0;
else
    Q <= D;</pre>
```

endmodule

Spring 2018

CSC 322: Computer Organization Lab

85 LAU

A four-bit register with asynchronous clear.

```
module reg4 (D, Clock, Resetn, Q);
input [3:0] D;
input Clock, Resetn;
output reg [3:0] Q;
always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 4'b0000;</pre>
```

else

Q <= D;

endmodule

Spring 2018

36 LAU

An n-bit register with asynchronous clear and enable.

module regne (D, Clock, Resetn, E, Q);
parameter n = 4;
input [n-1:0] D;
input Clock, Resetn, E;
output reg [n-1:0] Q;

```
always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
    Q <= 0;
else if (E)
    Q <= D;</pre>
```

endmodule

Spring 2018

CSC 322: Computer Organization Lab

87 EAU

A three-bit shift register

module shift3 (w, Clock, Q);
input w, Clock;
output reg [1:3] Q;

```
always @(posedge Clock)
begin
Q[3] <= w;
Q[2] <= Q[3];
Q[1] <= Q[2];
end
```

endmodule

88 EAU

Code for a four-bit counter

```
module count4 (Clock, Resetn, E, Q);
input Clock, Resetn, E;
output reg [3:0] Q;
```

```
always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
    Q <= 0;
else if (E)
    Q <= Q + 1;</pre>
```

endmodule

Spring 2018

CSC 322: Computer Organization Lab

89

State diagram of a simple Moore-type FSM

Spring 2018

CSC 322: Computer Organization Lab

90 Contraction University

```
module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y, Y;
parameter A = 2'b00, B = 2'b01, C = 2'b10;
                                                    Code for a Moore machine.
always @(w, y)
begin
 case (y)
  A: if (w = = 0) Y = A;
      else Y = B;
  B: if (w = = 0) Y = A;
     else Y = C;
   C: if (w = = 0) Y = A;
     else Y = C;
  default: Y = 2'bxx;
  endcase
end
always @(posedge Clock, negedge Resetn)
begin
 if (Resetn = = 0)
    y <= A;
  else
    y <= Y;
end
 assign z = (y = = C);
endmodule
```

```
Spring 2018
```

CSC 322: Computer Organization Lab


```
module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
 output z;
reg [1:0] y;
 parameter A = 2'b00, B = 2'b01, C = 2'b10;
 always @(posedge Clock, negedge Resetn)
 begin
 if (Resetn = = 0)
   y <= A;
  else
   case (y)
    A: if (w = = 0) y <= A;
      else y <= B;
    B: if (w = = 0) y <= A;
      else y <= C;
    C: if (w = = 0) y <= A;
      else y <= C;
    default: y <= 2'bxx;</pre>
   endcase
 end
 assign z = (y = = C);
endmodule
```

Alternative version of the code for a Moore machine.

```
Spring 2018
```


<pre>module mealy (Clock, input Clock, w, Reset output reg z ; reg y, Y; parameter A = 1' b0,</pre>	; Code for a Mealy machine
always @(w, y) case (y) A: if (w = = 0) begin Y = A; z = 0; end else begin Y = B; z = 0; end	
B: if $(w == 0)$ begin Y = A; z = 0; end else begin Y = B; z = 1; end endcase	
if (Resetn = = 0) y <= A; else	ock , negedge Resetn)
y <= Y; Spring 2018 endmodule	CSC 322: Computer Organization Lab 93

State diagram of a Mealy-type FSM.

	module mealy (Clock, w, Res input Clock, w, Resetn ; output reg z ; reg y, Y; parameter A = 1' b0, B = 1'	(Code for a Mealy mach	nine.	
	always @(w, y) case (y) A: if (w = = 0) begin Y = A; z = 0; end else begin Y = B; z = 0; end B: if (w == 0) begin Y = A; z = 0; end B: if w == 0) begin Y = A; z = 0; end B: if w == 0; end B: if w == 0; end A: we				
	end endcase always @(posedge Clock , i if (Resetn = = 0) y <= A; else	negedge Resetn)			
Spring 2018	y <= Y; endmodule	CSC 322: Computer	Organization Lab		95 BELAU

Verilog
operators and
bit lengths.

Category	Examples	Bit Length
Bitwise	~A, +A, -A A & B, A B, A ~ ^ B, A ^ ~ B	L(<i>A</i>) MAX (L(<i>A</i>), L(<i>B</i>))
Logical	!A, A && B, A II B	1 bit
Reduction	&A, ~&A, IA, ~IA, ^~A, ~^A	1 bit
Relational	A = = B, A != B, A > B, A < B A >= B, A <= B A = = B, A != = B	1 bit
Arithmetic	A + B, A – B, A * B, A/B A % B	MAX (L(<i>A</i>), L(<i>B</i>))
Shift	A << B, A >> B	L(A)
Concatenate	{A,,B}	$L(A) + \cdots + L(B)$
Replication	{B{A}}	B *L(<i>A</i>)
Condition	A ? B : C	MAX (L(<i>B</i>), L(<i>C</i>))

CSC 322: Computer Organization Lab

96 LAU

Verilog Gates

Name	Description	Usage
and	$f = (a \cdot b \cdots)$	and(f, a, b,)
nand	$f = \overline{(a \cdot b \cdots)}$	nand (<i>f</i> , <i>a</i> , <i>b</i> ,
or	$f=(a+b+\cdots)$	or (<i>f</i> , <i>a</i> , <i>b</i> ,)
nor	$f=\overline{(a+b+\cdots)}$	nor (<i>f</i> , <i>a</i> , <i>b</i> , …)
xor	$f=(a\oplus b\oplus \cdots)$	xor (<i>f</i> , <i>a</i> , <i>b</i> ,)
xnor	$f=(a\odot b\odot \cdots)$	xnor (<i>f</i> , <i>a</i> , <i>b</i> ,
not	$f = \overline{a}$	not (<i>f</i> , <i>a</i>)
buf	f = a	buf (<i>f</i> , <i>a</i>)
notif0	$f = (!e ? \overline{a} : `bz)$	notif0(f, a, e)
notif1	$f = (e ? \overline{a} : `bz)$	notif1(<i>f, a, e</i>)
bufif0	f = (!e ? a : `bz)	bufif0(<i>f, a, e</i>)
bufif1	f = (e ? a : `bz)	bufif1(<i>f, a, e</i>)

Spring 2018

CSC 322: Computer Organization Lab

_