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Logical Design of Digital Systems
§ Complex Combinational and Sequential networks (up to thousands of 

gates)
– Emphasis on combined datapath + Finite state machine designs for real time 

applications

§ Modern CAD tool usage  (schematic entry, simulation, technology 
mapping, timing analysis, synthesis)

§ Logic Synthesis via Verilog

§ Modern implementation technologies such as Field Programmable Gate 
Arrays (FPGAs)
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Truth Tables
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0

How many Fs
(4-input devices)?



Example #1: 1 iff one (not both) a, b=1
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a b y

0 0 0

0 1 1

1 0 1

1 1 0

How about a 3-input XOR Gate?
§ Easy.  Extend the truth table

§ How about N-input XOR is the only one which isn’t 
so obvious
– It’s simple: XOR is a 1 iff the # of 1s at its input is odd
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Logic Gates (1/2)
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Logic Gates (2/2)
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Example 2: Design a 2-bit Unsigned Adder
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How
many
rows in 
the truth 
table?

Example 3: Design of a 32-bit adder
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How
Many
Rows?



Example 5: Majority Function
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y = a • b + a • c + b • c
y = ab + ac + bc

Example 4: 3-input majority circuit



Boolean Algebra
§ George Boole, 19th Century mathematician

§ Developed an algebra involving logic
– later known as “Boolean Algebra”

§ Primitive functions: AND, OR and NOT

§ The power f Boolean Algebra is there’s a one-to-one correspondence 
between circuits made up of AND, OR and NOT gates and equations.
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Boolean algebra
§ Boolean algebra
– B = {0, 1}
– + is logical OR, • is logical AND
– ' is logical NOT

§ All algebraic axioms hold
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An Algebraic Structure
§ An algebraic structure consists of
– a set of elements B
– binary operations { + , • }
– and a unary operation { ' }
– such that the following axioms hold:

1. the set B contains at least two elements, a, b, such that a ° b
2. closure: a + b   is in B a • b   is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + ca • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0
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Axioms and Theorems of Boolean Algebra
§ Identity

1.   X + 0 = X 1D.   X • 1 = X
§ Null

2.   X + 1 = 1 2D.   X • 0 = 0
§ Idempotency:

3.   X + X = X 3D.   X • X = X
§ Involution:

4.   (X')' = X
§ Complementarity:

5.   X + X' = 1 5D.   X • X' = 0
§ Commutativity:

6.   X + Y = Y + X 6D.   X • Y = Y • X
§ Associativity:

7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
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Axioms and Theorems of Boolean Algebra (cont’d)
§ Distributivity:

8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

§ uniting:
9.   X • Y + X • Y' = X 9D.   (X + Y) • (X + Y') = X

§ absorption:
10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D. (X • Y') + Y = X + Y

§ factoring:
12. (X + Y) • (X' + Z) = X • Z + X' • Y 16D. X • Y + X' • Z = (X + Z) • (X' + Y)

§ consensus:
13. (X • Y) + (Y • Z) + (X' • Z) = 17D. (X + Y) • (Y + Z) • (X' + Z) =

X • Y + X' • Z (X + Y) • (X' + Z)
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Axioms and Theorems of Boolean Algebra (cont’d)
§ de Morgan's:

14. (X + Y + ...)' = X' • Y' • ... 12D. (X • Y • ...)' = X' + Y' + ...

§ generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) =  f(X1',X2',...,Xn',1,0,•,+)

§ Establishes relationship between • and +
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Axioms and theorems of Boolean algebra (cont’)
§ Duality
– a dual of a Boolean expression is derived by replacing 

• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
– any theorem that can be proven is thus also proven for its dual!
– a meta-theorem (a theorem about theorems) 

§ duality:
16. X + Y + ... Û X • Y • ...

§ generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) Û f(X1,X2,...,Xn,1,0,•,+)

§ Different than deMorgan’s Law
– this is a statement about theorems
– this is not a way to manipulate (re-write) expressions
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Logic functions and Boolean algebra
§ Any logic function that can be expressed as a truth table can be written 

as an expression in Boolean algebra using the operators: ', +, and •
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X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' ( X • Y ) + ( X' • Y' )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X' • Y' )  º X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is true when the variables X 
and Y have the same value and false, otherwise



Logic functions and Boolean algebra
§ Thus, in order to  implement an arbitrary logic function, the following 
procedure can be followed:
– Derive the truth table
– Create the product term that has a value of 1 for each valuation for which the 

output function f  has to be 1
– Take the logical sum of these product terms to realize f

Spring 2018 CSC 322: Computer Organization Lab 21

Example 5: Algebraic Simplification
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Boolean Algebra also great for circuit 
verification Circ X = Circ Y?
use Boolean Algebra to prove!



Example 6: Boolean Algebraic Simplification
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Canonical forms (1/2)
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Sum-of-products
(ORs of ANDs)



Canonical forms (2/2)
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Boolean Minimization
§ Reduce a Boolean equation to fewer terms - hopefully, this will result in using 

less gates to implement the Boolean equation.
§ Pencil-Paper:   Algebraic techniques, K-maps or 
§ Automated:  Many powerful algorithms exist
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A   B   C         F
0    0    0        0
0    0    1        0
0    1    0        0        
0    1    1        1
1    0    0        0
1    0    1        1
1    1    0        1
1    1    1        1

F =  A’BC + AB’C + ABC’ + ABC

F =  BC + AC + AB
Find Boolean adjacencies to minimize equation; eliminate 
redundant term



Graphical	Aid	for	minimization	- used	to	
visualize	Boolean	adjacencies

A   B   C         F
0    0    0        0
0    0    1        0
0    1    0        0        
0    1    1        1
1    0    0        0
1    0    1        1
1    1    0        1
1    1    1        1

BC
00 01 11 10

0
A

1

0 0 01

0 1 1 1

BC
00 01 11 10

0
A

1

0 0 01

0 1 1 1F	=		BC	+	AC	+	AB

K- maps
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Recap
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Technology Mapping
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Technology mapping maps a Boolean equation onto a given technology.   The 
technology can affect what constraints are used when doing minimization for 
the function.

Discrete	gates

Programmable	Logic

Custom	Integrated	

Circuits



Logic Synthesis 
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//2-input multiplexor in gates
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;

not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or  (out, w0, w1);

endmodule // mux2

Verilog Description Gates 

Synthesis
out

select
in0

in1

s0

w0

w1

Logic Synthesis is the transformation a digital system described, at the logic level, in a 
Hardware Description Language (HDL) onto an implementation technology. 

A Y

A
H

L

Y
H

L

tphl tplh

Propagation Delay
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A
Y

H

A
H

L

Y
H

L

tplh tphl

Propagation Delay
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2-1 n-bit Data Multiplexor
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�mux�



How many rows in TT of a 1-bit Mux?
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How many rows in TT of a 1-bit Mux?
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How do we build a 1-bit-wide mux?
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4-to-1 Multiplexor?
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How many rows in TT?



Is there any other way to do it?
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Ans: Hierarchically!

Arithmetic and Logic Unit
§ Most processors contain a special logic block called “Arithmetic and Logic 

Unit” (ALU)

§ We’ll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR
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A Simple ALU
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Adder/Subtracter Design -- how?
§ Truth-table, then determine canonical form, then minimize and 
implement as we’ve seen before

§ Look at breaking the problem down into smaller pieces that we can 
cascade or hierarchically layer

Spring 2018 CSC 322: Computer Organization Lab 42



Adder/Subtracter – One-bit adder LSB…
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Adder/Subtracter – One-bit adder (1/2)…
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Adder/Subtracter – One-bit adder (2/2)…
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N 1-bit adders Þ 1 N-bit adder
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What about overflow?
Overflow = cn?

b0

+ ++



What about overflow?
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Consider a 2-bit signed # & overflow:
◦ 10 = -2 + -2 or -1
◦ 11 = -1 + -2 only
◦ 00 =  0 NOTHING!
◦ 01 =  1 + 1 only

Highest adder
◦ C1 = Carry-in = Cin, C2 = Carry-out = Cout
◦ No Cout or Cin Þ NO overflow! 
◦ Cin, and Cout Þ NO overflow!
◦ Cin, but no Cout Þ A,B both > 0, overflow!
◦ Cout, but no Cin Þ A,B both < 0, overflow!

+ #

What op?

A B

S

C

i

C

o

A B

S

C

i

C

o

A B

S

C

i

C

o

A B

S

C

i

C

o

Ci

n

A(0)

Cou

t

B(0)A(1) B(1)A(2) B(2)A(3) B(3)

C(0)C(1)C(2)C(3)

Sum(0)Sum(1)Sum(2)Sum(3)

A[3:0]

B[3:0]
SUM[3:0]+

4 Bit Ripple Carry Adder
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C(4)



Extremely Clever Subtractor 
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x y XOR(x,y)

0 0 0

0 1 1

1 0 1

1 1 0

+

XOR serves as
conditional inverter!

+ +

“And In conclusion…”
§ Use muxes to select among input
– S input bits selects 2S inputs
– Each input can be n-bits wide, indep of S

§ Can implement muxes hierarchically

§ ALU can be implemented using a mux
– Coupled with basic block elements

§ N-bit adder-subtractor done using N 1-bit adders with XOR gates on 
input
– XOR serves as conditional inverter
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A[2:0] Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

if A= 000 then Y0=1 else Y0=0;
if A= 001 then Y1=1 else Y1=0;
if A= 010 then Y2=1 else Y2=0;
if A= 011 then Y3=1 else Y3=0;
if A= 100 then Y4=1 else Y4=0;
if A= 101 then Y5=1 else Y5=0;
if A= 110 then Y6=1 else Y6=0;
if A= 111 then Y7=1 else Y7=0;

Decoder
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Making a Design Run Fast
§ Speed is much more important than saving gates.
– Speed of a gate directly affects the maximum clock speed of digital system

§ Gate speed is TECHNOLOGY dependent
– 0.35u CMOS process has faster gates than 0.8u CMOS process

§ Implementation choice will affect Design speed
– A Custom integrated circuit will be faster than an FPGA implementation.

§ Design approaches will affect clock speed of system
– Smart designers can make a big difference
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CSC 322: Computer Organization Lab
Part III:  Sequential Logic

Dr. Haidar M. Harmanani

Sequential Systems Design
§ Combinational Network
– Output value only depends on input value

§ Sequential Network
– Output Value depends on input value and present state value
– Sequential network must have some way of retaining state via memory devices.
– Use a clock signal in a synchronous sequential system to control changes 

between states
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Sequential System Diagram
§ m outputs only depend on k PS bits - Moore Machine

§ REMEMBER: Moore is Less !!

§ m outputs depend on k PS bits AND n inputs - Mealy Machine
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Combinational
Logic
Circuit

Memory Elements
- flip-flop
- latch
- register
- PROM

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value
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Clock Signal Review

time

voltage

f = 1/t

Pw rising edge falling edge

t - period (in seconds) Pw - pulse width (in seconds)

f - frequency pulse width (in Hertz)

duty cycle - ratio of pulse width to period (in %) duty cycle = Pw /t

millisecond (ms)
10-3

Kilohertz (KHz)
103

microsecond (µs)
10-6

Megahertz (MHz)
106

nanosecond (ns)
10-9

Gigahertz (GHz)
109



Memory Elements
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Memory elements used in sequential systems are flip-flops and latches.

D
Q

C

D     Q(t+1)
0      0
1      1

Q(t+1) is Q next state

D flip flop (DFF)

D
Q

G D latch (DL)

Flip-flops are edge triggered 
(either rising or falling edge).

Latches are level sensitive.  Q 
follows D when G=1, latches 
when G  goes from 1 to 0. 
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D FF,  D Latch operation

C for FF, G for latch 

D input 

Q (FF) 

Q (DL) 



Other State Elements
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J
Q

C

K

J    K     Q(t+1)
0     0      Q(t)
0     1        0
1     0        1
1     1       Q�(t) 

JK useful for single bit 
flags with separate 
set(J), reset(K) control.

T
Q

C

T     Q(t+1)
0      Q(t)
1      Q�(t)

Useful for counter design.

DFFs are most common
§ Most FPGA families only have DFFs

§ DFF is fastest, simplest (fewest transistors) of FFs

§ Other FF types (T, JK) can be built from DFFs

§ We will use DFFs almost exclusively in this class
– Will always used edge-triggered state elements (FFs), not level sensitive 

elements (latches).
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Synchronous vs Asynchronous Inputs
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Synchronous input:  Output will change after active clock edge
Asychronous input:  Output changes independent of clock

State elements often have async set, reset control.
D input is synchronous with respect to Clk

S, R are asynchronous.  Q output affected by S, R 
independent of C.  Async inputs are dominant over Clk. 

D
Q

C

S

R
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DFF with async control

C  

D input 

Q (FF) 

R

S



FF Timing
§ Propagation Delay
– C2Q:   Q will change some propagation delay after change in C.  Value of Q is 

based on D input for DFF.
– S2Q, R2Q:  Q will change some propagation delay after change on S input, R 

input
– Note that there is NO propagation delay D2Q for DFF!
– D is a Synchronous INPUT, no prop delay value for synchronous inputs
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Setup, Hold Times
§ Synchronous inputs (e.g.  D)  have Setup, Hold time specification with 
respect to the CLOCK input

§ Setup Time:  the amount of time the synchronous input (D) must be 
stable before the active edge of clock

§ Hold Time: the amount of time the synchronous input (D) must be 
stable after the active edge of clock.
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Setup, Hold Time
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tsu thd

C

D  changing

Stable

If changes on D input violate either setup or hold time, 
then correct FF operation is not guaranteed.
Setup/Hold measured around active clock edge.

D  changing

Registers
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The most common sequential building block is the register.  A register is N bits wide, 
and has a load line for loading in a new value into the register. 

DIN

N
CLK

LD

R
E
G

DOUT

N

Register contents do not change 
unless LD = 1 on active edge of 
clock.

A DFF is NOT a register! DFF 
contents change every clock edge.  
ACLR used to asynchronously 
clear the register  

ACLR



1 Bit Register using DFF,  Mux
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D
Q

C

0

1

S

Y

2/1 Mux DFF

DOUTDIN

LD

CLK
R

ACLR

Note that DFF simply loads old value when LD = 0.  DFF is loaded every 
clock cycle.

1 Bit Register using Gated Clock
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D
Q

C

DFF

DOUT
DIN

LD

CLK

Saves power over previous design since DFF is not 
clocked every clock cycle.   Many FPGAs offer an 
�enabled� DFF as an integrated unit.

D
Q

C

DFF

EN

RACLR



Counter
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DIN
N

CLK

LD

C
N
T
R N

CNT_EN

ACLR

LD asserted loads 
counter with DIN value.
CNT_EN asserted will 
increment counter on next 
active clock edge.
ACLR will asynchronously 
clear the counter.

Very useful sequential building block.  Used to generate memory addresses, or keep 
track of the number of times a datapath operation is performed.

Incrementer: Combinational Building Block
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EN

DIN
Y When EN=1,  Y = DIN + 1

When EN=0,  Y = DIN

EN

N
DIN0

Y0

DIN1

Y1

DIN2

Y2

Etc...

N



Sequential System Description
§ The Q outputs of the flip-flops form a state vector

§ A particular set of outputs is the Present State (PS)

§ The state vector that occurs at the next discrete time (clock edge for 
synchronous designs) is the Next State (NS)

§ A sequential circuit described in terms of state is a Finite State Machine 
(FSM)
– Not all sequential circuits are described this way; i.e., registers are not described 

as FSMs yet a register is a sequential circuit.
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Describing FSMs
§ State Tables

§ State Equations

§ State Diagrams

§ Algorithmic State Machine (ASM) Charts
– Preferred method in this class

§ HDL descriptions
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Truth Table State Machine Example
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PS Input NS Output
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1

or equivalently…

Boolean Algebra (e.g., for FSM)

PS Input NS Output

00 0 00 0

00 1 01 0

01 0 00 0

01 1 10 0

10 0 00 0

10 1 00 1

or equivalently…

y = PS1 • PS0 • INPUT
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Example State Machine

S
0

0

S
1

0
S
2

01

1

1

State Diagram
(Bubble Diagram)

S
0

CNT 0

1
S
1

CNT 0

1
S
2

CNT 0

1
ASM Chart

State Assignment
§ State assignment is the binary coding used to represent the states

§ Given N states,  need at least  log2(N)  FFs to encode the states
– (i.e.   3 states, need at least 2 FFs for state information).

S0 = 00,   S1 =  01,   S2 = 10  (FSM is now a modulo 3 counter)

§ Do not always have to use the fewest possible number of FFs.

§ A common encoding is One-Hot encoding  - use one FF per state.

– S0 = 001,   S1 = 010,   S2 =  100

§ State assignment affects speed, gate count of FSM
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FSM Implementation
§ Use DFFs, State assignment:  S0 = 00, S1 = 01, S2 = 10
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PS           NS
Inc  Q1 Q0     Q1+ Q0     D1  D0
0     0     0       0       0       0      0
0     0     1       0       1       0      1
0     1     0       1       0       1      0
0     1     1       x       x       x      x
1     0     0       0       1       0      1
1     0     1       1       0       1      0
1     1     0       0       0       0      0
1     1     1       x       x       x      x

State Table

D1 = Inc�Q1Q0� + IncQ1�Q0

D0 = Inc�Q1�Q0 + IncQ1�Q0�

Equations

Minimize Equations (if desired)
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00 01 11 10

0
Inc

1

0 0 1x

0 1 x 0

Q1Q0D1

D1 = Inc� Q1 + Inc Q0  

00 01 11 10

0
Inc

1

0 1 0x

1 0 x 0

Q1Q0D0

D1 = Inc� Q0 + Inc Q1�Q0�



FSM Usage
§ Custom counters

§ Datapath control
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DIN
R
E
G

R
E
G

+
R
E
G

X
DOUT

FSM Control (reg load lines, mux selects)

Memories
§ Memories are K x N devices, K is the # of locations, N is the number bits per 

location (16 x 2 would be 16 locations, each storing 2 bits)

§ K locations require  log2(K) address lines for selecting a location (i.e.   a 16 
location memory needs 4 address lines)

§ A memory that is  K x N, can be used to implement N Boolean equations, 
which use log2(K) variables (the N Boolean equations must use the same 
variables). 

§ One address line is used for each Boolean variable, each bit of the output 
implements a different Boolean equation. 

§ The memory functions as a Look Up Table  (LUT).
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F (A,B,C) = A xor B xor C      G =  AB + AC  + BC 

A B C    F    G
0 0  0    0     0
0 0  1    1     0
0 1  0    1     0
0 1  1    0     1
1 0  0    1     0 
1 0  1    0     1
1 1  0    0     1
1 1  1    1     1

Recall that Exclusive OR (xor) is
A B     Y
0  0     0
0  1     1
1  0     1
1  1     0

Y = AÅB
= A xor B

A
0

A
1

A
2

8 x 2  Memory
A
B
C D

O
G

LookUp Table (LUT) 

D1 F

A[2:0]	is	3	bit	address	

bus,		D[1:0]	is	2	bit	

output	bus.

Location	0	has	�00�,	
Location	1	has	�10�,
Location	2	has	�10�,	
etc….
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Memory Example

module latch (D, clk, Q);
input D, clk;
output reg Q;

always @(D, clk)
if (clk)
Q <= D;

endmodule

A gated D latch in Verilog
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module flipflop (D, Clock, Q);
input D, Clock;
output reg Q;

always @(posedge Clock)
Q <= D;

endmodule

A D flip-flop.
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module flipflop_ar (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 0;

else
Q <= D;

endmodule

A D flip-flop with asynchronous reset
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module flipflop_sr (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock)
if (Resetn == 0)
Q <= 0;

else
Q <= D;

endmodule

A D flip-flop with synchronous reset.
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module reg4 (D, Clock, Resetn, Q);
input [3:0] D;
input Clock, Resetn;
output reg [3:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 4'b0000;

else
Q <= D;

endmodule

A four-bit register with asynchronous clear.
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module regne (D, Clock, Resetn, E, Q);
parameter n = 4;
input [n-1:0] D;
input Clock, Resetn, E;
output reg [n-1:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q <= 0;

else if (E)
Q <= D;

endmodule

An n-bit register with asynchronous clear and 
enable.
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module shift3 (w, Clock, Q);
input w, Clock;
output reg [1:3] Q;

always @(posedge Clock)
begin
Q[3] <= w;
Q[2] <= Q[3];
Q[1] <= Q[2];

end

endmodule

A three-bit shift register
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module count4 (Clock, Resetn, E, Q);
input Clock, Resetn, E;
output reg [3:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= Q + 1;

endmodule

Code for a four-bit counter
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C z 1 = ⁄ 

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 0 = 

w 1 = 

w 0 = w 1 = 

State diagram of a simple Moore-type FSM

Spring 2018 CSC 322: Computer Organization Lab 90



modulemoore	(Clock,	w,	Resetn,	z);

input Clock,	w,	Resetn;
output z;
reg [1:0]	y,	Y;
parameter A	=	2'b00,	B	=	2'b01,	C	=	2'b10;

always@(w,	y)

begin
case (y)
A:		if (w	=	=	0)		Y	=	A;

else		Y	=	B;
B:		if	(w	=	=	0)		Y	=	A;

else		Y	=	C;
C:		if (w	=	=	0)		Y	=	A;

else		Y	=	C;
default:	Y	=	2'bxx;
endcase
end

always@(posedge	Clock,	negedge	Resetn)

begin
if (Resetn	=	=	0)

y	<=	A;

else
y	<=	Y;

end
assign z	=	(y	=	=	C);
endmodule

Code for a Moore machine.
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modulemoore	(Clock,	w,	Resetn,	z);

input Clock,	w,	Resetn;
output z;
reg	[1:0]	y;
parameter A	=	2'b00,	B	=	2'b01,	C	=	2'b10;

always@(posedge Clock,	negedge Resetn)
begin
if (Resetn	=	=	0)
y	<=	A;

else
case (y)
A:		if (w	=	=	0)		y	<=	A;
else y	<=	B;

B:		if (w	=	=	0)		y	<=	A;
else y	<=	C;

C:		if	(w	=	=	0)		y	<=	A;
else y	<=	C;

default:		y	<=	2'bxx;
endcase

end
assign z	=	(y	=	=	C);
endmodule

Alternative version of the code for 
a Moore machine.
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module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn ;
output reg z ;
reg y, Y;
parameter A = 1�b0, B = 1�b1;

always @(w, y)
case (y)
A:  if (w = = 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 0;

end
B:  if (w == 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 1;

end
endcase

always @(posedge Clock , negedge Resetn)
if (Resetn = = 0)

y <= A;
else

y <= Y;
endmodule

Code for a Mealy machine.
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A 

w 0 = z 0 = ⁄ 

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄ 

Reset 

w 1 = z 0 = ⁄ 

State diagram of a Mealy-type FSM.
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module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn ;
output reg z ;
reg y, Y;
parameter A = 1�b0, B = 1�b1;

always @(w, y)
case (y)
A:  if (w = = 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 0;

end
B:  if (w == 0)
begin
Y = A;
z = 0;

end
else
begin
Y = B;
z = 1;

end
endcase

always @(posedge Clock , negedge Resetn)
if (Resetn = = 0)

y <= A;
else

y <= Y;
endmodule

Code for a Mealy machine.
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Category Examples Bit Length

Bitwise ~A, +A, –A L(A)
A & B, A | B, A ~ ^ B, A ^ ~ B MAX (L(A), L(B)) 

Logical !A, A && B, A || B 1 bit 

Reduction &A, ~&A, |A, ~ |A, A, A 1 bit 

Relational A = = B, A != B, A > B, A < B 1 bit 
A >= B, A <= B 
A = = = B, A != = B 

Arithmetic A + B, A B, A * B, A / B MAX (L(A), L(B)) 
A % B 

Shift A << B, A >> B L(A)

Concatenate {A, B} L(A) + ... L(B)

Replication {B{A}} B L(A)

Condition A ? B : C MAX (L(B), L(C)) 

^ ~ ~ ^

–

+…,

*
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Verilog 
operators and 
bit lengths.



Name Description Usage
and f = (a · b and(f , a, b,…) 

nand f = nand(f , a, b, …) 

or f = (a + b + ) or (f , a, b, …) 

nor f = (a + b + ) nor(f , a, b, …) 

xor f = (a Å bÅ xor(f , a, b, …) 

xnor f = (a � b � xnor(f , a, b, …) 

not f = a not(f , a) 

buf f = a buf (f , a)  

notif0 f = notif0

notif1 f = notif1

bufif0 f = bufif0

bufif1 f = bufif1

···)

(a · b···)

···

···

···)

···)

(!e ? a : ‘bz)

(e ? a : ‘bz)

(!e ? a : ‘bz)

(e ? a : ‘bz) (f, a, e)

(f, a, e)

(f, a, e)

(f, a, e)
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Verilog Gates


