PAAU

S)

CSC 447: Parallel Programming for Multi-
Core and Cluster Systems

Performance Analysis

Instructor: Haidar M. Harmanani
Spring 2021

Today’s Agenda

= Performance

= Scalability
= Benchmarking

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Serial Performance

= Serial performance bottlenecks usually come from the sub
optimal or chaotic utilization of hardware resources:
—Memory random accesses

—Branch coding
— Sub optimal compilation

Parallel Performance

= Parallel performance bottlenecks usually come from the

parallel design of your algorithm or parallel coding :
— Excessive synchronization

— Load imbalance

Serial vs Parallel

= Need to solve the serial problem before the parallel problem

— Serial performance problems usually get a lot worse when run in
parallel

— The design of your parallel software depends on performance data
collected in serial

— Solving serial and parallel problems at the same time is too complex

Conclusion : solve your serial performance
problems before you start parallelizing

Performance

* In computing, performance is defined by 2 factors
— Computational requirements (what needs to be done)
— Computing resources (what it costs to do it)

= Computational problems translate to requirements

= Computing resources interplay and tradeoff
1

Performance ~
Resources for solution

N - =
/ 9‘\\ 3 ? ... and ultimately

Hardware Time Energy

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Measuring Performance

» Performance itself is a measure of how well the computational
requirements can be satisfied

= We evaluate performance to understand the relationships
between requirements and resources

— Decide how to change “solutions” to target objectives

= Performance measures reflect decisions about how and how
well “solutions” are able to satisfy the computational
requirements

= When measuring performance, it is important to understand
exactly what you are measuring and how you are measuring it

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Scalability

= A program can scale up to use many processors
— What does that mean?

» How do you evaluate scalability?
= How do you evaluate scalability goodness?

= Comparative evaluation
— If double the number of processors, what to expect?
— Is scalability linear?

= Use parallel efficiency measure
— Is efficiency retained as problem size increases?

= Apply performance metrics

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Performance and Scalability

= Evaluation

— Sequential runtime (T, is a function of problem size and
architecture

— Parallel runtime (T ;) is a function of problem size and parallel
architecture and the number of processors used in the execution

— Parallel performance affected by algorithm + architecture

= Scalability

— Ability of parallel algorithm to achieve performance gains

proportional to the number of processors and the size of the
problem

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Performance Metrics and Formulas

= T,isthe execution time on a single processor

= T,isthe execution time on a p processor system

= S(p) (Sp) is the speedup s(p) = ;L
p

= E(p) (E,)isthe efficiency Efficiency = 2L

= Cost(p) (Cp) isthe cost Cost =p x T,

= Parallel algorithm is cost-optimal
— Parallel time = sequential time (C, =T, , Ep = 100%)

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Speed-Up

= Provides a measure of application performance with
respect to a given program platform

= Can also be cast in terms of computational steps
o Can extend time complexity to parallel computations

= Use the fastest known sequential algorithm for running on
a single processor

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Whatis a “good” speedup?
= Hopefully, S(n) > 1

= Linear speedup:

—S(n)=n

— Parallel program considered perfectly scalable
= Superlinear speedup:

—S(n)>n

— Can this happen?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Defining Speed-Up

= We need more information to evaluate speedup:
— What problem size? Worst case time? Average case time?
— What do we count as work?

o Parallel computation, communication, overhead?

—What serial algorithm and what machine should we use for the
numerator?

o Can the algorithms used for the numerator and the denominator be different?

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Common Definitions of Speed-Up

= Common definitions of Speedup:

— Serial machine is one processor of parallel machine and serial algorithm is
interleaved version of parallel algorithm

rd
S =7
() T
— Serial algorithm is fastest known serial algorithm for running on a serial processor
7
S(n) =)

— Serial algorithm is fastest known serial algorithm running on a one processor of the
parallel machine

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Parallel without performance is not
enough
= Adding some parallelism to your software is often not

enough to take advantage of many-core processors with
efficiency and flexibility.

= Typical parallel performance issues :
— Parallel overhead

— Synchronization
— Load imbalance
— Granularity

Parallel Overhead

= All forms of parallelism bring a small overhead : loading a
library, launching threads, scheduling ...

= Solutions:

— Monitor software and OS resources (memory usage, context
switches, number of threads ...)

—Remember that some parallel framework are light, designed for
single computers and small task while others are very heavy,
designed for large clusters.

Synchronization

= Some algorithms (like the blur filter) require
communications, synchronizations between parallel
executions, often blocking execution.

= Solutions:

—Is another algorithm possible ?

— Do you accept a slightly different result ?

— Adapt your code to work with local variables 7
— Optimize synchronization (~OpenMP course)

Load Imbalance

= Uneven distribution of chunks of data over the worker
threads is a typical performance problem.

= Solutions:

— Insert parallelism deeper in the call stack (pixels instead of files in
our example)

— Propose a new usage model for your software, easier to parallelize
(in our example, process files in batch more easily)

— Adapt the settings of your parallel framework (-~ OpenMP
algorithms and chunk size

Granularity

Spring 2021

= You have granularity problems if the chunks of data
distributed to your threads are too big or too small. Too
big they may cause a load imbalance. Too small a parallel
overhead.

= Solutions::

— Partition your data with flexibility. Hardware, data and usage
models change rapidly.

— Adapt the distribution algorithm and chunk size in your parallel
framework.

Can speedup be superlinear?

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Can speedup be superlinear?
» Speedup CANNOT be superiinear.

— Let M be a parallel machine with n processors
— Let T(X) be the time it takes to solve a problem on M with n
Drocessors sqmy =LA
— Speedup definition: ~
S(n) = & = nr _
7T (n) t
o Suppose a parallel algorithm A solves an instance | of a problem in t time units

= Then A can solve the same problem in nxt units of time on M through time slicing
= The best serial time for I will be no bigger than n x t

= Hence speedup cannot be greater than n.

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Can speedup be superlinear?

» Speedup CAN be superlinear:
— Let M be a parallel machine with n processors

— Let T(X) be the time it takes to solve a problem on M with X processors

— Speedup definition: S(n) = Tfn

— Serial version of the algorithm may involve more overhead than the parallel
version of the algorithm

o E.g. A=B+C on a SIMD machine with A,B,C matrices vs. loop overhead on a serial machine
— Hardware characteristics may favor parallel algorithm

o E.g ifall data can be decomposed in main memories of parallel processors vs. needing
secondary storage on serial processor to retain all data

— “work” may be counted differently in serial and parallel algorithms

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Speedup Factor

= Maximum speedup is usually n with n processors (linear
speedup).

= Possible to get superlinear speedup (greater than n) but
usually a specific reason such as:

— Extra memory in multiprocessor system
— Nondeterministic algorithm

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Embarrassingly Parallel Computations

= An embarrassingly parallel computation is one that can be obviously
divided into completely independent parts that can be executed
simultaneously

— In a truly embarrassingly parallel computation, there is no interaction
between separate processes

— Inanearly embarrassin%ly parallel computation results must be distributed
and collected/combined in some way

» Embarrassingly parallel computations have potential to achieve
maximal speedup on parallel platforms

— Ifittakes T time sequentially, there is the potential to achieve T/P time
running in parallel with P processors

— What would cause this not to be the case always?

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Embarrassingly Parallel Computations

No or very little communication between processes

Each process can do its tasks without any interaction with other processes
Input Data

Examples
Results

° Numerical integration
> Mandelbrot set
° Monte Carlo methods

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Calculating m with Monte Carlo
Consider a circle of unit radius

Place circle inside a square box with side of 2 in

The ratio of the circle area to the square area is: \\ /

fe———2in —

gr =1 =x1 4

22 4

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Monte Carlo Calculation of &

= Randomly choose a number of points in the square
» Foreach point p, determine if p is inside the circle

» The ratio of points in the circle to points in the square will give an
approximation of /4

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Empirical Performance Computation

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Using Programs to Measure Machine
Performance

» Speedup measures performance of an individual program
on a particular machine
— Speedup cannot be used to

o Compare different algorithms on the same computer
o Compare the same algorithm on different computers

= Benchmarks are representative programs which can be
used to compare performance of machines

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Benchmarks used for Parallel
Machines

= The Perfect Club

= The Livermore Loops

= The NAS Parallel Benchmarks

= The SPEC Benchmarks

» The “PACKS” (Linpack, LAPACK, ScaLAPACK, etc.)
= ParkBENCH

= SLALOM, HINT

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limitations and Pitfalls of
Benchmarks

= Benchmarks cannot address questions you did not ask

= Specific application benchmarks will not tell you about

the performance of other applications without proper
analysis

= General benchmarks will not tell you all the details about
the performance of your specific application

= One should understand the benchmark itself to
understand what it tells us

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Benefits of Benchmarks

= Popular benchmarks keep vendors attuned to
applications

= Benchmarks can give useful information about the
performance of systems on particular kinds of programs

= Benchmarks help in exposing performance bottlenecks of
systems at the technical and applications level

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Theoretical Performance Computation

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl’s Law

= Serjalization limits Performance

» Amdahl’s law is an observation that the speed-up one
gets from parallelizing the code is limited by the
remaining serial part.

= Any remaining serial code will reduce the possible speed-
up

= Thisiswhy it’simportant to focus on parallelizing the
most time consuming parts, not just the easiest.

Amdahl’s Law

tS
fls (- 0t
Serial section Parallelizable sections
(a) One processor I I } """"""" I

(b) Multiple | - j \
processors

p processors

tp (1 - f)ts/p

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl’s Law

Amdahl's Law
025% @50% ®75% ®90% @95%

N
o
]

-
(8]

[$)}
[]

Potential Speed-up
o

o

16 64 256 1024 4096 16384 65536
Number of Processors

- e
IS

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl’s Law

= f=fraction of program (algorithm) that is serial and cannot be parallelized

— Data setup
— Reading/writing to a single disk file

= Speedup factoris given by:
T, =T, +0 - T,
T, = g1+ A=DT,
n

T, _ n
s A=DT 1+ (n-Df

S(n) =

Note that as n —» «, the maximum speedup is limited to 1/f.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Speedup Against Number of Processors

= Even with infinite number

. 20- f=0%

of processors, maximum =
speedup limited to 1/f. [

= Example: With only 5% of & 27 o
computation being §er|al, T 89 e 10%
maximum speedup is 20, ** L. f=20%
irrespective of number of
DroCessors. 4 8 12 16 20

Number of processors , p

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Example of Amdahl’s Law (1)

= Suppose that a calculation has a 4% serial portion, what is
the limit of speedup on 16 processors?

—16/(1+ (16 -1)*.04) =10

—What is the maximum speedup?
0 1/0.04=25

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Example of Amdahl’s Law (2)

= 95% of a program’s execution time occurs inside a loop
that can be executed in parallel. What is the maximum

speedup we should expect from a parallel version of the
program executing on 8 CPUs?

1 =59
005+(1-0.05)/8

Y =

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Example of Amdahl’s Law (3)

= 20% of a program’s execution time is spent within
inherently sequential code. What is the limit to the
speedup achievable by a parallel version of the program?

) 1 1
lIim = —
= 024+(1-02)/p 0.2

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Example of Amdahl’s Law (4)

Maximum Parallel Speed-up

» What’s the maximum speed-up that can be
obtained by parallelizing 50% of the code?

= (1/100%-50%)=(1/1.0-0.50)=2.0X

» What’s the maximum speed-up that can be
obtained by parallelizing 25% of the code? ——

= (1/100%-25%)=(1/1.0-0.25)=1.3X Runtime (50%)

= What's the maximum speed-up that can be
obtained by parallelizing 90% of the code?

(1 / 100% - 90%) = (l / 1.0-0.90 > =10.0X Total Parallel

Runtime (25%)

Total Parallel

Rihti 90% | Total Serial Runtime
untime o

Variants of Speedup: Efficiency
= Efficiency: E(n)=S(n)/n * 100%

= Efficiency measures the fraction of time that processors
are being used on the computation.
— A program with linear speedup is 100% efficient.

= Using efficiency:
— A program attains 89% efficiency with a serial fraction of 2%.

Approximately how many processors are being used according to
Amdahl’s law?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Efficiency

Sequential execution time

Efficiency = : :
Processors used x Parallel execution time

Efficiency = Speedup

Processors used

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limitations of Speedup

= Conventional notions of speedup don't always provide a reasonable
measure of performance

= Questionable assumptions:

— "work" in conventional definitions of speedup is defined by operation count
o communication more expensive than computation on current high-performance computers

— best serial algorithm defines the least work necessary

o forsome lan%

uages on some machines, serial algorithm may do more work -- (loop operations
vs. data parallel for example)

— good performance for many users involves fast time on a sufficiently large
problem; faster time on a smaller problem (better speedup) is less interesting

— traditional speedup measures assume a "flat memory approximation”, i.e. all
memory accesses take the same amount of time

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

“Flat Memory Approximation”

= “Flat memory Approximation” - all accesses to memory
take the same amount of time

—in practice, accesses to information in cache, main memory and
peripheral memory take very different amounts oftime.

. : Main Memory
Time per access :

w
.s®
.
.
1 .

.

..

Zse

Virtual
Memory

Fully cached

Access

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl’s Law and Scalability

= Scalability

— Ability of parallel algorithm to achieve performance gains proportional
to thé number of processors and the size of the problem

= When does Amdahl’s Law apply?

— When the problem size is fixed

— Strong scaling (p—>°, S, = Se =1 /1)

— Speedup bound is determined by the degree of sequential execution
time in the computation, not # processors!!!

— Perfect efficiency is hard to achieve
= See original paper by Amdahl on course webpage

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Another Perspective

= We often use faster computers to solve larger problem
instances

" Let’s treat time as a constant and allow problem size to
increase with number of processors

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limitations of Speedup

» Gustafson challenged Amdahl's assumption that the
proportion of a program given to serial computations and
the proportion of a program given to parallel
computations remains the same over all problem sizes

[...] speedup should be measured by scaling
the problem to the number of processors,
not fixing problem size — John Gustafson

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Gustafson-Barsis’s Law

Time required if only serial processing were available
|— f—>| P(1-f) >

Serial Parallel fraction that would have to be
fraction executed in P serial stages

Any sufficiently
large problem
can be efficiently
r (. parallelized

Present execution time Witl'\ a Speedup

Gustafson’s Law. Fig.1 Graphical derivation of Gustafson’s Law

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Lebane:

Limitations of Speedup

» Thus, if the serial partis a loop initialization and it can be
executed in parallel over the size of the input list, then the
serial initialization becomes a smaller proportion of the
overall calculation as the problem size grows larger.

= Gustafson defined two “more relevant” notions of
speedup

— Scaled speedup

— Fixed-time speedup
o (usual version he called fixed-size speedup)

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl’s Law versus Gustafson’s Law

= Amdahl’s Law fixes the problem
size and answers the question
of how parallel processing can 4000 — Serial Potion: 1%
reduce the execution time Sl e b

Serial Portion: 50%
= Gustafson’s Law fixes the run S
time and answers the question seral Porton: 99%
of how much longer time the
present workload would take in
the absence of parallelism 0
-S5= P - Q(D - -Z) 256512 1024 2048 409

o P number of processors Number of Processors
o ais the serial portion of the program

3000

2000

Speedup

1000

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl’s Law versus Gustafson’s Law

Fix execution time on a single processor Fix execution time on a parallel computer (multiple processors)
° s+ p = serial part + parallelizable part = 2 (normalized serial ° s+ p = serial part + parallelizable part =1 (normalized
time) parallel time)
> (s =same as f previously) ° s+ np = serial time on a single processor
> Assume problem fits in memory of serial computer > Assume problem fits in memory of parallel computer
> Fixed-size speedup > Scaled Speedup
S +
S . = sSTP s +np
Sfixed _size S = —
p scaled
S+ - s+ p
1 =n+{—n)s
1—s
S + ,
Amdahl’ s law n Gustafson’ s Law

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Scaled Speedup

» Scaling implies that problem size can increase with number of
processors
— Gustafson’s law gives measure of how much

» Scaled Speedup derived by fixing the parallel execution time
— Amdahl fixed the problem size = fixes serial execution time
— Amdahl’s law may be too conservative for high-performance computing.

* Interesting consequence of scaled speedup: no bound to speedup as
n-> infinity, speedup can easily become superlinear!

* |n practice, unbounded scalability is unrealistic as quality of answer
ywllgoeaé;h a point where no furtherincrease in problem size may be
justitie

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Scalability

= |ncrease number of processors (ad decrease efficiency

" |ncrease problem size lad increase efficiency

= Can a parallel system keep efficiency by increasing the number
of processors and the problem size simultaneously???

— Yes: lad scalable parallel system

— No: lad non-scalable parallel system

= Ascalable parallel system can always be made cost-optimal by
adjusting the number of processors and the problem size.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Interpreting Scalability Function

Cplogp

Cannot maintain
efficiency

Cp
Memory Size /

Can maintain
efficiency

Clogp

Memory needed per processor

Number of processors

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Gustafson-Barsis’ Law and Scalability

= Scalability

— Ability of parallel algorithm to achieve performance %ains proportional
to thé number of processors and the size of the problem

= When does Gustafson’s Law apply?

— When the problem size can increase as the number of processors
increases

— Weak scaling (S, =1+ (p-1)f,q,)
— Speedup function includes the number of processors!!!

— Can maintain or increase parallel efficiency as the problem scales
= See original paper by Gustafson on course webpage

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Amdahl

P=1 P=2 P=4 P=8
serial work l
parallelizable work I lll -------

1

oWl

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Gustafson-Baris

serial work

P=1 P=2 P=4 P=8
ok I II IIII IIIIIIII

awi]

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Using Gustafson’s Law

= Given a scaled speedup of 20 on 32 processors, what is the
serial fraction from Amdahl’s law? What is the serial
fraction from Gustafson’s Law?

__s+np

scaled

S
s+ p

=n+{—n)s

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Example 1

= An application running on 10 processors spends 3% of its
time in serial code. What is the scaled speedup of the
application?

Yw=10+1-10)(0.03)=10-0.27=9.73

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Example 2

= What is the maximum fraction of a program’s parallel
execution time that can be spentin serial code if itis to
achieve a scaled speedup of 7 on 8 processors?

T7=8+{0-8)s=s5=0.14

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Why Are not Parallel Applications
Scalable?

Critical Paths Communication overhead
> Dependencies between computations spread > Spending increasing proportion of time on
aCross processors communication
Bottlenecks Load Imbalance
o One processor holds things up o Makes all processor wait for the “slowest” one

Algorithmic overhead > Dynamic behavior

> Some things just take more effort to do in Speculative loss

parallel > Do Aand B in parallel, but B is ultimately not

needed

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Algorithmic Overhead

= All parallel algorithms are sequential when executed using one processor
= All parallel algorithms introduce overhead

= Where should be the starting point for a parallel algorithm?

— Best sequential algorithm? Might not parallelize at all or it does not parallelize well
(e.g., not scalable)

* Whatto do?
— Choose algorithmic variants that minimize overhead
— Use two level algorithms

= Performanceistherub
— Are you achieving better parallel performance?
— Must compare with the best sequential algorithm

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

What is the maximum parallelism possible?

= Depends on application,

| 512-point FFT

algorithm, program N
— Data dependencies in execution L
— Parallelism varies! . Lo parallel |
5 \\. sighature

4.20 4.40 4.60

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

