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Today’s Agenda
§ Performance
§ Scalability
§ Benchmarking
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Serial Performance
§ Serial performance bottlenecks usually come from the sub 

optimal or chaotic utilization of  hardware resources :
–Memory random accesses
– Branch coding
– Sub optimal compilation

Parallel Performance
§ Parallel performance bottlenecks usually come from the 

parallel design of your algorithm or parallel coding :
– Excessive synchronization
– Load imbalance



Serial vs Parallel
§ Need to solve the serial problem before the parallel problem
– Serial performance problems usually get a lot worse when run in 

parallel
– The design of your parallel software depends on performance data 

collected in serial
– Solving serial and parallel problems at the same time is too complex

Conclusion : solve your serial performance 
problems before you start parallelizing

Performance
§ In computing, performance is defined by 2 factors
– Computational requirements (what needs to be done)
– Computing resources (what it costs to do it)

§ Computational problems translate to requirements
§ Computing resources interplay and tradeoff
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Measuring Performance
§ Performance itself is a measure of how well the computational 

requirements can be satisfied
§ We evaluate performance to understand the relationships 

between requirements and resources
– Decide how to change “solutions” to target objectives

§ Performance measures reflect decisions about how and how 
well “solutions” are able to satisfy the computational 
requirements

§ When measuring performance, it is important to understand 
exactly what you are measuring and how you are measuring it
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Scalability
§ A program can scale up to use many processors
– What does that mean?

§ How do you evaluate scalability?
§ How do you evaluate scalability goodness?
§ Comparative evaluation
– If double the number of processors, what to expect?
– Is scalability linear?

§ Use parallel efficiency measure
– Is efficiency retained as problem size increases?

§ Apply performance metrics
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Performance and Scalability
§ Evaluation
– Sequential runtime (Tseq) is a function of problem size and 

architecture
– Parallel runtime (Tpar) is a function of problem size and parallel 

architecture and the number of processors used in the execution
– Parallel performance affected by algorithm + architecture

§ Scalability
– Ability of parallel algorithm to achieve performance gains 

proportional to the number of processors and the size of the 
problem
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Performance Metrics and Formulas
§ T1 is the execution time on a single processor
§ Tp is the execution time on a p processor system
§ S(p) (Sp) is the speedup

§ E(p) (Ep) is the efficiency

§ Cost(p) (Cp) is the cost

§ Parallel algorithm is cost-optimal
– Parallel time = sequential time (Cp = T1 , Ep = 100%)
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S( p) = T1
Tp

Efficiency = Sp
p

Cost = p ´ Tp



Speed-Up
§ Provides a measure of application performance with 

respect to a given program platform

§ Can also be cast in terms of computational steps
o Can extend time complexity to parallel computations

§ Use the fastest known sequential algorithm for running on 
a single processor
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What is a “good” speedup?
§ Hopefully, S(n) > 1

§ Linear speedup:
– S(n) = n
– Parallel program considered perfectly scalable

§ Superlinear speedup:
– S(n) > n
– Can this happen?
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Defining Speed-Up
§ We need more information to evaluate speedup:
–What problem size? Worst case time?  Average case time?
–What do we count as work?
o Parallel computation, communication, overhead?

–What serial algorithm and what machine should we use for the 
numerator?
o Can the algorithms used for the numerator and the denominator be different?
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Common Definitions of Speed-Up
§ Common definitions of Speedup:
– Serial machine is one processor of parallel machine and serial algorithm is 

interleaved version of parallel algorithm

– Serial algorithm is fastest known serial algorithm for running on a serial processor

– Serial algorithm is fastest known serial algorithm running on a one processor of the 
parallel machine 
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Parallel without performance is not 
enough
§ Adding some parallelism to your software is often not 

enough to take advantage of many-core processors with 
efficiency and flexibility.

§ Typical parallel performance issues :
– Parallel overhead
– Synchronization
– Load imbalance
– Granularity

Parallel Overhead
§ All forms of parallelism bring a small overhead : loading a 

library, launching threads, scheduling …

§ Solutions :
–Monitor software and OS resources (memory usage, context 

switches, number of threads ...)
– Remember that some parallel framework are light, designed for 

single computers and small task while others are very heavy, 
designed for large clusters.



Synchronization
§ Some algorithms (like the blur filter) require 

communications, synchronizations between parallel 
executions, often blocking execution.

§ Solutions :
– Is another algorithm possible ?
– Do you accept a slightly different result ?
– Adapt your code to work with local variables ?
–Optimize synchronization (→OpenMP course)

Load Imbalance
§ Uneven distribution of chunks of data over the worker 

threads is a typical performance problem.
§ Solutions :
– Insert parallelism deeper in the call stack (pixels instead of files in 

our example)
– Propose a new usage model for your software, easier to parallelize 

(in our example, process files in batch more easily)
– Adapt the settings of your parallel framework (→ OpenMP 

algorithms and chunk size)



Granularity
§ You have granularity problems if the chunks of data 

distributed to your threads are too big or too small. Too 
big they may cause a load imbalance. Too small a parallel 
overhead.

§ Solutions :
– Partition your data with flexibility. Hardware, data and usage 

models change rapidly.
– Adapt the distribution algorithm and chunk size in your parallel 

framework.
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Can speedup be superlinear?



Can speedup be superlinear?
§ Speedup CANNOT be superlinear:
– Let M be a parallel machine with n processors
– Let T(X) be the time it takes to solve a problem on M with n 

processors
– Speedup definition:

o Suppose a parallel algorithm A solves an instance I of a problem in t time units
§ Then A can solve the same problem in n x t units of time on M through time slicing
§ The best serial time for I will be no bigger than n x t
§ Hence speedup cannot be greater than n.
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Can speedup be superlinear?
§ Speedup CAN be superlinear:
– Let M be a parallel machine with n processors
– Let T(X) be the time it takes to solve a problem on M with X processors

– Speedup definition:

– Serial version of the algorithm may involve more overhead than the parallel 
version of the algorithm
o E.g. A=B+C on a SIMD machine with A,B,C matrices vs. loop overhead on a serial machine
– Hardware characteristics may favor parallel algorithm
o E.g. if all data can be decomposed in main memories of parallel processors vs. needing 

secondary storage on serial processor to retain all data
– “work” may be counted differently in serial and parallel algorithms
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Speedup Factor
§ Maximum speedup is usually n with n processors (linear 

speedup).

§ Possible to get superlinear speedup (greater than n) but 
usually a specific reason such as:

– Extra memory in multiprocessor system
– Nondeterministic algorithm
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Embarrassingly Parallel Computations
§ An embarrassingly parallel computation is one that can be obviously 

divided into completely independent parts that can be executed 
simultaneously

– In a truly embarrassingly parallel computation, there is no interaction 
between separate processes

– In a nearly embarrassingly parallel computation results must be distributed 
and collected/combined in some way

§ Embarrassingly parallel computations have potential to achieve 
maximal speedup on parallel platforms

– If it takes T time sequentially, there is the potential to achieve T/P time 
running in parallel with P processors

– What would cause this not to be the case always?
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Embarrassingly Parallel Computations
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Processes

Input Data

Results

. . .

No or very little communication between processes

Each process can do its tasks without any interaction with other processes

Examples
◦ Numerical integration

◦ Mandelbrot set

◦ Monte Carlo methods

Calculating pwith Monte Carlo
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Consider a circle of unit radius

Place circle inside a square box with side of 2 in

The ratio of the circle area to the square area is: 



Monte Carlo Calculation of p
§ Randomly choose a number of points in the square
§ For each point p, determine if p is inside the circle
§ The ratio of points in the circle to points in the square will give an 

approximation of p/4
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Empirical Performance Computation
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Using Programs to Measure Machine 
Performance
§ Speedup measures performance of an individual program 

on a particular machine
– Speedup cannot be used to
o Compare different algorithms on the same computer
o Compare the same algorithm on different computers

§ Benchmarks are representative programs which can be 
used to compare performance of machines
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Benchmarks used for Parallel 
Machines
§ The Perfect Club
§ The Livermore Loops
§ The NAS Parallel Benchmarks
§ The SPEC Benchmarks
§ The “PACKS” (Linpack, LAPACK, ScaLAPACK, etc.)
§ ParkBENCH
§ SLALOM, HINT
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Limitations and Pitfalls of 
Benchmarks
§ Benchmarks cannot address questions you did not ask
§ Specific application benchmarks will not tell you about 

the performance of other applications without proper 
analysis

§ General benchmarks will not tell you all the details about 
the performance of your specific application

§ One should understand the benchmark itself to 
understand what it tells us
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Benefits of Benchmarks
§ Popular benchmarks keep vendors attuned to 

applications

§ Benchmarks can give useful information about the 
performance of systems on particular kinds of programs

§ Benchmarks help in exposing performance bottlenecks of 
systems at the technical and applications level
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Theoretical Performance Computation
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Amdahl’s Law
§ Serialization limits Performance
§ Amdahl’s law is an observation that the speed-up one 

gets from parallelizing the code is limited by the 
remaining serial part.

§ Any remaining serial code will reduce the possible speed-
up

§ This is why it’s important to focus on parallelizing the 
most time consuming parts, not just the easiest.



Amdahl’s Law
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Serial section Parallelizable sections
(a) One processor

(b) Multiple
processors

fts (1 - f)ts

ts

(1 - f)ts /ptp

p processors

Amdahl’s Law
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Amdahl’s Law
§ f = fraction of program (algorithm) that is serial and cannot be parallelized
– Data setup
– Reading/writing to a single disk file

§ Speedup factor is given by:
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Ts = fTs + (1− f )Ts

Tp = fTs +
(1− f )Ts

n

S(n) = Ts
fTs +

(1− f )Ts
n

=
n

1+ (n−1) f

limn−>∞ =
1
f

Note that as n ® ¥, the maximum speedup is limited to 1/f.

Speedup Against Number of Processors
§ Even with infinite number 

of processors, maximum 
speedup limited to 1/f . 

§ Example: With only 5% of 
computation being serial, 
maximum speedup is 20, 
irrespective of number of 
processors. 
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Example of Amdahl’s Law (1)
§ Suppose that a calculation has a 4% serial portion, what is 

the limit of speedup on 16 processors?
– 16/(1 + (16 – 1)*.04) = 10
–What is the maximum speedup?
o 1/0.04 = 25
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Example of Amdahl’s Law (2)
§ 95% of a program’s execution time occurs inside a loop 

that can be executed in parallel. What is the maximum 
speedup we should expect from a parallel version of the 
program executing on 8 CPUs?
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ψ ≤
1

0.05+ (1− 0.05) / 8
≅ 5.9



Example of Amdahl’s Law (3)
§ 20% of a program’s execution time is spent within 

inherently sequential code. What is the limit to the 
speedup achievable by a parallel version of the program?
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lim
p→∞

1
0.2+ (1− 0.2) / p

=
1
0.2

= 5

Example of Amdahl’s Law (4)
§ What’s the maximum speed-up that can be 

obtained by parallelizing 50% of the code?
§ ( 1 / 100% - 50% ) = (1 / 1.0 - 0.50 ) = 2.0X
§ What’s the maximum speed-up that can be 

obtained by parallelizing 25% of the code?
§ ( 1 / 100% - 25% ) = (1 / 1.0 - 0.25 ) = 1.3X
§ What’s the maximum speed-up that can be 

obtained by parallelizing 90% of the code?
§ ( 1 / 100% - 90% ) = (1 / 1.0 - 0.90 ) = 10.0X

Total Serial Runtime

Total Parallel 
Runtime (50%)

Total Parallel 
Runtime (25%)

Total Parallel 
Runtime (90%)



Variants of Speedup:  Efficiency
§ Efficiency:  E(n) = S(n)/n * 100%
§ Efficiency measures the fraction of time that processors 

are being used on the computation.
– A program with linear speedup is 100% efficient.

§ Using efficiency:
– A program attains 89% efficiency with a serial fraction of 2%. 

Approximately how many processors are being used according to 
Amdahl’s law?
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Efficiency
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Limitations of Speedup
§ Conventional notions of speedup don't always provide a reasonable 

measure of  performance
§ Questionable assumptions:
– "work" in conventional definitions of speedup  is defined by operation count
o communication more expensive than computation on current high-performance computers
– best serial algorithm defines the least work necessary
o for some languages on some machines, serial algorithm may do more work -- (loop operations 

vs. data parallel for example)
– good performance for many users involves fast time on a sufficiently large 

problem; faster time on a smaller problem (better speedup) is less interesting
– traditional speedup measures assume a "flat memory approximation”, i.e. all 

memory accesses take the same amount of time
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“Flat Memory Approximation”
§ “Flat memory Approximation” – all accesses to memory 

take the same amount of time
– in practice, accesses to information in cache, main memory and 

peripheral memory take very different amounts of time. 
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Amdahl’s Law and Scalability
§ Scalability
– Ability of parallel algorithm to achieve performance gains proportional 

to the number of processors and the size of the problem

§ When does Amdahl’s Law apply?
– When the problem size is fixed
– Strong scaling (p®∞, Sp = S∞® 1 / f )
– Speedup bound is determined by the degree of sequential execution 

time in the computation, not # processors!!!
– Perfect efficiency is hard to achieve

§ See original paper by Amdahl on course webpage
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Another Perspective
§ We often use faster computers to solve larger problem 

instances

§ Let’s treat time as a constant and allow problem size to 
increase with number of processors
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Limitations of Speedup
§ Gustafson challenged Amdahl's assumption that the 

proportion of a program given to serial computations and 
the proportion of a program given to parallel 
computations  remains the same over all problem sizes
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[...] speedup should be measured by scaling 
the problem to the number of processors, 
not fixing problem size – John Gustafson

Gustafson-Barsis’s Law
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Any sufficiently 
large problem 
can be efficiently 
parallelized
with a speedup



Limitations of Speedup
§ Thus, if the serial part is a loop initialization and it can be 

executed in parallel over the size of the input list, then the 
serial initialization becomes a smaller proportion of the 
overall calculation as the problem size grows larger. 

§ Gustafson defined two “more relevant” notions of 
speedup

– Scaled speedup
– Fixed-time speedup
o (usual version he called fixed-size speedup)
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Amdahl’s Law versus Gustafson’s Law 
§ Amdahl’s Law fixes the problem 

size and answers the question 
of how parallel processing can 
reduce the execution time

§ Gustafson’s Law fixes the run 
time and answers the question 
of how much longer time the 
present workload would take in 
the absence of parallelism

– S = p - ⍺ ( p - 1)
o P number of processors
o ⍺ is the serial portion of the program
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Fix execution time on a single processor
◦ s + p = serial part + parallelizable part = 1 (normalized serial 

time)
◦ (s = same as f previously)
◦ Assume problem fits in memory of serial computer
◦ Fixed-size speedup

Amdahl’s law

Fix execution time on a parallel computer (multiple processors)
◦ s + p = serial part + parallelizable part = 1  (normalized 

parallel time)
◦ s + np = serial time on a single processor
◦ Assume problem fits in memory of parallel computer

◦ Scaled Speedup

Gustafson’s Law
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Scaled Speedup
§ Scaling implies that problem size can increase with number of 

processors
– Gustafson’s law gives measure of how much

§ Scaled Speedup derived by fixing the parallel execution time
– Amdahl fixed the problem size à fixes serial execution time
– Amdahl’s law may be too conservative for high-performance computing. 

§ Interesting consequence of scaled speedup:  no bound to speedup as 
nà infinity, speedup can easily become superlinear!

§ In practice, unbounded scalability is unrealistic as quality of answer 
will reach a point where no further increase in problem size may be 
justified
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Scalability
§ Increase number of processors ➡ decrease efficiency
§ Increase problem size ➡ increase efficiency
§ Can a parallel system keep efficiency by increasing the number 

of processors and the problem size simultaneously???
– Yes: ➡ scalable parallel system
– No: ➡ non-scalable parallel system

§ A scalable parallel system can always be made cost-optimal by 
adjusting the number of processors and the problem size.
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Interpreting Scalability Function

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 56

Number of processors

M
em

or
y 

ne
ed

ed
 p

er
 p

ro
ce

ss
or

Cplogp

Cp

Clogp

C

Memory Size

Can maintain
efficiency

Cannot maintain
efficiency



Gustafson-Barsis’ Law and Scalability
§ Scalability
– Ability of parallel algorithm to achieve performance gains proportional 

to the number of processors and the size of the problem

§ When does Gustafson’s Law apply?
– When the problem size can increase as the number of processors 

increases
– Weak scaling (Sp = 1 + (p-1)fpar )
– Speedup function includes the number of processors!!!
– Can maintain or increase parallel efficiency as the problem scales

§ See original paper by Gustafson on course webpage
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Using Gustafson’s Law
§ Given a scaled speedup of 20 on 32 processors, what is the 

serial fraction from Amdahl’s law? What is the serial 
fraction from Gustafson’s Law?
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Example 1
§ An application running on 10 processors spends 3% of its 

time in serial code. What is the scaled speedup of the 
application?
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Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code

ψ =10+ (1−10)(0.03) =10− 0.27 = 9.73

Example 2
§ What is the maximum fraction of a program’s parallel 

execution time that can be spent in serial code if it is to 
achieve a scaled speedup of 7 on 8 processors?
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7 = 8+ (1−8)s⇒ s ≈ 0.14



Why Are not Parallel Applications 
Scalable?
Critical Paths 

◦ Dependencies between computations spread 
across processors

Bottlenecks
◦ One processor holds things up

Algorithmic overhead
◦ Some things just take more effort to do in 

parallel

Communication overhead
◦ Spending increasing proportion of time on 

communication

Load Imbalance
◦ Makes all processor wait for the “slowest” one
◦ Dynamic behavior

Speculative loss
◦ Do A and B in parallel, but B is ultimately not 

needed
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Algorithmic Overhead
§ All parallel algorithms are sequential when executed using one processor
§ All parallel algorithms introduce overhead
§ Where should be the starting point for a parallel algorithm?
– Best sequential algorithm?  Might not parallelize at all or it does not parallelize well 

(e.g., not scalable)

§ What to do?
– Choose algorithmic variants that minimize overhead
– Use two level algorithms

§ Performance is the rub
– Are you achieving better parallel performance?
– Must compare with the best sequential algorithm
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What is the maximum parallelism possible?
§ Depends on application, 

algorithm, program
– Data dependencies in execution
– Parallelism varies!
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512-point FFT

parallel
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