
CSc 372

Comparative Programming Languages

22 : Prolog — Introduction

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/48

collberg@gmail.com

What is Prolog?

What is Prolog?

Prolog is a language which approaches problem-solving in a
declarative manner. The idea is to define what the problem is,
rather than how it should be solved.

In practice, most Prolog programs have a procedural as well as
a declarative component — the procedural aspects are often
necessary in order to make the programs execute efficiently.

3/48

What is Prolog?

Algorithm = Logic + Control Robert A. Kowalski

Prescriptive Languages:

Describe how to solve problem
Pascal, C, Ada,...
Also: Imperative, Procedural

Descriptive Languages:

Describe what should be done
Also: Declarative

Kowalski’s equation says that

Logic – is the specification (what the program should do)

Control – what we need to do in order to make our logic
execute efficiently. This usually includes imposing an
execution order on the rules that make up our program.

4/48

Objects & Relationships

Objects & Relationships

Prolog programs deal with

objects, and

relationships between objects

English:

“Christian likes the record”

Prolog:

likes(christian, record).

6/48

Facts

Record Database

Here’s an excerpt from Christian’s record database:

is record(planet waves).

is record(desire).

is record(slow train).

recorded by(planet waves, bob dylan).

recorded by(desire, bob dylan).

recorded by(slow train, bob dylan).

recording year(planet waves, 1974).

recording year(desire, 1975).

recording year(slow train, 1979).

8/48

Record Database. . .

The data base contains unary facts (is record) and binary

facts (recorded by, recording year).

The fact

is record(slow train)

can be interpreted as

slow train is-a-record

The fact recording year(slow train, 1979) can be
interpreted as the recording year of slow train was 1979.

9/48

Conditional Relationships

Conditional Relationships

Prolog programs deal with conditional relationships between
objects.

English:

“C. likes Bob Dylan records recorded before 1979”

Prolog:

likes(christian, X) :-

is record(X),

recorded by(X, bob dylan),

recording year(X, Year),

Year < 1979.

11/48

Conditional Relationships. . .

The rule

likes(christian, X) :-

is record(X),

recorded by(X, bob dylan),

recording year(X, Year),

Year < 1979.

can be restated as
“Christian likes X, if X is a record, and X is recorded

by Bob Dylan, and the recording year is before

1979.”

Variables start with capital letters.

Comma (“,”) is read as and.

12/48

Asking Questions

Asking Questions

Prolog programs

solve problems by asking questions.

English:

“Does Christian like the albums Planet Waves & Slow
Train?’

Prolog:

?- likes(christian, planet waves).

yes

?- likes(christian, slow train).

no

14/48

Asking Questions. . .

English:

“Was Planet Waves recorded by Bob Dylan?”

“When was Planet Waves recorded?”
“Which album was recorded in 1974?”

Prolog:

?- recorded by(planet waves, bob dylan).

yes

?- recording year(planet waves, X).

X = 1974

?- recording year(X, 1974).

X = planet waves

15/48

Asking Questions. . .

In Prolog

"," (a comma), means "and’

English:

“Did Bob Dylan record an album in 1974?”

Prolog:

?- is record(X),

recorded by(X, bob dylan),

recording year(X, 1974).

yes

16/48

Asking Questions. . .

Sometimes a query has more than one answer:

Use ";" to get all answers.

English:

“What does Christian like?”

Prolog:

?- likes(christian, X).

X = planet waves ;

X = desire ;

no

17/48

Asking Questions. . .

Sometimes answers have more than one part:
English:

“List the albums and their artists!”

Prolog:

?- is record(X), recorded by(X, Y).

X = planet waves,

Y = bob dylan ;

X = desire,

Y = bob dylan ;

X = slow train,

Y = bob dylan ;

no

18/48

Recursive Rules

Recursive Rules

“People are influenced by the music they listen to.

People are influenced by the music listened to by the

people they listen to.”

listens to(bob dylan, woody guthrie).

listens to(arlo guthrie, woody guthrie).

listens to(van morrison, bob dylan).

listens to(dire straits, bob dylan).

listens to(bruce springsteen, bob dylan).

listens to(björk, bruce springsteen).

influenced by(X, Y) :- listens to(X, Y).

influenced by(X, Y) :- listens to(X,Z),

influenced by(Z,Y).

20/48

Asking Questions. . .

English:

“Is Björk influenced by Bob Dylan?”

“Is Björk influenced by Woody Guthrie?”

“Is Bob Dylan influenced by Bruce Springsteen?”

Prolog:

?- influenced by(bjork, bob dylan).

yes

?- influenced by(bjork, woody guthrie).

yes

?- influenced by(bob dylan, bruce s).

no

21/48

Visualizing Logic

Comma (,) is read as and in Prolog. Example: The rule

person(X) :- has bellybutton(X), not dead(X).

is read as
“X is a person if X has a bellybutton and X is not

dead.”

Semicolon (;) is read as or in Prolog. The rule

person(X) :- X=adam ; X=eve ;

has bellybutton(X).

is read as
“X is a person if X is adam or X is eve or X has a

bellybutton.”

22/48

Visualizing Logic. . .

To visualize what happens when Prolog executes (and this can
often be very complicated!) we use the following two
notations:

AND OR

first

?− first, second.

second first

?− first; second.

second

For AND, both legs have to succeed.

For OR, one of the legs has to succeed.

23/48

Visualizing Logic. . .

Here are two examples:

AND OR

?− has_bellybutton(X), not_dead(X).

has_bellybutton(X) not_dead(X) has_bellybutton(X)X=eve

?− X=adam ; X=eve ;

X=adam

has_bellybutton(X).

24/48

Visualizing Logic. . .

and and or can be combined:
?− (X=adam ; X=eve ; has_bellybutton(X)), not_dead(X).

X=adam X=eve has_bellybutton(X)

not_dead(X)

This query asks

“Is there a person X who is adam, eve, or who has a

bellybutton, and who is also not dead?”

25/48

How does Prolog Answer
Questions?

Answering Questions

(1) scientist(helder).

(2) scientist(ron).

(3) portuguese(helder).

(4) american(ron).

(5) logician(X) :- scientist(X).

(6) ?- logician(X), american(X).

The rule (5) states that

“Every scientist is a logician”

The question (6) asks

“Which scientist is a logician and an american?”

27/48

Answering Questions. . .

helder ron

American
nationals

Logicians

Scientists

Portugese
nationals

28/48

Answering Questions. . .

scientist(helder)

logician(X) american(X)

american(helder)

fail

X=helder

?− logician(X), american(X).

(6)

scientist(X)

(1)

(1) scientist(helder).

(2) scientist(ron).

(3) portuguese(helder).

(4) american(ron).

(5) logician(X) :- scientist(X).

(6) ?- logician(X), american(X).

29/48

Answering Questions. . .

X=ron

(1) (2)

logician(X)

(6)

scientist(X)

?− logician(X), american(X).

scientist(ron)scientist(helder)

fail

american(helder)

american(X)

american(ron)

30/48

Answering Questions. . .

is record(planet waves). is record(desire).

is record(slow train).

recorded by(planet waves, bob dylan).

recorded by(desire, bob dylan).

recorded by(slow train, bob dylan).

recording year(planet waves, 1974).

recording year(desire, 1975).

recording year(slow train, 1979).

likes(christian, X) :-

is record(X), recorded by(X, bob dylan),

recording year(X, Year), Year < 1979.

31/48

Answering Questions. . .

?− likes(christian, X)

succeed

succeed

artist(X, bob_d) recording_year(X, Y) Y<1979

;

X = slow_train

X = desire

X = planet_waves

Y=1974

Y=1975

Y=1979

is_record(X)

fail

32/48

Answering Questions. . .

listens to(bob dylan, woody guthrie).

listens to(arlo guthrie, woody guthrie).

listens to(van morrison, bob dylan).

listens to(dire straits, bob dylan).

listens to(bruce springsteen, bob dylan).

listens to(björk, bruce springsteen).

(1) influenced by(X, Y) :- listens to(X, Y).

(2) influenced by(X, Y) :-

listens to(X, Z),

influenced by(Z, Y).

?- influenced by(bjork, bob dylan).

?- inf by(bjork, woody guthrie).

33/48

Answering Questions. . .

inf_by(Z, bob_d)l_to(bjork, bob_d)

fail

Z=bruce_s

l_to(bruce_s, bob_d)

succeed

?− inf_by(bjork, bob_d).

(1)

(1)

(2)

l_to(bjork, Z)

Z=bruce_s

34/48

Answering Questions. . .

(2)

inf_by(Z,woody_g)

succeed
l_to(bob_d, woody_g)

l_to(bjork, Z)

Z=bruce_s(1)

(2)

?− inf_by(bjork, woody_g).

l_to(bjork, woody_g) inf_by(Z, woody_g)

fail Z=bruce_s Z=bob_d
(1)

l_to(bruce_s, woody_g)

fail

l_to(bruce_s, Z)
Z=bob_d

35/48

Map Coloring

3

4

2

1

5

6

“Color a planar map with at most four colors, so that

contiguous regions are colored differently.”

36/48

Map Coloring. . .

A coloring is OK iff

1 The color of Region 1 6= the color of Region 2, and

2 The color of Region 1 6= the color of Region 3,...

color(R1, R2, R3, R4, R5, R6) :-

diff(R1, R2), diff(R1, R3), diff(R1, R5), diff(R1, R6),

diff(R2, R3), diff(R2, R4), diff(R2, R5), diff(R2, R6),

diff(R3, R4), diff(R3, R6), diff(R5, R6).

diff(red,blue). diff(red,green). diff(red,yellow).

diff(blue,red). diff(blue,green). diff(blue,yellow).

diff(green,red). diff(green,blue). diff(green,yellow).

diff(yellow, red).diff(yellow,blue). diff(yellow,green).

37/48

Map Coloring. . .

?- color(R1, R2, R3, R4, R5, R6).

R1 = R4 = red, R2 = blue,

R3 = R5 = green, R6 = yellow ;

R1 = red, R2 = blue,

R3 = R5 = green, R4 = R6 = yellow

3

blue

yellowgreen

red

green

red
4

2

1

5

6

38/48

Map Coloring – Backtracking

fail

diff(R1,R3)

R2=blue

diff(R1,R2)
R1=red

diff(R1,R5)
R5=blue

diff(R1,R6)
R6=blue

diff(R2,R3)

fail

R3=blue
diff(R1,R3)

R2=blue

diff(R1,R2)
R1=red

diff(R1,R5)
R5=blue

diff(R2,R3)

fail

color(R1, R2, R3, R4, R5, R6)

(1) (1) (1) (1)

R2=blue
R3=blue

color(R1, R2, R3, R4, R5, R6)

(1) (1) (1)

R2=blue
R3=blue(2)

diff(R1,R6)
R6=green

R6=yellow

R3=blue

39/48

Map Coloring – Backtracking

diff(R2,R3)

diff(R1,R3)

R2=blue

diff(R1,R2)
R1=red

diff(R2,R3)

fail

diff(R1,R5)
R5=green
R5=yellow
fail

R2=blue

diff(R1,R2)
R1=red

diff(R1,R5)
R5=blue

(1) (1)
R2=blue
R3=blue(2−3)

diff(R1,R6)
R6=blue,...

(1−3)

color(R1, R2, R3, R4, R5, R6)

(1) (1)

R2=blue

diff(R1,R6)

color(R1, R2, R3, R4, R5, R6)

(2)

diff(R1,R3)
R3=green

R3=green

R6=blue

(1)

R3=blue

40/48

Working with gprolog

gprolog can be downloaded from here: http://gprolog.inria.fr/.

gprolog is installed on lectura (it’s also on the Windows
machines) and is invoked like this:

> gprolog

GNU Prolog 1.2.16

| ?- [color].

| ?- listing.

go(A, B, C, D, E, F) :- next(A, B), ...

| ?- go(A,B,C,D,E,F).

A = red ...

41/48

http://gprolog.inria.fr/

Working with gprolog. . .

The command [color] loads the prolog program in the file
color.pl.

You should use the texteditor of your choice (emacs, vi,...)
to write your prolog code.

The command listing lists all the prolog predicates you
have loaded.

42/48

Working with gprolog. . .

43/48

Readings and References

Read Clocksin-Mellish, Chapter 1-2.

http://dmoz.org/Computers/Programming/Languages/Prolog

Prolog by Example Coelho & Cotta

Prolog: Programming for AI Bratko

Programming in Prolog Clocksin & Mellish

The Craft of Prolog O’Keefe

Prolog for Programmers Kluzniak & Szpakowicz

Prolog Alan G. Hamilton

The Art of Prolog Sterling & Shapiro

44/48

http://dmoz.org/Computers/Programming/Languages/Prolog

Readings and References. . .

Computing with Logic Maier & Warren

Knowledge Systems Through Prolog Steven H. Kim

Natural Language Processing in Prolog Gazdar & Mellish

Language as a Cognitive Process Winograd

Prolog and Natural Language Analysis Pereira and Shieber

Computers and Human Language George W. Smith

Introduction to Logic Irving M. Copi

Beginning Logic E.J.Lemmon

45/48

Prolog So Far

A Prolog program consists of a number of clauses:

Rules Have head + body:
head

︷ ︸︸ ︷

likes(chris, X) :-

girl(X), black hair(X)
︸ ︷︷ ︸

body

Can be recursive
Facts Head but no body.

Always true.

46/48

Prolog So Far. . .

A clause consists of

atoms Start with lower-case letter.
variables Start with upper-case letter.

Prolog programs have a
Declarative meaning

The relations defined by the program

Procedural meaning

The order in which goals are tried

47/48

Prolog So Far. . .

A question consists of one or more goals:

?- likes(chris, X), smart(X).
"," means and
Use ";" to get all answers
Questions are either

Satisfiable (the goal succeeds)
Unsatisfiable (the goal fails)

Prolog answers questions (satisfies goals) by:

instantiating variables
searching the database sequentially
backtracking when a goal fails

48/48

CSc 372

Comparative Programming Languages

23 : Prolog — Basics

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/33

collberg@gmail.com

Prolog Types

The term is Prolog’s basic data structure.

Everything is expressed in the form of a term. This includes
programs and data.

Prolog has four basic types of terms:
1 variables start with an uppercase letter;
2 compound terms are lists, strings, and structures;
3 atoms start with a lower-case letter;
4 numbers .

2/33

Prolog Types. . .

’Hello’

term

var

atom
number

X Y

Z

Hello

atomic

nonvar compound

1
345
6.78

f(x)
[1,2,3]

point(x,y)

"hello"

a b
hello

3/33

Prolog Numbers

Most Prolog implementations support infinite precision
integers. This is not true of GNU Prolog!

The built-in operator is evaluates arithmetic expressions:

| ?- X is 6*7.

X = 42

| ?- X is 6.0*7.0.

X = 42.0

| ?- X is 60000000000000*7000000000000000.

X = 1

4/33

Prolog Arithmetic Expressions

An infix expression is just shorthand for a structure :

| ?- X = +(1,*(2,3)).

X = 1+2*3

| ?- X = 1+2*3.

X = 1+2*3

| ?- X is +(1,*(2,3)).

X = 7

| ?- X is 1+2*3.

X = 7

X = 1*2 means “make the variable X and 1*2 the same”. It
looks like an assignment, but it’s what we call unification .
More about that later.

5/33

Prolog Atoms

Atoms are similar to enums in C.

Atoms start with a lower-case letter and can contain letters,
digits, and underscore ().

| ?- X = hello.

X = hello

| ?- X = hE l l o99.

X = hE l l o99

6/33

Prolog Variables

Variables start out uninstantiated, i.e. without a value.

Uninstantiated variables are written number:
| ?- write(X).

16

Once a Prolog variable has been instantiated (given a value),
it will keep that value.

| ?- X=sally.

X = sally

| ?- X=sally, X=lisa.

no

7/33

Prolog Variables. . .

When a program backtracks over a variable instantiation, the
variable again becomes uninstantiated.

| ?- (X=sally; X=lisa), write(X), nl.

sally

X = sally ? ;

lisa

X = lisa

8/33

Prolog Programs

A Prolog program consists of a database of facts and rules :

likes(lisa,chocolate).

likes(lisa,X) :- tastes like chocolate(X).

:- is read if.

:- is just an operator, like other Prolog operators. The
following are equivalent:

likes(lisa,X) :- boy(X),tastes like choc(X).

:-(likes(lisa,X),

(boy(X),tastes like chok(X))).

9/33

Prolog Programs. . .

Prolog facts/rules can be overloaded , wrt their arity.

You can have a both a rule foo() and a rule foo(X):

| ?- [user].

foo.

foo(hello).

foo(bar,world).

foo(X,Y,Z) :-

Z is X + Y.

<ctrl-D>

| ?- foo.

yes

| ?- foo(X).

X = hello

| ?- foo(X,Y).

X = bar

Y = world

| ?- foo(1,2,Z).

Z = 3

10/33

Standard predicates

read(X) and write(X) read and write Prolog terms.

nl prints a newline character.

| ?- write(hello),nl.

hello

| ?- read(X), write(X), nl.

hello.

hello

11/33

Standard predicates. . .

write can write arbitrary Prolog terms:

| ?- write(hello(world)),nl.

hello(world)

Note that read(X) requires the input to be syntactically
correct and to end with a period.

| ?- read(X).

foo).

uncaught exception: error

12/33

Unification/Matching

The =-operator tries to make its left and right-hand sides the
same.

This is called unification or matching .

If Prolog can’t make X and Y the same in X = Y, matching
will fail .

| ?- X=lisa, Y=sally, X = Y.

no

| ?- X=lisa, Y=lisa, Z = X, Z = Y.

X = lisa

Y = lisa

Z = lisa

We will talk about this much more later.

13/33

Backtracking

Prolog will try every possible way to satisfy a query.

Prolog explores the search space by using backtracking , which
means undoing previous computations, and exploring a
different search path.

14/33

Backtracking. . .

Here’s an example:

| ?- [user].

girl(sally).

girl(lisa).

pretty(lisa).

blonde(sally).

| ?- girl(X),pretty(X).

X = lisa

| ?- girl(X),pretty(X),blonde(X).

no

| ?- (X=lisa; X=sally), pretty(X).

X = lisa

We will talk about this much more later.

15/33

Māori Family Relationships

John Foster (in He Whakamaarama – A New Course in Māori)
writes:

Relationship is very important to the Māori. Social

seniority is claimed by those able to trace their

whakapapa or genealogy in the most direct way to

illustrious ancestors. Rights to shares in land and

entitlement to speak on the marae may also depend on

relationship. Because of this, there are special words to

indicate elder or younger relations, or senior or younger

branches of a family.

Māori is the indigenous language spoken in New Zealand. It is
a polynesian language, and closely related to the language
spoken in Hawaii.

16/33

Māori Terms of Address

Māori English

au I

tipuna, tupuna grandfather, grandmother, grandparent, an-
cestor

tiipuna grandparents

matua taane father

maatua parents

paapaa father

whaea, maamaa mother

whaea kee aunt

kuia grandmother, old lady

tuakana older brother of a man, older sister of a
woman

teina younger brother of a man, younger sister of
a woman

17/33

Māori Terms of Address. . .

Māori English

tungaane woman’s brother (older or younger)

tuahine man’s sister (older or younger)

kaumaatua elder (male)

mokopuna grandchild (male or female)

iraamutu niece, nephew
taane husband, man

hunaonga daughter-in-law, son-in-law

tamaahine daughter

tama son

tamaiti child (male or female)

tamariki children

wahine wife, woman

maataamua oldest child

18/33

Māori Terms of Address. . .

Māori English

pootiki youngest child

koroheke, koro, ko-
roua

old man

whaiapo boyfriend, girlfriend1

kootiro girl

tamaiti taane boy

whanaunga relatives

1Literally: ”What you follow at night”
19/33

The Whanau

A program to translate between English and Māori must take
into account the differences in terms of address between the
two languages.

Write a Prolog predicate calls(X,Y,Z) which, given a
database of family relationships, returns all the words that X
can use to address or talk about Y.

?- calls(aanaru, hata, Z).

Z = tuakana ;

Z = maataamua ;

no

?- calls(aanaru, rapeta, Z).

Z = teina ;

no

20/33

The Whanau. . .

Whanau is Māori for family.

Below is a table showing an extended Māori family.

Name Sex Father Mother Spouse Born

Hoone male unknown unknown Rita 1910
Rita female unknown unknown Hone 1915
Ranginui male unknown unknown Reremoana 1915
Reremoana female unknown unknown Ranginui 1916
Rewi male Hoone Rita Rahia 1935
Rahia female Ranginui Reremoana Rewi 1940
Hata male Rewi Rahia none 1957
Kiri female Rewi Rahia none 1959

21/33

The Whanau. . .

Name Sex Father Mother Spouse Born

Hiniera female Rewi Rahia Pita 1960
Aanaru male Rewi Rahia none 1962
Rapeta male Rewi Rahia none 1964
Mere female Rewi Rahia none 1965
Pita male unknown unknown Hiniera 1960
Moeraa female Pita Hiniera none 1986
Huia female Pita Hiniera none 1987
Irihaapeti female Pita Hiniera none 1988

22/33

The Whanau Program — Database Facts

We start by encoding the family as facts in the Prolog
database.

% person(name, sex, father,mother,spouse, birth-year).

person(hoone, male, unkn1, unkn5, rita, 1910).

person(rita, female, unkn2, unkn6, hoone, 1915).

person(ranginui,male, unkn3, unkn7, reremoana,1915).

person(reremoana, female,unkn4, unkn8, ranginui, 1916).

person(rewi, male, hoone, rita, reremoana, 1935).

person(rahia, female,ranginui,reremoana, rita, 1916).

person(hata, male, rewi, rahia, none, 1957).

person(kiri, female, rewi, rahia none, 1959).

23/33

The Whanau Program — Database Facts. . .

% person(name, sex, father,mother,spouse, birth-year).

person(hiniera, female, rewi, rahia, pita, 1960).

person(anaru, male, rewi, rahia, none, 1962).

person(rapeta, male, rewi, rahia, none, 1964).

person(mere, female, rewi, rahia, none, 1965).

person(pita, male, unkn9, unkn10, hiniera,1960).

person(moeraa, female, hiniera, pita, none, 1986).

person(huia, female, hiniera, pita, none, 1987).

person(irihaapeti, female,hiniera, pita, none, 1988).

24/33

Whanau — Auxiliary predicates

We introduce some auxiliary predicates to extract information
from the database.

% Auxiliary predicates

gender(X, G) :- person(X, G, _, _, _, _).

othergender(male, female).

othergender(female, male).

female(X) :- gender(X, female).

male(X) :- gender(X, male).

25/33

Whanau — Family Relationships

We next write some predicates that computes common family
relationships.

% Is Y the <operator> of X?

wife(X, Y) :- person(X, male, _, _, Y, _).

husband(X, Y) :- person(X, female, _, _, Y, _).

spouse(X, Y) :- wife(X, Y).

spouse(X, Y) :- husband(X, Y).

parent(X, Y) :- person(X, _,Y, _, _, _).

parent(X, Y) :- person(X, _, _, Y, _, _).

son(X, Y) :- person(Y, male, X, _, _, _).

son(X, Y) :- person(Y, male, _, X, _, _).

daughter(X, Y):- person(Y, female, X, _, _, _).

daughter(X, Y):- person(Y, female, _, X, _, _).

child(X, Y) :- son(X, Y).

child(X, Y) :- daughter(X, Y)
26/33

Whanau — Family Relationships. . .

Some of the following are left as an exercise:

% Is X older than Y?

older(X,Y) :-

person(X, _, _, _, _,Xyear),

person(Y, _, _, _, _,Yyear),

Yyear > Xyear.

% Is Y a sibling of X of the gender G?

sibling(X, Y, G) :- <left as an exercise>.

% Is Y one of X’s older siblings of gender G?

oldersibling(X,Y,G) :- <left as an exercise>.

% Is Y one of X’s older/younger siblings of either gender?

oldersibling(X,Y) :- <left as an exercise>.
27/33

Whanau — Family Relationships. . .

youngersibling(X,Y) :- <left as an exercise>.

% Is Y an ancestor of X of gender G?

ancestor(X,Y,G) :- <left as an exercise>.

% Is Y an older relative of X of gender G?

olderrelative(X,Y,G) :-

ancestor(X, Y, G).

olderrelative(X,Y,G) :-

ancestor(X, Z, _),

sibling(Y, Z, G).

% Is Y a sibling of X of his/her opposite gender?

siblingofothersex(X, Y) :- <left as an exercise>.

28/33

The Whanau Program — Calls

We can now finally write the predicate calls(X,Y,T) which
computes all the ways T in which X can address Y.

% Me.

calls(X, X, au).

% Parents.

calls(X,Y,paapaa) :- person(X, _,Y, _, _, _).

calls(X,Y,maamaa) :- person(X, _, _,Y, _, _).

% Oldest/youngest sibling of same sex.

calls(X, Y, tuakana) :-

gender(X, G), eldestsibling(X, Y, G).

calls(X, Y, teina) :-

gender(X, G), youngestsibling(X, Y, G).

29/33

The Whanau Program — Calls. . .

% Siblings of other sex.

calls(X, Y, tungaane) :- <left as an exercise>.

calls(X, Y, tuahine) :- <left as an exercise>.

calls(X, Y, tipuna) :- <left as an exercise>.

% Sons and daughters.

calls(X, Y, tama) :- <left as an exercise>.

calls(X, Y, tamahine) :- <left as an exercise>.

% Oldest/youngest child.

calls(X, Y, maataamua) :- <left as an exercise>.

calls(X, Y, pootiki) :- <left as an exercise>.

% Child-in-law.

calls(X, Y, hunaonga) :- <left as an exercise>.

30/33

Readings and References

Read Clocksin-Mellish, Chapter 2.

31/33

Summary

Prolog So Far

Prolog terms :

atoms (a, 1, 3.14)
structures

guitar(ovation, 1111, 1975)

Infix expressions are abbreviations of “normal” Prolog terms:
infix prefix

a + b +(a, b)

a + b∗ c +(a, ∗(b, c))

33/33

CSc 372

Comparative Programming Languages

24 : Prolog — Structures

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/31

collberg@gmail.com

Introduction

Prolog Structures

Aka, structured or compound objects

An object with several components.

Similar to Pascal’s Record -type, C’s struct , Haskell’s tuples .

Used to group things together.

functor
︷ ︸︸ ︷

course

arguments
︷ ︸︸ ︷

(prolog,chris,mon,11)

The arity of a functor is the number of arguments.

3/31

Example – Course

Structures – Courses

Below is a database of courses and when they meet. Write
the following predicates:

lectures(Lecturer, Day) succeeds if Lecturer has a class
on Day.
duration(Course, Length) computes how many hours
Course meets.
occupied(Room, Day, Time) succeeds if Room is being used
on Day at Time.

% course(class, meetingtime, prof, hall).

course(c231, time(mon,4,5), cc, plt1).

course(c231, time(wed,10,11), cc, plt1).

course(c231, time(thu,4,5), cc, plt1).

course(c363, time(mon,11,12), cc, slt1).

course(c363, time(thu,11,12), cc, slt1).

5/31

Structures – Courses. . .

lectures(Lecturer, Day) :-

course(Course, time(Day, ,), Lecturer,).

duration(Course, Length) :-

course(Course,

time(Day,Start,Finish), Lec, Loc),

Length is Finish - Start.

occupied(Room, Day, Time) :-

course(Course,

time(Day,Start,Finish), Lec, Room),

Start =< Time,

Time =< Finish.

6/31

Structures – Courses. . .

course(c231, time(mon,4,5), cc, plt1).

course(c231, time(wed,10,11), cc, plt1).

course(c231, time(thu,4,5), cc, plt1).

course(c363, time(mon,11,12), cc, slt1).

course(c363, time(thu,11,12), cc, slt1).

?- occupied(slt1, mon, 11).

yes

?- lectures(cc, mon).

yes

7/31

Example – Binary Trees

Binary Trees

We can represent trees as nested structures:

tree(Element, Left, Right)

tree(s,

tree(b, void, void),

tree(x,

tree(u, void, void),

void).

void

X

S

Uvoid voidvoid

void

B

9/31

Binary Search Trees

Write a predicate member(T,x) that succeeds if x is a
member of the binary search tree T:

9

8

104

2 7

5

atree(

tree(8,

tree(4,

tree(2,void,void),

tree(7,

tree(5,void,void),

void)),

tree(10,

tree(9,void,void),

void))).

?- atree(T),tree member(5,T).

10/31

Binary Search Trees. . .

tree member(X, tree(X, ,)).

tree member(X, tree(Y,Left,)) :-

X < Y,

tree member(Y, Left).

tree member(X, tree(Y, ,Right)) :-

X > Y,

tree member(Y, Right).

11/31

Binary Trees – Isomorphism

Tree isomorphism:

Isomorphic

CB

A

C

B

AB C

A

Two binary trees T1 and T2 are isomorphic if T2 can be

obtained by reordering the branches of the subtrees of T1.

Write a predicate tree iso(T1, T2) that succeeds if the two
trees are isomorphic.

12/31

Binary Trees – Isomorphism. . .

tree iso(void, void).

tree iso(tree(X, L1, R1), tree(X, L2, R2)) :-

tree iso(L1, L2), tree iso(R1, R2).

tree iso(tree(X, L1, R1), tree(X, L2, R2)) :-

tree iso(L1, R2), tree iso(R1, L2).

1 Check if the roots of the current subtrees are identical;

2 Check if the subtrees are isomorphic;

3 If they are not, backtrack, swap the subtrees, and again check
if they are isomorphic.

13/31

Binary Trees – Counting Nodes

Write a predicate size of tree(Tree,Size) which
computes the number of nodes in a tree.

size of tree(Tree, Size) :-

size of tree(Tree, 0, Size).

size of tree(void, Size, Size).

size of tree(tree(, L, R), SizeIn, SizeOut) :-

Size1 is SizeIn + 1,

size of tree(L, Size1, Size2),

size of tree(R, Size2, SizeOut).

We use a so-called accumulator pair to pass around the
current size of the tree.

14/31

Binary Trees – Counting Nodes. . .

SizeOut=9

SizeOut=9

SizeIn=6

SizeOut=7

SizeIn=7

SizeOut=8

SizeIn=5

SizeOut=8

SizeIn=4

SizeOut=5

SizeIn=1

SizeIn=0

SizeOut=2

SizeIn=2

SizeIn=3

SizeOut=8

SizeOut=9

SizeIn=8

15/31

Binary Trees – Tree Substitution

Write a predicate subs(T1,T2,Old,New) which replaces all
occurences of Old with New in tree T1:

subs(X, Y, void, void).

subs(X, Y, tree(X, L1, R1), tree(Y, L2, R2)) :-

subs(X, Y, L1, L2),

subs(X, Y, R1, R2).

subs(X, Y, tree(Z, L1, R1), tree(Z, L2, R2)) :-

X =\= Y, subs(X, Y, L1, L2),

subs(X, Y, R1, R2).

16/31

Binary Trees – Tree Substitution. . .

subs(s,t)

subs(s, t,

tree(s,
tree(r, void, void),
tree(q,

tree(v, void, void)
tree(s,

tree(z, void, void)
void)))),

N)

s

r q

v

z

s

r q

v

z

t

t

17/31

Symbolic Differentiation

Symbolic Differentiation

dc

dx
= 0 (1)

dx

dx
= 1 (2)

d(Uc)

dx
= cUc−1 dU

dx
(3)

d(−U)

dx
= −

dU

dx
(4)

d(U + V)

dx
=

dU

dx
+

dV

dx
(5)

d(U − V)

dx
=

dU

dx
−

dU

dx
(6)

19/31

Symbolic Differentiation. . .

d(cU)

dx
= c

dU

dx
(7)

d(UV)

dx
= U

dV

dx
+ V

dU

dx
(8)

d(U
V
)

dx
=

V dU

dx
− U dV

dx

V 2
(9)

d(lnU)

dx
= U−1dU

dx
(10)

d(sin(U))

dx
=

dU

dx
cos(U) (11)

d(cos(U))

dx
= −

dU

dx
sin(U) (12)

20/31

Symbolic Differentiation. . .

dc

dx
= 0 (1)

dx

dx
= 1 (2)

d(Uc)

dx
= cUc−1 dU

dx
(3)

deriv(C, X, 0) :- number(C).

deriv(X, X, 1).

deriv(U ^C, X, C * U ^L * DU) :-

number(C), L is C - 1, deriv(U, X, DU).

21/31

Symbolic Differentiation. . .

d(−U)

dx
= −

dU

dx
(4)

d(U + V)

dx
=

dU

dx
+

dV

dx
(5)

deriv(-U, X, -DU) :-

deriv(U, X, DU).

deriv(U+V, X, DU + DV) :-

deriv(U, X, DU),

deriv(V, X, DV).

22/31

Symbolic Differentiation. . .

d(U − V)

dx
=

dU

dx
−

dV

dx
(6)

d(cU)

dx
= c

dU

dx
(7)

deriv(U-V, X,) :-

<left as an exercise>

deriv(C*U, X,) :-

<left as an exercise>

23/31

Symbolic Differentiation. . .

d(UV)

dx
= U

dV

dx
+ V

dU

dx
(8)

d(U
V
)

dx
=

V dU

dx
− U dV

dx

V 2
(9)

deriv(U*V, X,) :-

<left as an exercise>

deriv(U/V, X,) :-

<left as an exercise>

24/31

Symbolic Differentiation. . .

d(lnU)

dx
= U−1dU

dx
(10)

d(sin(U))

dx
=

dU

dx
cos(U) (11)

d(cos(U))

dx
= −

dU

dx
sin(U) (12)

deriv(log(U), X,) :- <left as an exercise>

deriv(sin(U), X,) :- <left as an exercise>

deriv(cos(U), X,) :- <left as an exercise>

25/31

Symbolic Differentiation. . .

?- deriv(x, x, D).

D = 1

?- deriv(sin(x), x, D).

D = 1*cos(x)

?- deriv(sin(x) + cos(x), x, D).

D = 1*cos(x)+ (-1*sin(x))

?- deriv(sin(x) * cos(x), x, D).

D = sin(x)* (-1*sin(x)) +cos(x)* (1*cos(x))

?- deriv(1 / x, x, D).

D = (x*0-1*1)/ (x*x)

26/31

Symbolic Differentiation. . .

deriv(sin(x) * cos(x), x, D)

=sin(x)*(−1 * sin(x))
+ cos(x)*1*cos(x)

DU1=1 DV2=1

DV1=−DV2*sin(x)DU1=DU2*cos(x)

U1=sin(x)

U2=x

deriv(U1, x, DU1)

deriv(U2, x, DU2)

deriv(V1, x, DV1)

V1=cos(x)

U3=x

deriv(U3, x, DV2)

(11)

(8)

(12)

D=U*DV1 + V*DU1

27/31

Symbolic Differentiation. . .

?- deriv(1/sin(x), x, D).

D = (sin(x)*0-1* (1*cos(x)))+(sin(x)*sin(x))

?- deriv(x ^3, x, D).

D = 1*3*x^2

?- deriv(x^3 + x^2 + 1, x, D).

D = 1*3*x^2+1*2*x^1+0

?- deriv(3 * x ^3, x, D).

D = 3* (1*3*x^2)+x^3*0

?- deriv(4* x ^3 + 4 * x^2 + x - 1, x, D).

D = 4* (1*3*x^2)+x^3*0+(4* (1*2*x^1)+x^2*0)+1-0

28/31

Readings and References

Read Clocksin-Mellish, Sections 2.1.3, 3.1.

29/31

Summary

Prolog So Far. . .

Prolog terms :

atoms (a, 1, 3.14)
structures

guitar(ovation, 1111, 1975)

Infix expressions are abbreviations of “normal” Prolog terms:
infix prefix

a + b +(a, b)

a + b∗ c +(a, ∗(b, c))

31/31

CSc 372

Comparative Programming Languages

25 : Prolog — Matching

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/21

collberg@gmail.com

Introduction

Unification & Matching

So far, when we’ve gone through examples, I have said simply
that when trying to satisfy a goal, Prolog searches for a
matching rule or fact.

What does this mean, to match?

Prolog’s matching operator or =. It tries to make its left and
right hand sides the same, by assigning values to variables.

Also, there’s an implicit = between arguments when we try
to match a query

?- f(x,y)

to a rule

f(A,B) :-

3/21

Matching Examples

The rule:

deriv(U ^C, X, C * U ^L * DU) :-

number(C), L is C - 1,

deriv(U, X, DU).

?- deriv(x ^3, x, D).

D = 1*3*x^2

The goal:

x ^3 matches U ^C

x = U ,C = 3

x matches X

D matches C * U ^L * DU

4/21

Matching Examples. . .

deriv(U+V, X, DU + DV) :-

deriv(U, X, DU),

deriv(V, X, DV).

?- deriv(x^3 + x^2 + 1, x, D).

D = 1*3*x^2+1*2*x^1+0

x ^3 + x^2 + 1 matches U + V

x ^3 + x^2 is bound to U

1 is bound to V

5/21

Matching Algorithm

Can two terms A and F be “made identical,” by

assigning values to their variables?

Two terms A and F match if

1 they are identical atoms

2 one or both are uninstantiated variables

3 they are terms A = fA(a1, · · · , an) and F = fF (f1, · · · , fm),
and

1 the arities are the same (n = m)
2 the functors are the same (fA = fF)
3 the arguments match (ai ≡ fi)

6/21

Matching – Examples

A F A ≡ F variable subst.

a a yes
a b no
sin(X) sin(a) yes θ = {X=a}
sin(a) sin(X) yes θ = {X=a}
cos(X) sin(a) no
sin(X) sin(cos(a)) yes θ = {X=cos(a)}

7/21

Matching – Examples. . .

A F A ≡ F variable subst.

likes(c, X) likes(a, X) no
likes(c, X) likes(c, Y) yes θ = {X=Y}

likes(X, X) likes(c, Y) yes θ = {X=c, X=Y}
likes(X, X) likes(c,) yes θ = {X=c, X= 47}
likes(c, a(X)) likes(V, Z) yes θ = {V=c,Z=a(X)}
likes(X, a(X)) likes(c, Z) yes θ = {X=c,Z=a(X)}

8/21

Matching Consequences

Consequences of Prolog Matching:

An uninstantiated variable will match any object.

An integer or atom will match only itself.

When two uninstantiated variables match, they share:

When one is instantiated, so is the other (with the same value).

Backtracking undoes all variable bindings.

9/21

Matching Algorithm

FUNC Unify (A, F: term) : BOOL;

IF Is Var(F) THEN Instantiate F to A

ELSIF Is Var(A) THEN Instantiate A to F

ELSIF Arity(F) 6=Arity(A) THEN RETURN FALSE

ELSIF Functor(F) 6=Functor(A) THEN RETURN FALSE

ELSE

FOR each argument i DO

IF NOT Unify(A(i), F(i)) THEN

RETURN FALSE

RETURN TRUE;

10/21

Visualizing Matching

From Prolog for Programmers, Kluzniak & Szpakowicz, page
18.

Assume that during the course of a program we attempt to
match the goal p(X, b(X, Y)) with a clause C , whose head
is p(X, b(X, y)).

First we’ll compare the arity and name of the functors. For
both the goal and the clause they are 2 and p, respectively.

11/21

Visualizing Matching. . .

p(X, b(X, Y))

b

YX

b

c A

caller

callee

Query

Head

p(A, b(c, A)) :− ...

12/21

Visualizing Matching. . .

The second step is to try to unify the first argument of the
goal (X) with the first argument of the clause head (A).

They are both variables, so that works OK.

From now on A and X will be treated as identical (they are in
the list of variable substitutions θ).

13/21

Visualizing Matching. . .

Head

b

Y

b

c

X
A

caller

callee

Query

θ = {A = X}

p(A , b(c, A)) :- ...

p(X , b(X, Y))

14/21

Visualizing Matching. . .

Next we try to match the second argument of the goal (b(X,
Y)) with the second argument of the clause head (b(c, A)).

The arities and the functors are the same, so we go on to to
try to match the arguments.

The first argument in the goal is X, which is matched by the
first argument in the clause head (c). I.e., X and c are now
treated as identical.

15/21

Visualizing Matching. . .

b

Y

b

X caller

calleec
A

Query

Head

θ = {A = X ,X = c}

p(X, b(X , Y))

p(A, b(c , A)) :- ...

16/21

Visualizing Matching. . .

Finally, we match A and Y. Since A=X and X=c, this means
that Y=c as well.

17/21

Visualizing Matching. . .

b

b

c
A

X
Y

caller

callee

Head

Query

p(X, b(X, Y))

p(A, b(c, A)) :- ...

θ = {A = X ,X = c ,A = Y }

18/21

Summary

Readings and References

Read Clocksin-Mellish, Sections 2.4, 2.6.3.

20/21

Prolog So Far. . .

A term is either a

a constant (an atom or integer)
a variable
a structure

Two terms match if

there exists a variable substitution θ which makes the terms
identical.

Once a variable becomes instantiated, it stays instantiated.

Backtracking undoes variable instantiations.

Prolog searches the database sequentially (from top to
bottom) until a matching clause is found.

21/21

CSc 372

Comparative Programming Languages

26 : Prolog — Execution

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/26

collberg@gmail.com

Execution

Executing Prolog

Now that we know about matching, we can take a closer look
at how Prolog tries to satisfy goals.

In general, to solve a goal

G = G1,G2, · · · ,Gm,

Prolog will first try to solve the sub-goal G1.

It solves a sub-goal G1 it will look for a rule

Hi :- B1, · · · ,Bn

in the database, such that G1 and Hi will match.

Any variable substitutions resulting from the match will be
stored in a variable θ.

3/26

Executing Prolog. . .

A new goal will be constructed by replacing G1 with
B1, · · · ,Bn, yielding

G
′ = B1, · · · ,Bn,G2, · · · ,Gm.

If n = 0 the new goal will be shorter and we’ll be one step
closer to a solution to G !

Any new variable bindings from θ are applied to the new goal,
yielding G

′′.

We recursively try to find a solution to G
′′.

4/26

Executing Prolog. . .

FUNC Execute (G = G1,G2, · · · ,Gm; Result);

IF Is Empty(G) THEN Result := Yes

ELSE

Result := No;

i := 1;

WHILE Result=No & i ≤ NoOfClauses DO

Clause := Hi :- B1, · · · ,Bn;

IF Unify(G1, Clause, θ) THEN

G
′ := B1, · · · ,Bn,G2, · · · ,Gm;

G
′′ := substitute(G ′, θ);

Execute(G ′′, Result);

ENDIF;

i := i + 1;
ENDDO

ENDIF

5/26

Match?

Unify(Hi, G1)

Scan database

Empty?
G1, G2, ..., Gm

Goal

(2) H2 :− B1, ..., Bn

(3) H3 :− C1, ..., Cn

(1) H1 :− A1, ..., An

Database

......

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi
fail

Replace G1 by X1,...,Xn

X1,...,Xn,G2,...,Gm

X1’,...,Xn’,G2’,...,Gm’

Substitute vars from θ
θ = {· · · }

Example

Northern Exposure Example

% From the Northern Exposure FAQ

% friend(of, kind(name, regular)).

friend(maggie, person(eve, yes)).

friend(maggie, moose(morty, yes)).

friend(maggie, person(harry, no)).

friend(maggie, person(bruce, no)).

friend(maggie, person(glenn, no)).

friend(maggie, person(dave, no)).

friend(maggie, person(rick, no)).

friend(maggie, person(mike, yes)).

friend(maggie, person(joel, yes)).

8/26

Maggie (Janine Turner)

9/26

Northern Exposure Example. . .

cause of death(morty, copper deficiency).

cause of death(harry, potato salad).

cause of death(bruce, fishing accident).

cause of death(glenn, missile).

cause of death(dave, hypothermia).

cause of death(rick, hit by satellite).

cause of death(mike, none yet).

cause of death(joel, none yet).

male(morty). male(harry). male(bruce).

male(glenn). male(dave). male(rick).

male(mike). male(joel). female(eve).

10/26

Northern Exposure Example. . .

alive(X) :- cause of death(X, none yet).

pastime(eve, hypochondria).

pastime(mike, hypochondria).

pastime(X, golf) :- job(X,doctor).

job(mike, lawyer). job(adam, chef).

job(maggie, pilot). job(joel, doctor).

?- friend(maggie, person(B, yes)),

male(B),

alive(B),

pastime(B, golf).

11/26

Match?

Unify(Hi, G1)

Scan database

Hi :− X1, ..., Xn

male(B), alive(B),

pastime(B, golf).

friend(maggie, p(B, yes)),

Empty?

male(eve), alive(eve),

pastime(eve, golf).

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

alive(X):−cause_od(X, none).

pastime(eve, hypocondriac).

pastime(mike, hypocondriac).

Hi

No

Yes

No

Yes

Succeed

fail
No more Hi

G1

Replace G1 by <empty>

θ = {B=eve}

Substitute vars from θ

Match?

Unify(Hi, G1)

Scan database

Empty?male(eve), alive(eve),

pastime(eve, golf).

fail

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

alive(X):−cause_od(X, none).

pastime(mike, hypocondriac).

pastime(eve, hypocondriac).

(1)

?
No

Yes

No

Yes

Succeed

No more Hi

G1

Match?

Unify(Hi, G1)

Scan database

male(B), alive(B),

pastime(B, golf).

friend(maggie, p(B, yes)),

Empty?

Hi :− X1, ..., Xn

No

Yes

No

Yes

Succeed

fail
No more Hi

G1

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

alive(X):−cause_od(X, none).

pastime(eve, hypocondriac).

pastime(mike, hypocondriac).

Hi

Replace G1 by <empty>

pastime(mike, golf).

male(mike),alive(mike),θ = {B=mike}

Substitute vars from θ

Match?

Unify(Hi, G1)

Scan database

Empty?

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

alive(X):−cause_od(X, none).

pastime(eve, hypocondriac).

pastime(mike, hypocondriac).

Hi

(1)

pastime(mike, golf).

alive(mike),

No

Yes

No

Yes

Succeed

male(mike), alive(mike),

pastime(mike, golf).

fail
No more Hi

G1

Hi :− X1, ..., Xn

Replace G1 by <empty>

θ = {}

Substitute vars from θ

Match?

Unify(Hi, G1)

Scan database

Empty?

(2)

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

alive(X):−cause_od(X, none).

pastime(eve, hypocondriac).

pastime(mike, hypocondriac).

Hi

(1)

pastime(mike, golf).

cause_od(mike, none),

Replace G1 by

<cause_od(X,none)>

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi
fail

pastime(mike, golf).

alive(mike),

G1

θ = {X=mike}

Match?

Unify(Hi, G1)

Scan database

Empty?

(2)

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

alive(X):−cause_od(X, none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(eve, hypoc).

pastime(mike, hypoc).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

(1)

Hi

(3)

cause_od(mike, none),

pastime(mike, golf).

G1

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi
fail

Replace G1 by <empty>

pastime(mike, golf).
θ = {}

Match?

Unify(Hi, G1)

Scan database

Empty?pastime(mike, golf).

G1

fail

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

alive(X):−cause_od(X, none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(eve, hypoc).

pastime(mike, hypoc).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

(4)

(2)

(3)

?

(1)

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi

θ = {}

Northern Exposure Example. . .

We skip a step here.

pastime(mike, golf) unifies with

pastime(X, golf) :- job(X, doctor).

.

However, job(mike, doctor) fails, and we backtrack all the
way up to the original query.

19/26

Match?

Unify(Hi, G1)

Scan database

male(B), alive(B),

pastime(B, golf).

friend(maggie, p(B, yes)),

Empty?

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

alive(X):−cause_od(X, none).

pastime(eve, hypocondriac).

pastime(mike, hypocondriac).

Hi

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi
fail

G1

Replace G1 by <empty>

male(joel), alive(joel),

pastime(joel, golf).
θ = {B=joel}

Substitute vars from θ

Match?

Unify(Hi, G1)

Scan database

Empty?

Replace G1 by

job(joel,doctor)

job(X,doctor)

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

alive(X):−cause_od(X, none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(eve, hypoc).

pastime(mike, hypoc).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

(1)

(4)

(2)

(3)

Hi

pastime(joel, golf).

G1

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi
fail

θ = {X=joel}

Match?

Unify(Hi, G1)

Scan database

Empty?

Replace G1 by <empty>

job(joel,doctor)

G1

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

alive(X):−cause_od(X, none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(eve, hypoc).

pastime(mike, hypoc).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

Hi

(1)

(4)

(2) (3)

(5)

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi fail

θ = {}

Match?

Unify(Hi, G1)

Scan database

Empty?

friend(m,p(eve,yes)).

friend(m,m(morty,yes)).

friend(m,p(harry,no)).

friend(m,p(mike,yes)).

friend(m,p(joel,yes)).

cause_od(mike,none).

alive(X):−cause_od(X, none).

cause_od(joel,none).

male(mike).male(joel).

female(eve).

pastime(eve, hypoc).

pastime(mike, hypoc).

pastime(X,golf):−job(X,doctor).

job(adam,chef).

job(joel,doctor).

No

Yes

No

Yes

Succeed

Hi :− X1, ..., Xn

No more Hi
fail

θ = {}

Readings and References

Read Clocksin-Mellish, Section 4.1.

See http://www.moosefest.org for information about the annual
Moosefest.

See http://members.lycos.co.uk/janineturner/engl/index.html for pictures of
Janine Turner, who plays Maggie.

See http://home.comcast.net/~mcnotes/mcnotes.html for show transcripts.

24/26

http://www.moosefest.org
http://members.lycos.co.uk/janineturner/engl/index.html
http://home.comcast.net/~mcnotes/mcnotes.html

Summary

Prolog So Far. . .

A term is either a

a constant (an atom or integer)
a variable
a structure

Two terms match if

there exists a variable substitution θ which makes the terms
identical.

Once a variable becomes instantiated, it stays instantiated.

Backtracking undoes variable instantiations.

Prolog searches the database sequentially (from top to
bottom) until a matching clause is found.

26/26

CSc 372

Comparative Programming Languages

27 : Prolog — Lists

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/53

collberg@gmail.com

Introduction

Prolog Lists

Haskell:

> 1 : 2 : 3 : []

[1,2,3]

Prolog:

?- L = .(a, .(b, .(c, [])))

L = [a, b, c]

a

b

c
[]

Both Haskell and Prolog build up lists using cons-cells.
In Haskell the cons-operator is :, in Prolog ..

3/53

Prolog Lists. . .

?- L = .(a, .(.(1, .(2, [])), .(b, .(c, []))))

L = [a, [1, 2], b, c]

2
b

c
[]

a

1

[]

Unlike Haskell, Prolog lists can contain elements of arbitrary
type.

4/53

Matching Lists – [Head | Tail]

A F A ≡ F variable subst.

[] [] yes
[] a no
[a] [] no
[[]] [] no
[a | [b, c]] L yes L=[a,b,c]

[a] [H | T] yes H=a, T=[]

5/53

Matching Lists – [Head | Tail]. . .

A F A ≡ F variable subst.

[a, b, c] [H | T] yes H=a,T=[b,c]

[a, [1, 2]] [H | T] yes H=a, T=[[1, 2]]

[[1, 2], a] [H | T] yes H=[1,2], T=[a]

[a, b, c] [X, Y, c] yes X=a, Y=c

[a, Y, c] [X, b, Z] yes X=a, Y=b, Z=c

[a, b] [X, c] no

6/53

Member

Prolog Lists — Member

(1) member1(X, [Y|]) :- X = Y.

(2) member1(X, [|Y]) :- member1(X, Y).

(1) member2(X, [X|]).

(2) member2(X, [|Y]) :- member2(X, Y).

(1) member3(X,[Y|Z]) :- X = Y; member3(X,Z).

8/53

Prolog Lists — Member. . .

?- member(x, [a, b, c, x, f]).

yes

?- member(x, [a, b, c, f]).

no

?- member(x, [a, [x, y], f]).

no

?- member(Z, [a, [x, y], f]).

Z = a

Z = [x, y]

Z = f

9/53

Prolog Lists — Member. . .

(2)

fail

member1(x, [b|_])

x=b

succeed

member(x,[b,x,d])

(1) (2)

member1(x, [x|_])

x=x

(1)

member1(x,[_|[x,d]])

fail

member1(x, [a|_])

x=a

member1(x, [a, b, x, d])

member1(x, [_|[b,x,d]])

(1)

10/53

Append

Prolog Lists — Append

this one this one

makes

this one

append(L1, L2, L3).

followed by

(1)append([], L, L)

(2)append([X|L1], L2, [X|L3]) :-

append(L1, L2, L3).

1 Appending L onto an empty list, makes L.

2 To append L2 onto L1 to make L3
1 Let the first element of L1 be the first element of L3.
2 Append L2 onto the rest of L1 to make the rest of L3.

12/53

Prolog Lists — Append. . .

app([b|[]],[1,2],[b|L3’’])

fail

fail

succeed

(1) (2)

app([a|[b]],[1,2],[a|L3])

app([b],[1,2],L3’)

app([],L,L)

app([],L,L)

app([a, b], [1, 2], L)

(1) (2)

app([],[1,2],[1,2])

(1)

L=[a,b,1,2]

13/53

Prolog Lists — Append. . .

app([],[1,2],[1,2])

app([a, b], [1, 2], L)

L=[a,b,1,2]

app([a|[b]],[1,2],[a|L3])

app([b]|[]],[1,2],[b|L3’])

?- L = [a | L3], L3 = [b | L3’], L3’ = [1,2].

L = [a,b,1,2], L3 = [b,1,2], L3’ = [1,2]

14/53

Prolog Lists — Using Append

1 append([a,b], [1,2], L)

What’s the result of appending [1,2] onto [a,b]?

2 append([a,b],[1,2],[a,b,1,2])

Is [a,b,1,2] the result of appending [1,2] onto [a,b]?

3 append([a,b], L, [a,b,1,2])

What do we need to append onto [a,b] to make [a,b,1,2]?
What’s the result of removing the prefix [a,b] from
[a,b,1,2]?

15/53

Prolog Lists — Using Append. . .

4 append(L, [1,2], [a,b,1,2])

What do we need to append [1,2] onto to make [a,b,1,2]?
What’s the result of removing the suffix [1,2] from
[a,b,1,2]?

5 append(L1, L2, [a,b,1,2])

How can the list [a,b,1,2] be split into two lists L1 & L2?

16/53

Prolog Lists — Using Append. . .

app([a, b], L, [a, b, 1, 2])

fail

fail

succeed

app([],[1,2],[1,2])

app([],L2’’’,[1,2])

(1)

(1)

app([],L,L)

app([],L,L)

(1)

app([a|[b]],L2,[a|[b,1,2]])

app([b],L2’,[b,1,2])

(2)

(2)

app([b|[]],L2’’,[b|[1,2]])

17/53

Prolog Lists — Using Append. . .

?- append(L1, L2, [a,b,c]).

L1 = []

L2 = [a,b,c] ;

L1 = [a]

L2 = [b,c] ;

L1 = [a,b]

L2 = [c] ;

L1 = [a,b,c]

L2 = [] ;

no

18/53

Prolog Lists — Using Append. . .

(1)

[a,b,1,2])

succeed

app([],[b,1,2]
[b,1,2])

succeed

succeed

app([],[1,2],[1,2])

(1)

(1)

(2)

(2)

app(L1, L2, [a, b, 1, 2])

app([a|L1],L2,[a|[b,1,2]])

app(L1,L2’,[b,1,2])

app([b|L1’],L2’’,[b|[1,2]])

app(L1’,L2’’’,[1,2])

app([],[a,b,1,2]

19/53

Prolog Lists — Reusing Append

member Can we split the list Y into two lists such that X is at
the head of the second list?

adjacent Can we split the list Z into two lists such that the two
element X and Y are at the head of the second list?

last Can we split the list Y into two lists such that the
first list contains all the elements except the last one,
and X is the sole member of the second list?

20/53

Prolog Lists — Reusing Append. . .

member(X, Y) :- append(, [X|Z], Y).

?- member(x,[a,b,x,d]).

adjacent(X, Y, Z) :- append(, [X,Y|Q], Z).

?- adjacent(x,y,[a,b,x,y,d]).

last(X, Y) :- append(, [X], Y).

?- last(x, [a,b,x]).

21/53

Reversing a List

Prolog Lists — Reverse

reverse1 is known as naive reverse.

reverse1 is quadratic in the number of elements in the list.

From The Art of Prolog, Sterling & Shapiro pp. 12-13, 203.

Is the basis for computing LIPS (Logical Inferences Per
Second), the performance measure for logic computers and
programming languages. Reversing a 30 element list (using
naive reverse) requires 496 reductions. A reduction is the
basic computational step in logic programming.

23/53

Prolog Lists — Reverse. . .

reverse1 works like this:
1 Reverse the tail of the list.
2 Append the head of the list to the reversed tail.

reverse2 is linear in the number of elements in the list.

reverse2 works like this:
1 Use an accumulator pair In and Out
2 In is initialized to the empty list.
3 At each step we take one element (X) from the original list (Z)

and add it to the beginning of the In list.
4 When the original list (Z) is empty we instantiate the Out list

to the result (the In list), and return this result up through the
levels of recursion.

24/53

Prolog Lists — Reverse. . .

reverse1([], []).

reverse1([X|Q], Z) :-

reverse1(Q, Y), append(Y, [X], Z).

reverse2(X, Y) :- reverse2(X, [], Y).

reverse2([X|Z], In, Out) :-

reverse(Z, [X|In], Out).

reverse2([], Y, Y).

25/53

Reverse – Naive Reverse

rev1([],[])

rev1([b,c,d],[d,c,b])

app([d],[c],[d,c])

rev1([c,d],[d,c]) app([d,c],[b],[d,c,b])

app([c],[b],[c,b])

app([d,c,b],[a],[d,c,b,a])

app([c,b],[a],[c,b,a])

app([b],[a],[b,a])

rev1([a,b,c,d],[d,c,b,a])

rev1([d],[d])

app([],[b],[b])app([],[c],[c]) app([],[a],[a])

app([],[d],[d])

26/53

Reverse – Smart Reverse

reverse2([a,b,c,d],[],D)

D=[d,c,b,a]reverse2([a,b,c,d],D)

reverse2([b,c,d],[a],D)

reverse2([c,d],[b,a],D)

reverse2([d],[c,b,a],D)

reverse2([],[d,c,b,a],D)

27/53

Delete

Prolog Lists — Delete. . .

delete

list

to yield

this listthis one

delete(X, L1, L2).

from this

delete one Remove the first occurrence.

delete all Remove all occurrences.

delete struct Remove all occurrences from all levels of a list
of lists.

29/53

Prolog Lists — Delete. . .

?- delete one(x, [a, x, b, x], D).

D = [a, b, x]

?- delete all(x, [a, x, b, x], D).

D = [a, b]

?- delete all(x, [a, x, b, [c, x], x], D).

D = [a, b, [c, x]]

?- delete struct(x, [a, x, [c, x], v(x)], D).

D = [a, b, [c], v(x)]

30/53

Prolog Lists — Delete. . .

delete one

1 If X is the first element in the list then return
the tail of the list.

2 Otherwise, look in the tail of the list for the first
occurrence of X.

31/53

Prolog Lists — Delete. . .

delete all

1 If the head of the list is X then remove it, and
remove X from the tail of the list.

2 If X is not the head of the list then remove X
from the tail of the list, and add the head to the
resulting tail.

3 When we’re trying to remove X from the empty
list, just return the empty list.

32/53

Prolog Lists — Delete. . .

Why do we test for the recursive boundary case
(delete all(X,[],[])) last? Well, it only happens once so
we should perform the test as few times as possible.

The reason that it works is that when the original list (the
second argument) is [], the first two rules of delete all

won’t trigger. Why? Because, [] does not match [H|T],
that’s why!

33/53

Prolog Lists — Delete. . .

delete struct

1 The first rule is the same as the first rule in
delete all.

2 The second rule is also similar, only that we
descend into the head of the list (in case it
should be a list), as well as the tail.

3 The third rule is the catch-all for lists.
4 The last rule is the catch-all for non-lists. It

states that all objects which are not lists (atoms,
integers, structures) should remain unchanged.

34/53

Prolog Lists — Delete. . .

delete one(X,[X|Z],Z).

delete one(X,[V|Z],[V|Y]) :-

X \== V,

delete one(X,Z,Y).

delete all(X,[X|Z],Y) :- delete all(X,Z,Y).

delete all(X,[V|Z],[V|Y]) :-

X \== V,

delete all(X,Z,Y).

delete all(X,[],[]).

35/53

Prolog Lists — Delete. . .

(1) delete struct(X,[X|Z],Y) :-

delete struct(X, Z, Y).

(2) delete struct(X,[V|Z],[Q|Y]):-

X \== V,

delete struct(X, V, Q),

delete struct(X, Z, Y).

(3) delete struct(X, [], []).

(4) delete struct(X, Y, Y).

36/53

Prolog Lists — Delete. . .

Y = [[[]]]

d_s(x,[],Y)

d_s(x,[],[])

(3)

d_s(x, [], [])

(3)

d_s(x, [], Y)
(1)

(3)

d_s(x,[x],Q)

d_s(x,[],Y)

d_s(x,[],[])

(2)

(1)

(2)

d_s(x, [[x, [x]]], [Q|Y])

d_s(x, [x, [x]], Q)

d_s(x, [[x]], [Q|Y])

[[]]

(1)

d_s(x, [x, [x, [x]]], Y)

37/53

Application: Sorting

Sorting – Naive Sort

permutation(X,[Z|V]) :-

delete one(Z,X,Y),

permutation(Y,V).

permutation([],[]).

ordered([X]).

ordered([X,Y|Z]) :-

X =< Y,

ordered([Y|Z]).

naive sort(X, Y) :-

permutation(X, Y),

ordered(Y).

39/53

Sorting – Naive Sort. . .

This is an application of a Prolog cliche known as
generate-and-test.

naive sort

1 The permutation part of naive sort

generates one possible permutation of the input
2 The ordered predicate checks to see if this

permutation is actually sorted.
3 If the list still isn’t sorted, Prolog backtracks to

the permutation goal to generate an new
permutation, which is then checked by ordered,
and so on.

40/53

Sorting – Naive Sort. . .

permutation

1 If the list is not empty we:

1 Delete some element Z from the list
2 Permute the remaining elements
3 Add Z to the beginning of the list

When we backtrack (ask permutation to
generate a new permutation of the input list),
delete one will delete a different element from
the list, and we will get a new permutation.

2 The permutation of an empty list is the empty
list.

Notice that, for efficiency reasons, the boundary case is put
after the general case.

41/53

Sorting – Naive Sort. . .

delete one Removes the first occurrence of X (its first
argument) from V (its second argument).

Notice that when delete one is called, its first
argument (the element to be deleted), is an
uninstantiated variable. So, rather than deleting
a specific element, it will produce the elements
from the input list (+ the remaining list of
elements), one by one:

?- delete one(X,[1,2,3,4],Y).

X = 1, Y = [2,3,4] ;

X = 2, Y = [1,3,4] ;

X = 3, Y = [1,2,4] ;

X = 4, Y = [1,2,3] ;

no.

42/53

Sorting – Naive Sort. . .

The proof tree in the next slide illustrates
permutation([1,2,3],V). The dashed boxes give variable values
for each backtracking instance:

First instance: delete one will select X=1 and Y=[2,3]. Y will
then be permuted into Y’=[2,3] and then (after
having backtracked one step) Y’=[3,2]. In other
words, we generate [1,2,3], [1,3,2].

Second instance: We backtrack all the way back up the tree and
select X=2 and Y=[1,3]. Y will then be permuted
into Y’=[1,3] and then Y’=[3,2]. In other words,
we generate [2,1,3], [2,3,1].

43/53

Sorting – Naive Sort. . .

Third instance: Again, we backtrack all the way back up the tree
and select X=3 and Y=[1,2]. We generate [3,1,2],
[3,2,1].

?- permutation([1,2,3],V).

V = [1,2,3] ;

V = [1,3,2] ;

V = [2,1,3] ;

V = [2,3,1] ;

V = [3,1,2] ;

V = [3,2,1] ;

no.

44/53

Permutations

V’=[3],[2],[3],[1],...

.

.
. . . .

X’’=3

Y’’=[]

del_one(X’’,Y’,Y’’)

X=1

Y=[2,3]

X=2

Y=[1,3]

X=3

Y=[1,2]

del_one(X,[1,2,3],Y)

perm([],V’’)

V’’=[]

X’=2

Y’=[3]

X’=3

Y’=[2]

Y’=[3]

X’=3X’=1

Y’=[1]

X’=1

Y’=[2]

X’=2

Y’=[1]

perm(Y,[X’|V’])

perm(Y’,[X’’|V’’])del_one(X’,Y,Y’)

perm([1,2,3],[X|V]) [1,2,3],[1,3,2],[2,1,3],[2,3,1],...

V=[2,3],[3,2],[1,2],[2,1],...

.

45/53

Sorting Strings

Prolog strings are lists of ASCII codes.

"Maggie" = [77,97,103,103,105,101]

aless(X,Y) :-

name(X,Xl), name(Y,Yl),

alessx(Xl,Yl).

alessx([],[|]).

alessx([X|],[Y|]) :- X < Y.

alessx([A|X],[A|Y]) :- alessx(X,Y).

46/53

Application: Mutant Animals

Mutant Animals

From Prolog by Example, Coelho & Cotta.

We’re given a set of words (French animals, in our case).

Find pairs of words where the ending of the first one is the
same as the beginning of the second.

Combine the words, so as to form new “mutations”.

48/53

Mutant Animals. . .

1 Find two words, Y and Z.

2 Split the words into lists of characters. name(atom, list)

does this.

3 Split Y into two sublists, Y1 and Y2.

4 See if Z can be split into two sublists, such that the prefix is
the same as the suffix of Y (Y2).

5 If all went well, combine the prefix of Y (Y1) with the suffix of
Z (Z2), to create the mutant list X.

6 Use name to combine the string of characters into a new atom.

49/53

Mutant Animals. . .

mutate(M) :-

animal(Y), animal(Z), Y \== Z,

name(Y,Ny), name(Z,Nz),

append(Y1,Y2,Ny), Y1 \==[],

append(Y2, Z2, Nz), Y2 \== [],

append(Y1,Nz,X), name(M,X).

animal(alligator). /* crocodile*/

animal(tortue). /* turtle */

animal(caribou). /* caribou */

animal(ours). /* bear */

animal(cheval). /* horse */

animal(vache). /* cow */

animal(lapin). /* rabbit */

50/53

Mutant Animals. . .

?- mutate(X).

X = alligatortue ; /* alligator+ tortue */

X = caribours ; /* caribou + ours */

X = chevalligator ; /* cheval + alligator*/

X = chevalapin ; /* cheval + lapin */

X = vacheval /* vache + cheval */

51/53

Summary

Prolog So Far. . .

Lists are nested structures

Each list node is an object

with functor . (dot).
whose first argument is the head of the list
whose second argument is the tail of the list

Lists can be split into head and tail using [H|T].

Prolog strings are lists of ASCII codes.

name(X,L) splits the atom X into the string L (or vice versa).

53/53

CSc 372

Comparative Programming Languages

28 : Prolog — The Database

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/36

collberg@gmail.com

Introduction

Manipulating the Database

So far we have assumed that the Prolog database is static, i.e.
that it is loaded once with the program and never changes
thereafter.

This is not necessarily true; we can add or remove facts and
rules from the database at will.

This is not necessarily good programming practice, but
sometimes it is necessary and sometimes it makes for elegant
programs.

In a nutshell:
1 Allows us to program with side effects.
2 Justified under some circumstances.
3 Often inefficient.

3/36

Operations on the Prolog
Database

Assert

assert(X) adds a clause to the database.
Not defined in gprolog!

asserta(X) adds a clause to the beginning of the database.

assertz(X) adds a clause to the end of the database.

assert always succeeds, and backtracking does not undo the
assertion.

5/36

Assert. . .

assert can be used in machine learning programs, program
which learn new facts as they progress.

In some Prolog implementations you have to specify whether
a certain clause is dynamic (new clauses can be added to the
database during execution) or static:

:- dynamic(hanoi/5).

This means that we can add and remove clauses with five
arguments whose functor is hanoi.

6/36

Assert . . . – Example

Write a program that learns the addresses of places in a city.

This program assumes a Manhattan-style city layout:
locations are given as the intersection of streets and avenues.

?- loc(whitehorse, Ave, St).

Ave = 8, St = 11

?- loc(airport, Ave, St).

-- this airport

what avenue? 5.

what street? 32.

Ave = 5, St = 32

?- loc(airport, Ave, St).

Ave = 5, St = 32

7/36

Assert . . . – Example

location(whitehorse, 8, 11).

location(microsoft, 8, 42).

location(condomeria, 8, 43).

location(plunket, 7, 32).

% Do we know the location of X?

loc(X, Ave, Str) :- location(X, Ave, Str), !.

% if not, learn it!

loc(X, Ave, Street) :-

nonvar(X), var(Ave), var(Str),

write(’-- this ’), write(X), nl,

write(’what avenue? ’), read(Ave),

write(’what street? ’), read(Street),

assert(location(X, Ave, Str)).

8/36

Retract

retract(X) removes the first clause that matches X.

assert and retract behave differently on backtracking.
When we backtrack through assert nothing happens. When
we backtrack to retract Prolog continues searching the
database trying to find another matching clause. If one is
found it is removed.

If the argument to retract(clause(X)) contains some
uninstantiated variables they will be instantiated.

retract(X) fails when no matching clause can be found.

9/36

Retract. . .

Backtracking does not undo the removal.

retractall(X) :-

retract(X), fail.

retractall(X) :-

retract((X :- Y))),

fail.

retractall().

10/36

Clause

clause(X, Y) finds all clauses in the database with head X

and body Y.

append([], X, X).

append([A|B],C,[A|D]) :-

append(B, C, D).

?- clause(append(X, Y, Z), T).

X=[], Y= 3, Z= 3, Y=true ;

X=[4| 5], Y= 6, Z=[4| 7],

Y=append(5, 6, 7) ;

no

11/36

Clause. . .

The goal clause(X, Y) instantiates X to the head of a goal
(the left side of :-) and Y to the body.

X can be just a variable (in which case it will match all the
clauses in the database), a fully instantiated (ground) term, or
a term which contains some uninstantiated variables.

Note that a fact has a body true.

12/36

Clause. . .

List all the clauses whose head matches X.

list(X) :- clause(X, Y),

print(X, Y),

write(’.’), nl, fail.

list().

print(X, true) :- !, write(X).

print(X, Y) :- write((X :- Y))).

?- list(append(X, Y, Z)).

append([], 4, 4).

append([5| 6], 7,[5| 8]) :-

append(6, 8, 8).

13/36

Clausal Representation of Data Structures

Normally we represent a data structure using a combination of
Prolog lists and structures.

A graph can for example be represented as a list of edges,
where each edge is represented by a binary structure:

[edge(a,b), edge(c,b), edge(a,d), edge(c,d)]

However, it is also possible to use clauses to represent data
structures such as lists, trees, and graphs.

It is usually not a good idea to do this, but sometimes it is
useful, particularly when we are faced with a static data
structure (one which does not change, or changes very little).

14/36

Clauses as Data Structures – Lists

list(c).

list(h).

list(r).

list(i).

list(s).

process list :- list(X), process item(X), fail.

process list.

15/36

Clauses as Data Structures – Trees

t(node1, node2, phone(thompson, 2432), node3).

t(node2, nil, phone(adams, 5488), node4).

t(node3, nil, phone(white, 2432), nil).

t(node4, nil, phone(mcbride, 1781), nil).

16/36

Clauses as Data Structures – Trees. . .

nil

phone(thomson, 2432).

node3

phone(white, 2432).
node2

phone(adams, 5488).

node4

phone(mcbride,1781)

nilnil

node1

17/36

Clauses as Data Structures – Trees. . .

inorder(nil).

inorder(Node) :-

t(Node, Left, P, Right),

inorder(Left),

write(P), nl,

inorder(Right).

?- inorder(node1).

phone(adams,5488)

phone(mcbride,1781)

phone(thompson,2432)

phone(white,2432)

18/36

Clausal Representation. . .

In general it is a bad idea to represent data in this way.

Inserting and removing data has to be done using assert and
retract, which are fairly expensive operations.

However, in Prolog implementations which support clause
indexing, storing data in clauses gives us a way to access
information directly, rather than through sequential search.

The reason for this is that indexing uses hash tables to access
clauses.

19/36

Switches

Switches

From Prolog by Example, Coelho & Cotta.

In some cases it is a good idea to use global data rather than
passing it around as a parameter.

Assume we want to be able to switch between short and long
error messages. Instead of extending every clause by an extra
parameter (clumsy and inefficient) we use a global switch.

The first clause in turnon will fire if the switch is already
turned on.

The first clause in turnoff fails if Switch was already off.

The first clause in flip fails if Switch was turned off, in
which case the second clause fires and the switch is turned on.

21/36

Switches. . .

turnon(Switch) :-

call(Switch), !.

turnon(Switch) :-

assert(Switch).

turnoff(Switch) :-

retract(Switch).

turnoff().

flip(Switch) :-

retract(Switch), !.

flip(Switch) :-

assert(Switch).

22/36

Switches. . .

turnon(terse mess).

.....

flip(terse mess).

message(C) :-

terse mes, write (’Error!’), nl, !.

message(C) :-

write (’We are sorry to...’),

write (’error has occurred near the symbol ’),

write(C), write(’. Please accept our...’),

nl, !.

23/36

Memoization

Memoization

Many recursive program are extremely inefficient because they
solve the same subproblem several times.

In dynamic programming the idea is simply to store the results
of a computation in a table, and when we try to solve the
same problem again we retrieve the value from the table
rather than computing the value once more.

There is a variation of dynamic programming known as
memoization.

25/36

Memoization – Towers of Hanoi

I’m sure you’ve heard of the Towers of Hanoi problem. It is
one first year computer science students are tortured with to
no end.

The problem is to move a number of disks from a peg A to a
peg B, using a peg C as intermediate storage. Additionally, we
are only allowed to put smaller disks onto larger disks.

A recursive solution of the problem to move N disks from A
to B is as follows:

1 Move N − 1 disks from A to C .
2 Move the remaining (largest) disk from A to B.
3 Move the N − 1 disks from C to B.

26/36

Memoization – Towers of Hanoi. . .

B CA

27/36

Memoization – Towers of Hanoi. . .

:- op(100, xfx, to).

hanoi(1, A, B, C, [A to B]).

hanoi(N, A, B, C, Ms) :-

N > 1,

N1 is N-1,

hanoi(N1, A, C, B, M1),

hanoi(N1, C, B, A, M2),

append(M1, [A to B|M2], Ms).

go(N, Moves) :-

hanoi(N, a, b, c, Moves).

28/36

Memoization – Towers of Hanoi. . .

?- go(2,M).

M = [a to c, a to b, c to b]

?- go(3,M).

M = [a to b, a to c, b to c,

a to b, c to a, c to b,

a to b]

?- go(4,M).

M = [a to c, a to b, c to b,

a to c, b to a, b to c,

a to c, a to b, c to b,

c to a, b to a, c to b,

a to c, a to b, c to b]

29/36

Memoization – Towers of Hanoi. . .

hanoi(1, A, B, C, [A to B]).

hanoi(N, A, B, C, Ms) :-

N > 1, R is N-1,

lemma(hanoi(R, A, C, B, M1)),

hanoi(N1, C, B, A, M2),

append(M1, [A to B|M2], Ms).

lemma(P) :- call(P),

asserta((P :- !)).

go(N, Pegs, Moves) :-

hanoi(N, A, B, C, Moves),

Pegs=[A, B, C].

30/36

Memoization – Towers of Hanoi. . .

hanoi(1, 3, 5, 4, [3 to 5]) :- !.

hanoi(2, 3, 4, 5,

[3 to 5, 3 to 4, 5 to 4]) :- !.

hanoi(3, 3, 5, 4,

[3 to 5, 3 to 4, 5 to 4,

3 to 5, 4 to 3, 4 to 5,

3 to 5]) :- !.

31/36

Example – Gensym

Example – Gensym

From Programming in Prolog, Clocksin & Mellish.

If we want to store data between different top-level queries,
then using the database is our only option.

In the following example we want to generate new atoms.

In order to make this work, gensym has to store the number
of atoms with a given prefix that it has generated so far. The
clause current num(Root, Num) is used for this purpose.
There is one current num clause for each kind of atom that
we generate.

33/36

Example – Gensym. . .

gensym(Root, Atom) :-

get num(Root, Num),

name(Root, Name1),

int name(Num, Name2),

append(Name1, Name2, Name),

name(Atom, Name).

get num(Root, Num) :-

retract(current num(Root, Num1)),

!, Num is Num1 + 1,

asserta(current num(Root, Num)).

get num(Root, 1) :-

asserta(current num(Root, 1)).

34/36

Example – Gensym. . .

int name(Int, List) :- int name(Int, [], List).

int name(I, Sofar, [C|Sofar]) :-

I<10, !, C is I+48.

int name(I, Sofar, List) :-

Tophalf is I/10, Bothalf is I mod 10,

C is Bothalf + 48,

int name(Tophalf, [C|Sofar], List).

?- gensym(chris, A).

A = chris1

?- gensym(chris, A).

A = chris2

?- gensym(chris, A).

A = chris3

35/36

Readings and References

Read Clocksin-Mellish, Chapter 6.

36/36

CSc 372

Comparative Programming Languages

29 : Prolog — Negation

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/56

collberg@gmail.com

The Cut

Cuts & Negation

The cut (!) is is ued to affect Prolog’s backtracking. It can be
used to

reduce the search space (save time).

tell Prolog that a goal is deterministic (has only one solution)
(save space).

construct a (weak form of) negation.

construct if then else and once predicates.

3/56

Cuts & Negation

The cut reduces the flexibility of clauses, and destroys their
logical structure.

Use cut as a last resort.

Reordering clauses can sometimes achieve the desired effect,
without the use of the cut.

If you are convinced that you have to use a cut, try using
if then else, once, or not instead.

4/56

The Cut

The Cut

The cut succeeds and commits Prolog to all the choices

made since the parent goal was called.

Cut does two things:

commit: Don’t consider any later clauses for this goal.

prune: Throw away alternative solutions to the left of the
cut.

6/56

The Cut

p :− x, y.
p :− z.

Forget alternative
solutions

prune:

commit:
Don’t try these

p :− a, b, !, c, d.

7/56

The Cut

t

q :− s.
q :− t.
s.

p :− q, !.
p :− r.

succeed

p

! rq

s

8/56

The Boxflow Model

The Boxflow Model

The Boxflow Model

REDO

Try to satsify

the goal

Save the current

state in case we

need to backtrack

Try to find

another solution
No, the goal could

not be satisfied

CALL

FAIL

SUCCEED

11/56

The Boxflow Model

S

a(X) :− b(X), c(X).
a(X) :− d(X).

CALL

FAIL

SUCCEED

REDO

a(X)

b(X) c(X)

d(X)

C C

C

F

S

R F

S

R

RF

12/56

The Cut

a

b

d

! c

a :− d.
a :− b, !, c. if b then c

else d

CALL

FAIL

SUCCEED

REDO

13/56

Classifying Cuts

Classifying Cuts

Classifying Cuts

grue No effect on logic, improves efficiency.

green Prune away

irrelevant proofs
proofs which are bound to fail

blue Prune away

proofs a smart Prolog
implementation would not try, but
a dumb one might.

red Remove unwanted logical solutions.

16/56

Green Cuts

Green Cuts – Merge

Produce an ordered list of integers from two ordered lists

of integers.

merge([X|Xs], [Y|Ys], [X|Zs]) :-

X < Y, merge(Xs, [Y|Ys], Zs).

merge([X|Xs], [Y|Ys], [X,Y|Zs]) :-

X = Y, merge(Xs, Ys, Zs).

merge([X|Xs], [Y|Ys], [Y|Zs]) :-

X > Y, merge([X|Xs], Ys, Zs).

merge(Xs, [], Xs).

merge([], Ys, Ys).

?- merge([1,4], [3,7], L).

L = [1,3,4,7]

18/56

Green Cuts – Merge

(5)

succeedfail

2<2 m([3,5],[2,3],Xs’)

m([2,3,5], [2,3], Xs)

m([3,5],[3],Xs’)2=2

(1)
(2)

(3)

m([2,3,5],[3],Xs’)2>2

(4)

19/56

Green Cuts

Still, there is no way for Prolog to know that the clauses are
mutually exclusive, unless we tell it so. Therefore, Prolog
must keep all choice-points (points to which Prolog might
backtrack should there be a failure) around, which is a waste
of space.

If we insert cuts after each test we will tell Prolog that the
procedure is deterministic, i.e. that once one test succeeds,
there is no way any other test can succeed. Prolog therefore
does not need to keep any choice-points around.

20/56

Green Cuts – Merge

merge([X|Xs], [Y|Ys], [X|Zs]) :-

X < Y, !,

merge(Xs, [Y|Ys], Zs).

merge([X|Xs], [Y|Ys], [X,Y|Zs]) :-

X = Y, !,

merge(Xs, Ys, Zs).

merge([X|Xs], [Y|Ys], [Y|Zs]) :-

X > Y, !,

merge([X|Xs], Ys, Zs).

merge(Xs, [], Xs) :- !.

merge([], Ys, Ys) :- !.

21/56

Green Cuts – Merge

(5)

fail succeed

m([3,5],[3],Xs’)2=2 !m([3,5],[2,3],Xs’)!2<2 m([2,3,5],[3],Xs’)2>2

m([2,3,5], [2,3], Xs)

!

(1)

(2)
(3) (4)

22/56

Red Cuts

Red Cuts – Abs

abs1(X, X) :- X >= 0.

abs1(X, Y) :- Y is -X.

?- abs1(-6, X).

X = 6 ;

?- abs1(6, X).

X = 6 ;

X = -6 ;

abs2(X, X) :- X >= 0, !.

abs2(X, Y) :- Y is -X.

?- abs2(-6, X).

X = 6 ;

?- abs2(6, X).

X = 6 ;

24/56

Red Cuts – Abs

abs3(X, X) :- X >= 0.

abs3(X, Y) :- X < 0,

Y is -X.

?- abs3(-6, X).

X = 6 ;

no

?- abs3(6, X).

X = 6 ;

no

25/56

Red Cuts – Intersection

Find the intersection of two lists A & B, i.e. all elements

of A which are also in B.

intersect([H|T], L, [H|U]) :-

member(H, L),

intersect(T, L, U).

intersect([|T], L, U) :-

intersect(T, L, U).

intersect(, ,[]).

26/56

Red Cuts – Intersection

?- intersect([3,2,1],[1,2], L).

L = [2,1] ;

L = [2] ;

L = [2] ;

L = [1] ;

L = [] ;

L = [] ;

L = [] ;

L = [] ;

no

27/56

Red Cuts – Intersection

i(_,_,[])

succeed

m(2,[1,2])

fail

m(3,[1,2])

succeed

m(1,[1,2])

i([3,2,1],[1,2],L)

(2)
(3)

(1) (2)

(2) (3)

i(_,_,[])

L=[2,1]

i([],[1,2],L)

i([2,1],[1,2],L)
L=[2,1]

L=[1]

i(_,_,[])

i([1],[1,2],L) i(_,_,[])

(3)

(1)

i([1],[1,2],L)

(1)

L=[]

i([],[1,2],L)

i(_,_,[])
28/56

Red Cuts – Intersection

(1)

succeed

m(1,[1,2])

i(_,_,[])

i([],[1,2],L)

succeed

m(2,[1,2])

fail

m(3,[1,2])

i([3,2,1],[1,2],L)

(2)

(1) (2)

(1)
(2) (3)

i(_,_,[])i([],[1,2],L)

i([2,1],[1,2],L)

L=[]

L=[]

L=[2]

L=[2]

i(_,_,[])

i([1],[1,2],L) i(_,_,[])

(3)

(3)

i(_,_,[])

i([1],[1,2],L)

29/56

Red Cuts – Intersection

i([1],[1,2],L)

fail

m(3,[1,2])

succeed

m(1,[1,2])

i(_,_,[])

i([],[1,2],L)

succeed

m(2,[1,2])

i([3,2,1],[1,2],L)

(2)
(3)

(1) (2)

(1)
(2) (3)

i(_,_,[])i([],[1,2],L)

i([1],[1,2],L)

i([2,1],[1,2],L)

L=[]

L=[]

L=[2]

L=[2]

i(_,_,[])

i(_,_,[])

(3)

i(_,_,[])

(1)

30/56

Red Cuts – Intersection

intersect([H|T], L, [H|U]) :-

member(H, L),

intersect(T, L, U).

intersect([|T], L, U) :-

intersect(T, L, U).

intersect(, ,[]).

intersect1([H|T], L, [H|U]) :-

member(H, L), !,

intersect1(T, L, U).

intersect1([|T], L, U) :-

!, intersect1(T, L, U).

intersect1(, ,[]).

31/56

Red Cuts – Intersection

(3)
fail

m(3,[1,2])

succeed

m(1,[1,2])

succeed

m(2,[1,2])

i([3,2,1],[1,2],L)

(2)
(3)

(1) (2)

(1)
(2) (3)

i(_,_,[])

L=[2,1]

L=[]

i([1],[1,2],L)

i([2,1],[1,2],L)
L=[2,1]

L=[1]

i([],[1,2],L)!

!

!

(1)

32/56

Blue Cuts

Blue Cuts

First clause indexing will select the right clause in

constant time:

clause(x(5), ...) :- ...

clause(y(5), ...) :- ...

clause(x(5, f), ...) :- ...

?- clause(x(C, f),...).

First clause indexing will select the right clause in linear

time:

clause(W, x(5), ...) :- ...

clause(W, y(5), ...) :- ...

clause(W, x(5, f), ...) :- ...

?- clause(a, x(C, f),...).

34/56

Blue Cuts

capital(britain, london).

capital(sweden, stockholm).

capital(nz, wellington).

?- capital(sweden, X).

X = stockholm

?- capital(X, stockholm).

X = sweden

capital1(britain, london) :- !.

capital1(sweden, stockholm) :- !.

capital1(nz, wellington) :- !.

?- capital1(sweden, X).

X = stockholm

?- capital1(X, stockholm).

X = sweden

35/56

Once

Red Cuts – Once

member(H,[H|]).

member(I, [|T]) :- member(I, T).

?- member(1,[1,1]), write(’x’), fail.

xx

mem1(H,[H|]) :- !.

mem1(I, [|T]) :- mem1(I, T).

?- mem1(1, [1,1]), write(’x’), fail.

x

once(G) :- call(G), !.

one mem(X, L) :- once(mem(X, L)).

?- one mem(1,[1,1]), write(’x’),fail.

x

37/56

Red Cuts – Once

Red cuts prune away logical solutions. A clause with a

red cut has no logical reading.

?- member(X, [1,2]).

X = 1 ;

X = 2 ;

no

?- one mem(X, [1,2]).

X = 1 ;

no

38/56

Cut & Fail & IF-THEN-ELSE

Red Cuts – Abs

abs2(X, X) :- X >= 0, !.

abs2(X, Y) :- Y is -X.

if then else(P,Q,R):-call(P),!,Q.

if then else(P,Q,R):-R.

abs4(X, Y) :- if then else(X >= 0,

Y=X, Y is -X).

?- abs4(-6, X).

X = 6 ;

no

?- abs4(6, X).

X = 6 ;

no

40/56

IF–THEN–ELSE

intersect([H|T], L, [H|U]) :-

member(H, L), !, intersect(T, L, U).

intersect([|T], L, U) :-

!, intersect(T, L, U).

intersect(, ,[]).

IF H ∈ L THEN

compute the inters. of T and L,

let H be in the resulting list.

ELSEIF the list \= [] THEN

let the resulting list be the

intersection of T and L.

ELSE

let the resulting list be [].

ENDIF
41/56

IF–THEN–ELSE

if then else(P,Q,R) :- call(P), !, Q.

if then else(P,Q,R) :- R.

intersect2([X|T], L, W) :-

if then else(member(X, L),

(intersect2(T, L, U), W=[X|U]),

if then else(T \= [],

intersect2(T, L, W),

W = [])).

42/56

Negation

Negation

Open vs. Closed World

How should we handle negative information?
Open World Assumption:

If a clause P is not currently asserted then P is neither

true nor false.

Closed World Assumption:

If a clause P is not currently asserted then the negation

of P is currently asserted.

45/56

Open vs. Closed World

striker(dahlin).

striker(thern).

striker(andersson).

Open World Assumption:

Dahlin, Thern, and Andersson are strikers, but there may

be others we don’t know about.

Closed World Assumption:

X is a striker if and only if X is one of Dahlin, Thern, and

Andersson.

46/56

Negation in Prolog

Prolog makes the closed world assumption.

Anything that I do not know and cannot deduce is not true.

Prolog’s version of negation is negation as failure.

not(G) means that G is not satisfiable as a Prolog goal.

(1) not(G) :- call(G),!,fail.

(2) not(G).

?- not(member(5, [1,3,5])).

no

?- not(member(5, [1,3,4])).

yes

47/56

Prolog Execution – Not

Some Prolog implementations don’t define not at all. We
then have to give our own implementation:

(1) not(G) :- call(G),!,fail.

(2) not(G).

Some implementations define not as

the operator not;
the operator \+;
the predicate not(Goal).

gprolog uses \+.

48/56

Prolog Execution – Not

not(P) :− P, !, fail; true.

!

CALL

FAIL

SUCCEED

REDO

fail

not(P)

P

true

49/56

Negation Example – Disjoint

Do the lists X & Y not have any elements in common?

disjoint(X, Y) :-

not(member(Z, X),

member(Z, Y)).

?- disjoint([1,2],[3,2,4]).

no

?- disjoint([1,2],[3,7,4]).

yes

50/56

Prolog Negation Problems

man(john). man(adam).

woman(sue). woman(eve).

married(adam, eve).

married(X) :- married(X,).

married(X) :- married(, X).

human(X) :- man(X).

human(X) :- woman(X).

% Who is not married?

?- not married(X).

false

% Who is not dead?

?- not dead(X).

true 51/56

Prolog Negation Problems

man(john). man(adam).

woman(sue). woman(eve).

married(adam, eve).

married(X) :- married(X,).

married(X) :- married(, X).

human(X) :- man(X).

human(X) :- woman(X).

% Who is not married?

?- human(X), not married(X).

X = john ; X = sue

% Who is not dead?

?- man(X), not dead(X).

X = john ; X = adam ;

52/56

Prolog Negation Problems

If G terminates then so does not G.

If G does not terminate then not G may or may not terminate.

married(abraham, sarah).

married(X, Y) :- married(Y, X).

?- not married(abraham,sarah).

false

?- not married(sarah,abraham).

non-termination

53/56

Open World Assumption

We can program the open world assumption:

A query is either true, false, or unknown.

A false facts F has to be stated explicitly, using false(F).

If we can’t prove that a statement is true or false, it’s
unknown.

% Philip is Charles’ father.

father(philip, charles).

% Charles has no children.

false(father(charles, X)).

54/56

Open World Assumption

prove(P) :- call(P), write(’** true’), nl,!.

prove(P) :- false(P), write(’** false’), nl,!.

prove(P) :-

not(P), not(false(P)),

write(’*** unknown’), nl, !.

55/56

Open World Assumption

father(philip, charles).

false(father(charles, X)).

% Is Philip the father of ann?

?- prove(father(philip, ann)).

** unknown

% Does Philip have any children?

?- prove(father(philip, X)).

** true

X = charles

% Is Charles the father of Mary?

?- prove(father(charles, mary)).

** false

56/56

CSc 372

Comparative Programming Languages

30 : Prolog — Techniques

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/51

collberg@gmail.com

Generate & Test – Integer
Division

Generate & Test

A generate-and-test procedure has two parts:

1 A generator which can generate a number of possible
solutions.

2 A tester which succeeds iff the generated result is an
acceptable solution.

When the tester fails, the generator will backtrack and generate a
new possible solution.

3/51

Generate & Test – Division

We can define integer arithmetic (inefficiently) in Prolog:

% Integer generator.

is int(0).

is int(X) :- is int(Y), X is Y+1.

% Result = N1 / N2.

divide(N1, N2, Result) :-

is int(Result),

P1 is Result*N2,

P2 is (Result+1)*N2,

P1 =< N1, P2 > N1, !.

| ?- divide(6,2,R).

R = 3

4/51

Generate & Test – Division. . .

is int(0).

is int(X) :- is int(Y), X is Y+1.

divide(N1, N2, Result) :-

is int(Result),

P1 is Result*N2, P2 is (Result+1)*N2,

P1 =< N1, P2 > N1, !.

divide(6,2,R) --- N1=6, N2=2

Res P1 P2 P1 =< N1 P2 > N1

0 0 2 True False

1 2 4 True False

2 4 6 True False

3 6 12 True True

5/51

Generate & Test – Tic-Tac-Toe

Generate & Test – Tic-Tac-Toe

This is a part of a program to play Tic-Tac-Toe (Naughts and
Crosses).

Two players take turns to put down X and O on a 3x3 board.
Whoever gets a line of 3 (horizontal, vertical, or diagonal)
markers has won.

X
put 0 in
square 4.

1 2 3

4 5 6

987

threatened X 0

X 0

Naught must

7/51

Generate & Test – Tic-Tac-Toe. . .

We’ll look at the predicate forced move which answers the
question:

Am I (the naught-person) forced to put a marker at a
particular position?

The program tries to find a line with two crosses.

It only makes sense to find one forced move, hence the cut.

8/51

Generate & Test – Tic-Tac-Toe. . .

aline(L) is a generator – it generates all possible lines(L).

threatening(L,B,Sq) is a tester – it succeeds if Sq is a
threatened square in line L of board B.

forced move(Board, Sq) :-

aline(Line),

threatening(Line, Board, Sq), !.

?- forced move(b(x, ,o, , , ,x,o,x),4).

yes

aline([1,2,3]). aline([4,5,6]). aline([7,8,9]).

aline([1,4,7]). aline([2,5,8]). aline([3,6,9]).

aline([1,5,9]). aline([3,5,7]).

9/51

Gen. & Test – Tic-Tac-Toe. . .

threatening succeeds if it finds a line with two crosses and
one empty square.

threatening([X,Y,Z],B,X) :-

empty(X,B), cross(Y,B), cross(Z,B).

threatening([X,Y,Z],B,Y) :-

cross(X,B), empty(Y,B), cross(Z,B).

threatening([X,Y,Z],B,Z) :-

cross(X,B), cross(Y,B), empty(Z,B).

10/51

Gen. & Test – Tic-Tac-Toe. . .

A square is empty if it is an uninstantiated variable.

arg(N,S,V) returns the N:th element of a structure S.

empty(Sq, Board) :-

arg(Sq,Board,Val), var(Val).

cross(Sq, Board) :-

arg(Sq,Board,Val), nonvar(Val), Val=x.

naught(Sq, Board) :-

arg(Sq,Board,Val), nonvar(Val), Val=o.

11/51

Arbitrage

Generate & Test – Arbitrage

From the Online Webster’s:

arbitrage simultaneous purchase and sale of the same or

equivalent security in order to profit from price

discrepancies

?- arbitrage.

dollar dmark yen 1.03751

yen dollar dmark 1.03751

dmark yen dollar 1.03751

13/51

Generate & Test – Arbitrage. . .

arbitrage :-

profit3(From, Via, To, Profit), % Gen

Profit > 1.03, % Test

write(From), write(’ ’),

write(Via), write(’ ’),

write(To), write(’ ’),

write(Profit), nl, fail.

arbitrage.

% Find three currencies, and the profit:

profit3(From, Via, To, Profit) :-

best rate(From, Via, P1, R1),

best rate(Via, To, P2, R2),

best rate(To, From, P3, R3),

Profit is R1 * R2 * R3.

14/51

exchange(pound, dollar, london, 1.550).

exchange(pound, dollar, new york, 1.555).

exchange(pound, dollar, tokyo, 1.559).

exchange(pound, yen, london, 153.97).

exchange(pound, yen, new york, 154.05).

exchange(pound, yen, tokyo, 154.3).

exchange(pound, dmark, london, 2.4075).

exchange(pound, dmark, new york, 2.44).

exchange(pound, dmark, tokyo, 2.408).

exchange(dollar, yen, london, 98.3).

exchange(dollar, yen, new york, 98.35).

exchange(dollar, yen, tokyo, 98.25).

exchange(dollar, dmark, london, 1.537).

exchange(dollar, dmark, new york, 1.58).

exchange(dollar, dmark, tokyo, 1.57).

exchange(yen, dmark, london, 0.015635).

exchange(yen, dmark, new york, 0.0155).

exchange(yen, dmark, tokyo, 0.0158).

Generate & Test – Arbitrage. . .

% We can convert back and forth

% between currencies:

rate(From, To, P, R) :-

exchange(From, To, P, R).

rate(From, To, P, R) :-

exchange(To, From, P, S), R is 1/S.

% Find the best place to convert

% between currencies From & To:

best rate(From, To, Place,Rate):-

rate(From, To, Place, Rate),

not((rate(From, To, P1, R1), R1>Rate)).

16/51

Stable Marriages

Stable Marriages

Suppose there are N men and N women who want to get
married to each other.

Each man (woman) has a list of all the women (men) in his
(her) preferred order. The problem is to find a set of
marriages that is stable.

A set of marriages is unstable if two people who are not married
both prefer each other to their spouses. If A and B are men and X

and Y women, the pair of marriages A− Y and B − X is unstable
if

A prefers X to Y , and

X prefers A to B .
PrefersMarried to

Y

X

B

A
WomenMen

Y

X

B

A
WomenMen

18/51

Stable Marriages – Example

Person Sex 1st choice 2nd choice 3rd choice
Avraham M Chana Ruth Zvia
Binyamin M Zvia Chana Ruth
Chaim M Chana Ruth Zvia
Zvia F Binyamin Avraham Chaim
Chana F Avraham Chaim Binyamin
Ruth F Avraham Binyamin Chaim

Chaim-Ruth, Binyamin-Zvia, Avraham-Chana is stable.

Chaim-Chana, Binyamin-Ruth, Avraham-Zvia is unstable,
since Binyamin prefers Zvia over Ruth and Zvia prefers
Binyamin over Avraham.

19/51

Stable Marriages. . .

Write a program which takes a set of people and their
preferences as input, and produces a set of stable marriages as
output.

Input Format:

prefer(avraham, man,

[chana,tamar,zvia,ruth,sarah]).

men([avraham,binyamin,chaim,david,elazar]).

women([zvia, chana, ruth, sarah, tamar]).

The first rule, says that avraham is a man and that he prefers
chana to tamar, tamar to zvia, zvia to ruth, and ruth to
sarah.

20/51

prefer(avraham, man, [chana, tamar, zvia, ruth, sarah]).

prefer(binyamin, man, [zvia, chana, ruth, sarah, tamar]).

prefer(chaim, man, [chana, ruth, tamar, sarah, zvia]).

prefer(david, man, [zvia, ruth, chana, sarah, tamar]).

prefer(elazar, man, [tamar, ruth, chana, zvia, sarah]).

prefer(zvia, woman, [elazar, avraham, david, binyamin, chaim]).

prefer(chana, woman, [david, elazar, binyamin, avraham, chaim]).

prefer(ruth, woman, [avraham, david, binyamin, chaim, elazar]).

prefer(sarah, woman, [chaim, binyamin, david, avraham, elazar]).

prefer(tamar, woman, [david, binyamin, chaim, elazar, avraham]).

Stable Marriages. . .

gen generates all possible sets of marriages, unstable tests if
they are stable.

go :-

men(ML), women(WL),

gen(ML, WL, [], L), \+unstable(L)),
show(L), fail.

go.

?- men(ML), women(WL), gen(ML,WL,[],L).

L = [m(elazar,tamar),m(david,sarah),

m(chaim,ruth),m(binyamin,chana),

m(avraham,zvia)] ? ;

· · · · · · · · ·

22/51

Stable Marriages — Generate

gen([A|M1], W, In, Out) :-

delete(B, W, W1),

gen(M1, W1, [m(A,B)|In], Out).

gen([],[],L,L).

delete(A, [A|L], L).

delete(A, [X|L], [X|L1]) :-

delete(A, L, L1).

23/51

Stable Marriages — Test

% A prefers B to C.

pref(A, B, C) :-

prefer(A, , L),

append(, [B|S], L), !,

member(C, S), !.

unstable(L) :-

append(, [A|R], L),

member(B, R),

(is unstable(A,B);

is unstable(B,A)).

is unstable(m(A,Y), m(B,X)) :-

pref(A, X, Y),

pref(X, A, B).

24/51

Stable Marriages. . .

PrefersMarried to
Y

X

B

A
WomenMen

Y

X

B

A
WomenMen

25/51

Bedtime Story

Puzzles – Bedtime Story

“Helder, a poor scientist, was in love with the daughter

of an admiral. One day, a general captured the girl.

Helder rode to the general’s barrack and killed the

general. The girl was grateful and fell in love with

Helder. The admiral was so happy to have his daughter

back he gave Helder half of all his boats.”

“Who is the father of the girl?”

“Who is rich?”

“Who loves who?”

“Who is poor?”

“Who captured who?”

“Who killed who?”

27/51

Puzzles – Bedtime Story. . .

:- op(500, xfy, ’is ’).

:- op(500, yfx, ’loves’).

:- op(500, yfx, ’kills’).

:- op(500, yfx, ’to’).

:- op(500, yfx, ’captures’).

:- op(500, yfx, ’rides to’).

:- op(500, yfx, ’gives’).

:- op(500, yfx, ’is father of’).

:- op(800, yfx, ’and’).

X and Y :- X, Y.

28/51

Puzzles – Bedtime Story. . .

helder is poor.

helder is scientist.

admiral is happy.

admiral is father of girl.

helder loves girl.

girl loves helder.

general captures girl.

helder kills general.

admiral gives half boats to helder.

29/51

Puzzles – Bedtime Story. . .

% Who loves who?

?- Z loves Y, write(Z), write(’ loves ’),

write(Y), nl, fail.

helder loves girl

girl loves helder

% Who captures who?

?- Z captures Y.

Z = general

Y = girl

30/51

Puzzles – Bedtime Story. . .

% Who kills who?

?- Z kills Y.

Z = helder

Y = general

% Who loves who’s daughter?

?- Z loves G and F is father of G.

Z = helder

G = girl

F = admiral

31/51

Puzzles – Trees

Puzzles – Trees

The Crewes, Dews, Grandes, and Lands of Bower Street each
have a front-yard tree: Catalpa, Dogwood, Gingko, Larch.

The Grandes’ tree and the Catalpa are on the same side of the
street.

The Crewes live across the street from the Larch.

The Larch is across the street from the Dews’ house.

No tree starts with the same letter as its owner’s name.

Who owns which tree?

33/51

Puzzles – Trees

| ?- solve.

Grandes owns the Larch

Crewes owns the Dogwood

Dews owns the Ginko

Lands owns the Catalpa

34/51

Puzzles – Trees. . .

Bower Street

Larch

Crewes

Grandes Lands

Dews

Situation 2

Larch

Dews Crewes Grandes

Lands

Situation 1 S

N

Bower Street

Catalpa

Catalpa

? ?

35/51

Puzzles – Trees. . .

% Let’s assume that the Larch is on the

% north side of the street.

northside(’Larch’).

% The Crewes live across the street from

% the Larch. The Larch is across the

% street from the Dews’ house.

southside(’Crewes’).

southside(’Dews’).

% The Grandes’ tree and the ’Catalpa’

% are on the same side of the street.

northside(’Catalpa’) :-

northside(’Grandes’).

36/51

Puzzles – Trees. . .

% If Grandes have a ’Larch’, then they

% must live on the north side.

northside(’Grandes’) :-

have(’Grandes’, ’Larch’).

% Grandes have a ’Larch’, if noone

% else does.

have(’Grandes’,’Larch’) :-

not own(’Crewes’,’Larch’),

not own(’Dews’,’Larch’),

not own(’Lands’,’Larch’)

37/51

Puzzles – Trees. . .

% then the Dews’ and Crews’ will be

% on the south side. Also, if the

% Catalpa is on the north the Dogwood

% and Ginko must both be on the south

% side (since each house has one tree).

southside(’Dogwood’) :-

northside(’Larch’),

northside(’Catalpa’).

southside(’Ginko’) :-

northside(’Larch’),

northside(’Catalpa’).

38/51

Puzzles – Trees. . .

% Are you a tree or a plant?

person(X) :- member(X,

[’Grandes’,’Crewes’,’Dews’,’Lands’]).

tree(X) :- member(X,

[’Catalpa’,’Ginko’,’Dogwood’,’Larch’]).

% No tree starts with the same letter as

% its owner’s name.

not own(X,Y) :-

name(X, [A|]), name(Y,[A|]).

% The Grandes’ tree and the ’Catalpa’

% are on the same side of the street.

not own(’Grandes’,’Catalpa’).

39/51

Puzzles – Trees. . .

% Only a person can own a tree.

not own(X,Y) :- person(X), person(Y).

not own(X,Y) :- tree(X), tree(Y).

% A person can only own a tree that’s on

% the same side of the street as

% themselves.

not own(X,Y) :- northside(X),southside(Y).

not own(X,Y) :- southside(X),northside(Y).

40/51

Puzzles – Trees. . .

% You can’t own what someone else owns.

not own(’Crewes’, X) :- owns(’Dews’, X).

not own(’Lands’, X) :- owns(’Crewes’, X).

not own(’Lands’, X) :- owns(’Dews’,X).

owns(X,Y) :-

person(X), tree(Y),

not(not own(X,Y)).

solve :-

owns(Person,Tree),

write(Person), write(’ owns the ’),

write(Tree),nl,fail.

solve.

41/51

Logic Arithmetic

Arithmetic In Logic

Arithmetic in Prolog is just like arithmetic in imperative
languages. We can’t do 25 is X + Y and hope to get X
and Y instantiated to every pair of numbers that sum to 25.

There are cases when we need the power of logic arithmetic,
rather than the efficient built-in operators. That is no
problem, we can always define the logic arithmetic predicates
ourselves.

For example, how do we split a number into the two parts
Note that this is similar to splitting a list using append.

43/51

Arithmetic In Logic. . .

We can always write our own logic arithmetic predicates.

% Represent S as the sum of 2 numbers.

% minus(S, D1, D2) -- S − D1 = D2

minus(S, S, 0).

minus(S, D1, D2) :- % Note that

S > 0, S1 is S-1, % S must be

minus(S1, D1, D3), % instantiated.

D2 is D3 + 1.

?- minus(3, X, Y).

X = 3, Y = 0 ;

X = 2, Y = 1 ;

X = 1, Y = 2 ;

X = 0, Y = 3

44/51

Arithmetic In Logic. . .

The minus predicate splits S into D1 + D2. Why does it
work? Well, look at this:

S1 = S − 1 first line

D3 = S1− D1 second line

D2 = D3 + 1 third line

S = S1 + 1

= (D3 + D1) + 1

= ((D2− 1) + D1) + 1

= D2 + D1

Note that the minus predicate require the first argument to
be instantiated, but not the second and third. minus, below,
is a lot like append.

45/51

Pythagorean Triples

5

5

4

4

3

3

46/51

Pythagorean Triples. . .

?- pythag(X, Y, Z).

X = 4, Y = 3, Z = 5 ;

X = 3, Y = 4, Z = 5 ;

X = 8, Y = 6, Z = 10 ;

X = 6, Y = 8, Z = 10 ;

X = 12, Y = 5, Z = 13 ;

X = 5, Y = 12, Z = 13 ;

X = 12, Y = 9, Z = 15

47/51

Pythagorean Triples. . .

is int is used to generate a sequence of numbers.

int triple splits the generated integer S into the sum of
three integer X, Y, Z.

In other words, first we check all triples that sum to 1 to see if
any of them are pythagorean triples, then all triples that sum
to 2, etc. This obviously will eventually check “all” triples. It
also will make sure that we get them “in order”, with the
smallest triples first.

48/51

Pythagorean Triples. . .

% Generate a sequence of numbers.

is int(0).

is int(X) :- is int(Y), X is Y+1.

pythag(X, Y, Z) :-

int triple(X, Y, Z),

Z*Z =:= X*X + Y*Y.

% Generate integer triples: S=X+Y+Z.

int triple(X, Y, Z) :-

is int(S),

minus(S, X, S1), X > 0,

minus(S1, Y, Z), Y > 0, Y > 0.

49/51

Exercise: Crossword Puzzle

Across Down

2

1

1

3 2

3

1 The Fifth
Element.

2 Mumintroll
mum.

3 Beer.

1 Kills at chess.

2 Best drummer.
Ever.

3 Electric Light
Orchestra.

Write a program that solves the crossword puzzle above, assuming
this database of words:

word(leeloo). word(death). word(ale).

word(tove). word(levon). word(elo).

50/51

Exercise: Crossword Puzzle

1 Now, assume that you have a much bigger database of words.

2 How would you organize the database for much faster
searching?

3 How would you rewrite your code to make use of the new
database structure?

51/51

CSc 372

Comparative Programming Languages

31 : Prolog — Exercises

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/37

collberg@gmail.com

Problem I

Write a procedure islist which succeeds if its argument is a list,
and fails otherwise.

2/37

Problem II

Write a procedure alter which changes English sentences
according to rules given in the database.
Example:

change(you, i).

change(are, [am, not]).

change(french, german).

change(do, no).

?- alter([do,you,know,french],X).

X = [no,i,know,german]

?- alter([you,are,a,computer],X).

X = [i,[am,not],a,computer]

3/37

Problem III

Write a list subtraction procedure.
Example:

?- sub([1,2,4,6,8], [2,6], L).

L=[1,4,8].

4/37

Problem IV

Write a procedure pick which returns the first N elements of a
given list.
Example:

?- pick([1,2,4,6,8], 3, L).

L=[1,2,4].

5/37

Problem V

Write a procedure alt which produces every other element in a list.
Example:

?- alt([1,2,3,4,5,6], A).

A = [1,3,5]

6/37

Problem VI

Write a procedure del which removes duplicate elements from a
list.
Example:

?- del([a,c,x,a,g,c,d,a], A).

A = [a,c,x,g,d]

7/37

Problem VII

Write a procedure tolower which converts an atom containing
upper case characters to the corresponding atom with only lower
case characters.
Example:

?- tolower(’hEj HoPp3’, A).

A = hej hopp3

8/37

Problem VIII

Write a procedure max3 which produces the largest of three
integers.
Example:

?- max3(3,5,1,X).

X = 5

9/37

Problem IX

Write a procedure double which multiplies each element in a list
of numbers by 2.
Example:

?- double([1,5,3,9,2], A).

A = [2,10,6,18,4]

10/37

Problem X

Write a procedure ave which computes the average of a list of
numbers.
Example:

?- ave([1,5,3,9,2], A).

A = 4

11/37

Problem XI

Write a procedure sum which produces the sum of the integers up
to and including its first argument.
Example:

?- sum(5, S).

S = 15

12/37

Problem XII

Suppose our database contains facts of the form

person age(Name, Age).

person sex(Name, Sex).

where Sex is either male or female. Write a procedure combine

which extends the database with additional facts of the form

person full(Name, Age, Sex).

The procedure should produce one such fact for each person who
has both an age record and a sex record.

13/37

Problem XII. . .

Example: Given the following database

person age(chris, 25). % Yeah, right...

person sex(chris, male).

person age(louise, 8).

person sex(louise, female).

combine should produce these additional facts:

person full(chris, 25, male).

person full(louise, 8, female).

14/37

Problem XIII

Write a Prolog procedure which reverses the order of Johns
children in the database. For example, given the following database

child(mary, john).

child(jane, john).

child(bill, john).

the goal ?- reversefacts. should change it to

child(bill, john).

child(jane, john).

child(mary, john).

15/37

Problem XIV

Write a Prolog procedure to assemble a list of someone’s children
from the facts in the database. The database should remain
unchanged.
Example:

child(mary, john).

child(jane, john).

child(bill, john).

?- assemble(john, L).

L = [mary, jane, bill]

16/37

Problem XV

Write down the all results (including variable bindings) of the
following query:

?- append([], [1, 2|B], C),

append([3,4], [5], B).

17/37

Problem XVI

Write down the all results (including variable bindings) of the
following query:

?- bagof(X, Y^append(X, Y, [1,2,3,4]), Xs).

18/37

Problem XVII

Write down the all results (including variable bindings) of the
following query:

?- L=[1,2], member(X, L), delete(X, Y, L).

19/37

Problem XVIII

Write down the all results (including variable bindings) of the
following query:

?- member(X, [a,b,c]), member(Y, [a,b,c]), !, X \= Y.

20/37

Problem XIX

Given the following Prolog database

balance(john, 100).

balance(sue, 200).

balance(mary, 100).

balance(paul, 500).

list all the results of these Prolog queries:

1 ?- bagof(Name, balance(Name, Amount), Names).

2 ?- bagof(Name, Amount^balance(Name, Amount),

Names).

3 ?- bagof(Name, Name^balance(Name, Amount),

Names).

21/37

Problem XX

Describe (in English) what the following predicate does:

% Both arguments to bbb are lists.

bbb([], []).

bbb(A, [X|F]) :- append(F, [X], A).

22/37

Problem XXI

Given the following program

a(1,2).

a(3,5).

a(R, S) :- b(R, S), b(S, R).

b(1,3).

b(2,3).

b(3, T) :- b(2, T), b(1, T).

list the first answer to this query:

?- a(X, Y), b(X, Y)

Will there be more than one answer?

23/37

Problem XXII

Given the following definitions:

f(1, one).

f(s(1), two).

f(s(s(1)), three).

f(s(s(s(X))), N) :- f(X, N).

what are the results of these queries? If there is more than one
possible answer, give at least two.

1 ?- f(s(1), A).

2 ?- f(s(s(1), two).

3 ?- f(s(s(s(s(s(s(1)))))), C).

4 ?- f(D, three).

24/37

Problem XXIII

Write a Prolog predicate sum abs diffs(List1, List2,

Diffs) which sums the absolute differences between two integer
lists of the same length.
Example:

?- sum abs diffs([1,2,3], [5,4,2], X).

X = 7 % abs(1-5) + abs(2-4) + abs(3-2)

25/37

Problem XXIV

Write a Prolog predicate transpose(A, AT) which transposes a
rectangular matrix given in row-major order.
Example:

?- transpose([[1, 2], [3, 4]], AT).

AT = [[1, 3], [2, 4]]

26/37

Problem XXV

Write Prolog predicates that given a database of countries and
cities

% country(name, population (in thousands),

% capital).

country(sweden, 8823, stockholm).

country(usa, 221000, washington).

country(france, 56000, paris).

% city(name, in country, population).

city(lund, sweden, 88).

city(paris, usa, 1). % Paris, Texas.

27/37

Problem XXV. . .

Answer the following queries:

1 Which countries have cities with the same name as capitals of
other countries?

2 In how many countries do more than 1
3 of the population live

in the capital?

3 Which capitals have a population more than 3 times larger
than that of the secondmost populous city?

28/37

Problem XXV. . .

%country(name, population (in thousands), capital).

country(sweden, 8823, stockholm).

country(usa, 221000, washington).

country(france, 56000, paris).

country(denmark, 3400, copenhagen).

% city(name, in country, population).

city(lund, sweden, 88).

city(new york, usa, 5000). % Paris, Texas.

city(paris, usa, 1). % Paris, Texas.

city(copenhagen, denmark, 1200).

city(aarhus, denmark, 330).

city(odense, denmark, 120).

city(stockholm, sweden, 1300).

city(gothenburg, sweden, 350).

city(washington, usa, 3400).

city(paris, france, 2000). 29/37

Problem XXVI

Write a Prolog predicate that extracts all words immediately
following “the” in a given list of words.
Example:

?- find([the, man, closed, the, door,

of, the, house], X).

X = [man, door, house]

30/37

Problem XXVII (Midterm Exam 372/04)

Write a Prolog predicate dup that duplicates each element of a
list. Example:

?- dup([2,5,x], A).

A = [2,2,5,5,x,x]

31/37

Problem XXVIII (Midterm Exam 372/04)

The following Prolog program evaluates constant expressions:

eval(A+B, V) :- eval(A, V1), eval(B, V2),

V is V1 + V2.

eval(A*B, V) :- eval(A, V1), eval(B, V2),

V is V1 * V2.

eval(X, X) :- integer(X).

?- eval(3*4+5, V).

V = 17

32/37

Problem XXVIII. . . (Midterm Exam 372/04)

Modify the program so that it allows the expression to contain
variables. Variable values should be taken from an environment (a
list of variable/value pairs), like this:

?- eval([x=3,y=4], x*y+5, V).

V = 17

?- eval([x=3], x*y+5, V).

no

33/37

Problem XXIX (Midterm Exam 372/04)

Write a predicate mult which, for all pairs of numbers between 0
and 9, adds their product to the Prolog database. I.e., the
following facts should be asserted:

times(0, 0, 0). % 0 ∗ 0 = 0
times(0, 1, 0). % 0 ∗ 1 = 0
...

times(9, 7, 63). % 9 ∗ 7 = 63
times(9, 8, 72). % 9 ∗ 8 = 72
times(9, 9, 81). % 9 ∗ 9 = 81

The interaction should be as follows:

?- times(5,5,X).

no

?- mult.

yes

?- times(5,5,X).

X=25 34/37

Problem XXX (Midterm Exam 372/04)

Use a 2nd-order-predicate to write a predicate alltimes(L)
which, given the times(X,Y,Z) database above produces a list of
all the multiplication facts:

?- alltimes(L).

L = [1*1=2,1*2=2,1*3=3,...,9*9=81].

35/37

Problem XXXI (Midterm Exam 372/04)

Show the results (yes/no) and resulting variable bindings for the
following queries:

a) ?- f(g(X,X), h(Y,Y)) = f(g(Z), Z).

b) ?- f(g(X,X), h(Y,Y)) = f(g(h(W,a),Z), Z).

c) ?- f(g(X,X), h(,)) = f(g(h(W,a),Z), Z).

d) ?- f(x(A,B),C) = f(C,x(B,A)).

36/37

Problem XXXII (Final Exam 372/04)

Given this Prolog predicate definition

mystery(L, B) :-

member(X, L),

append(A,[X],L),

append(B,C,A),

length(B,BL),

length(C,CL),

BL > CL.

what does the query

| ?- mystery([1,2,3,4,5],C), write(C), nl, fail.

print?

37/37

CSc 372

Comparative Programming Languages

32 : Prolog — Second-Order Predicates

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/40

collberg@gmail.com

Second-Order Programming

Second-Order Predicates

When we ask a question in Prolog we will (if everything goes
right) get an answer. One answer. We can if we want to ask
Prolog to backtrack (using the semi-colon), but we will still
only get one answer at a time.

Furthermore, when we backtrack all the information gathered
previously is lost.

It isn’t possible (in pure Prolog) to find the set of all possible
solutions to a query.

However, if we go outside pure Prolog (using the database
manipulation features) we can construct procedures which
collect all solutions to a query.

They are called second-order because they deal with sets and
the properties of sets, rather than about individual elements of
sets.

3/40

Second-Order Predicates

setof(X,Goal,List)

List is a collection of Xs for which Goal is true.
List is sorted and contains no duplicates.

bagof(X,Goal,List)

List is may contain duplicates.

setof and bagof will fail if no Goals succeed.

findall(X,Goal,List)

findall will return [] if no Goals succeed.

4/40

Examples

remove duplicates(X, Y) :-

setof(M, member(M,X), Y).

children(X,Kids) :-

setof(C, father(X,C), Kids).

5/40

Uninstantiated Variables

Consider setof(X,Goal,List) and bagof(X,Goal,List).

If there are uninstantiated variables in Goal which do not also
appear in X, then a call to setof or bagof may backtrack,
generating alternative values for List.

If this is not the behavior you want, you can say

Y ^ Goal

meaning there exists a Y such that Goal is true, where Y is
some Prolog term (usually, a variable).

findall does this automatically.

6/40

Uninstantiated Variables. . .

Consider this database:

foo(1,a).

foo(2,b).

foo(3,c).

If we use both arguments of foo in our goal, we get what we
expect:

| ?- findall(X/Y, foo(X,Y), L).

L = [1/a,2/b,3/c]

| ?- setof(X/Y, foo(X,Y), L).

L = [1/a,2/b,3/c]

| ?- bagof(X/Y, foo(X,Y), L).

L = [1/a,2/b,3/c]

7/40

Uninstantiated Variables. . .

If we only use one of foo’s arguments in our goal, findall
still gets us the expected result:

| ?- findall(X, foo(X,Y), L).

L = [1,2,3]

But, bagof doesn’t:

| ?- bagof(X, foo(X,Y), L).

L = [1]

Y = a ? ;

L = [2]

Y = b ? ;

L = [3]

Y = c

L = [1,2,3]

8/40

Uninstantiated Variables. . .

So, instead we have to do:

| ?- bagof(X, Y^foo(X,Y), L).

L = [1,2,3]

9/40

SetOf — Drinkers

:- op(500, yfx, ’drinks’).

john drinks whiskey.

martin drinks whiskey.

david drinks milk.

ben drinks milk.

helder drinks beer.

laurence drinks beer.

chris drinks coke.

louise drinks l and p.

?- setof(X, X drinks milk, S).

X = 9109,

S = [ben,david]

10/40

Implementing bagof

bagof(Item, Goal,) :-

assert(bag(marker)),

Goal,

assert(bag(Item)),

fail.

bagof(, , Bag) :-

retract(bag(Item)),

collect(Item, [], Bag).

collect(marker, L, L).

collect(Item,ThisBag,FinalBag):-

retract(bag(NextItem)),

collect(NextItem,

[Item|ThisBag], FinalBag).

11/40

Implementing setof

setof is implemented as a call to bagof followed by a call to
sort which puts the elements in order and removes duplicates.

12/40

Lee’s Algorithm

Lee’s Algorithm

We are bext going to look a more involved example, an application
from VLSI design. It uses the setof predicate to compute a
shortest path between two points on a grid, subject to the
conditions that

1 The path goes in the east-west-north-south direction only.

2 The path doesn’t touch any obstacles.

14/40

VLSI routing on a grid.

Find a shortest Manhattan route between A and B that
doesn’t pass through any obstacles.

A

B

lee route(A,B,Obstacles,Path) :-

waves(B,[[A],[]],Obstacles,Waves),

path(A,B,Waves,Path).

?- lee route(1-1,5-5,[obst(2-3, 4-5),

obst(6-6, 8-8)], P).

A

B
5−5

5−4

5−2
4−23−22−21−2

1−1

5−3

Lee’s Algorithm. . .

Lee’s algorithm works in two stages:

1 First we generate a sequence of waves, where the first wave
consists of the starting point itself.

2 Then we use the set of waves to find a shortest path.

17/40

Lee’s Algorithm. . .

We start out with one wave which consists solely of the source
point.

From that point we generate all neighboring points. This
forms the second wave.

Each wave consists of points which are
1 neighbors to points on the previous wave,
2 not members of previous waves,
3 not obstructed by any obstacles.

We stop when the destination point is on the last generated
wave.

18/40

LastW = []

Wave = [1-1]

NextW = [0-1,1-0,1-2,2-1]

A

B

2−1

1−2

0−1

1−0

LastW = [1-1]

Wave = [0-1,1-0,1-2,2-1]

NextW = [0-0,0-2,1-3,2-0,2-2,3-1]

A

B

2−2

2−0

0−2

1−3

3−1

LastW = [0-1,1-0,1-2,2-1]

Wave = [0-0,0-2,1-3,2-0,2-2,3-1]

NextW = [0-3,1-4,3-0,3-2,4-1]

A

B0−3

4−1

2−3

1−4

3−2

3−0

Lee’s Algorithm. . .

waves(Destination,Wavessofar,Obstacles,Waves) :-

Waves is a list of waves including

Wavessofar (except, perhaps, it’s last wave)

that leads to Destination without crossing .

Obstacles.

next waves(Wave,LastWave,Obstacles,NextWave) :-

Nextwave is the set of admissible points

from Wave, that is excluding points from

Lastwave, Wave, and points under Obstacles.

22/40

Lee’s Algorithm. . .

The first wave-rule (the recursive base case for wave) states
that once the last generated wave contains the destination
point, we’re done generating waves.

The second wave-rule simply generates the next wave (using
next wave), and then adds it to the beginning of the list of
waves. Note that the list of waves is a list-of-lists.

23/40

Lee’s Algorithm. . .

next wave takes three input parameters:
1 Wave is the last generated wave.
2 LastWave is the wave generated before the last wave.
3 Obstacels is the list of obstacles.

next wave uses setof to generate the set of all admissible

points. A point is admissible if it belongs to the next wave.

24/40

Lee’s Algorithm. . .

waves(B,[Wave|Waves],Obstacles,Waves) :-

member(B,Wave), !.

waves(B,[Wave,LastWave|LastWaves],

Obstacles,Waves) :-

next wave(Wave,LastWave,Obstacles,NextWave),

waves(B,[NextWave,Wave,LastWave|LastWaves],

Obstacles,Waves).

next wave(Wave,LastWave,Obstacles,NextWave) :-

setof(X,admissible(X,Wave,LastWave,Obstacles),

NextWave).

25/40

Lee’s Algorithm. . .

X is adjacent to the points on Wave (i.e. X is a point on the next
wave) if

X is a neighbor to a point X1 on the previous wave (Wave,
that is).

X is not obstructed by an obstacle.

26/40

Lee’s Algorithm. . .

Notice that adjacent uses a generate-and-test scheme:

1 member & neighbor work together to generate new possible
points:

1 member generates points on the previous wave.
2 neighbor uses the points generated by member to generate

points which are neighbors to the points on the last wave.

2 obstructed weeds out generated point that are under an
obstacle.

27/40

Lee’s Algorithm. . .

X is an admissible point if

1 it is a neighbor of a point on the previous wave

2 it is not on any previous wave

3 is is not obstructed by an obstacle

admissible(X,Wave,LastWave,Obst) :-

adjacent(X,Wave,Obst),

not member(X,LastWave),

not member(X,Wave).

adjacent(X,Wave,Obstacles) :-

member(X1,Wave),

neighbor(X1,X),

not obstructed(X,Obstacles).

28/40

Lee’s Algorithm. . .

next to takes a number A and returns B=A+1 and B=A-1.
A-1 is returned only if the result is >0.

neighbor uses next to to generate neighboring points. The
rules of neighbor state:

1 The point X2-Y is a neighbor of point X1-Y if X2 is X1+1, or
X2=X1-1. In other words, the first neighbor rule generates
the points immediately above and below a given point.

2 The point X-Y2 is a neighbor of point X-Y1 if Y2 is Y1+1, or
Y2=Y1-1. In other words, the second neighbor rule generates
the points immediately to the left and right of a given point.

29/40

neighbor(X1-Y,X2-Y):- next to(X1,X2).

neighbor(X-Y1,X-Y2):- next to(Y1,Y2).

next to(A,B) :- B is A+1.

next to(A,B) :- A > 0, B is A-1.

Lee’s Algorithm. . .

obstructed(Point,Obstacles) checks to see if the point is
on the perimeter of any of the obstacles in the list of
obstacles Obstacles.

The rule obstructs(Point, Obstacle) checks to see if the
point is on the perimeter of the obstacle.

Note that obstructed is another generate-and-test procedure.
member generates one obstacle at a time from this list, and
obstructs checks to see if that obstacle obstructs the point.

31/40

Lee’s Algorithm. . .

obstructed(Point,Obstacles) checks to see if the point is
on the perimeter of any of the obstacles in the list of
obstacles Obstacles.

The rule obstructs(Point, Obstacle) checks to see if the
point is on the perimeter of the obstacle.

Note that obstructed is another generate-and-test procedure.
member generates one obstacle at a time from this list, and
obstructs checks to see if that obstacle obstructs the point.

32/40

% Generate an obstacle, then test

% if it obstructs a point Pt.

obstructed(Pt,Obsts) :-

member(Obst,Obsts), obstructs(Pt,Obst).

obstructs(X-Y,obst(X-Y1,X2-Y2)) :-

Y1=<Y, Y=<Y2. % X-Y on bottom edge.

obstructs(X-Y,obst(X1-Y1,X-Y2)) :- Y1=<Y,Y=<Y2.

obstructs(X-Y,obst(X1-Y,X2-Y2)) :- X1=<X,X=<X2.

obstructs(X-Y,obst(X1-Y1,X2-Y)) :- X1=<X,X=<X2.

obst(6−1,8−3) 8−3

6−1

Why do we only need to check the perimeter? Shouldn’t we
have to check if a point lies inside an object as well?

No, such points will never be considered. Their neighbors
(which are on a perimeter) cannot be on a previous wave:

neighbors are
not on any
previous wave!

Why don’t we have to
test for this point?

A

B

LastWave Wave

Because it’s

NextWave

Lee’s Algorithm. . .

The last part of the algorithm is to construct the actual path from
the list of waves. The procedure path does this for us.

1 path starts by looking in the last wave for a neighbor of the
destination node. In our example, the destination node is 5-5,
and a neighbor of 5-5 in the last wave is the node 5-4.

2 path next looks for a neighbor for the new node in the next
wave. Our example yields node 5-3 which is a neighbor of
node 5-4.

3 Eventually we’ll get to the last wave which only contains the
source node, in our case node 1-1.

35/40

Lee’s Algorithm. . .

Waves = [[0-7,1-8,2-7,3-6, 5-4 ,6-3,7-0,7-2,8-1],

[0-6,1-7,2-6, 5-3 ,6-0,6-2,7-1],

[0-5,1-6,5-0, 5-2 ,6-1],

[0-4,1-5,4-0, 4-2 ,5-1],

[0-3,1-4,3-0, 3-2 ,4-1],

[0-0,0-2,1-3,2-0, 2-2 ,3-1],

[0-1,1-0, 1-2 ,2-1],

[1-1]]

path(A,A,Waves,[A]) :- !.

path(A,B,[Wave|Waves],[B|Path]) :-

member(B1,Wave),

neighbor(B,B1), !,

path(A,B1,Waves,Path).

36/40

Readings and References

Read Clocksin & Mellish, pp. 156--158.

37/40

homework

Exercise

Write Prolog predicates that given a database of countries and
cities

% country(name, population, capital).

country(sweden, 8823, stockholm).

country(usa, 221000, washington).

country(france, 56000, paris).

% city(name, in country, population).

city(lund, sweden, 88).

city(paris, usa, 1). % Paris, Texas.

39/40

Exercise. . .

answer the following queries:

1 Which countries have cities with the same name as capitals of
other countries?

2 In how many countries do more than 1
3 of the population live

in the capital?

3 Which capitals have a population more than 3 times larger
than that of the secondmost populous city?

40/40

CSc 372

Comparative Programming Languages

33 : Prolog — Grammars

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/47

collberg@gmail.com

Introduction

Prolog Grammar Rules

Prolog Grammar Rules

A DCG (definite clause grammar) is a phrase structure
grammar annotated by Prolog variables.

DCGs are translated by the Prolog interpreter into normal
Prolog clauses.

Prolog DCG:s can be used for generation as well as parsing.
I.e. we can run the program backwards to generate sentences
from the grammar.

4/47

Prolog Grammar Rules. . .

s --> np, vp.

vp --> v, np.

vp --> v.

np --> n.

n --> [john]. n --> [lisa].

n --> [house].

v --> [died]. v --> [kissed].

?- s([john, kissed, lisa], []).

yes

?- s([lisa, died], []).

yes

?- s([kissed, john, lisa], []).

no

5/47

Prolog Grammar Rules. . .

?- s(A, []).

A = [john,died,john] ;

A = [john,died,lisa] ;

A = [john,died,house] ;

A = [john,kissed,john] ;

A = [john,kissed,lisa] ;

A = [john,kissed,house] ;

A = [john,died] ;

A = [john,kissed] ;

A = [lisa,died,john] ;

A = [lisa,died,lisa] ;

A = [lisa,died,house] ;

A = [lisa,kissed,house] ;

A = [lisa,died] ;

6/47

Implementing Prolog Grammar Rules

Prolog turns each grammar rule into a clause with one
argument.

The rule S → NP VP becomes

s(Z) :- np(X), vp(Y), append(X,Y,Z).

This states that Z is a sentence if X is a noun phrase, Y is a
verb phrase, and Z is X followed by Y.

7/47

Implementing Prolog Grammar Rules. . .

s(Z) :- np(X), vp(Y), append(X,Y,Z).

np(Z) :- n(Z).

vp(Z) :- v(X), np(Y), append(X,Y,Z).

vp(Z) :- v(Z).

n([john]). n([lisa]). n([house]).

v([died]). v([kissed]).

?- s([john,kissed,lisa]).

yes

?- s(S).

S = [john,died,john] ;

S = [john,died,lisa] ; ...

8/47

Implementing Prolog Grammar Rules. . .

The append’s are expensive — Prolog uses difference lists
instead.

The rule

s(A,B) :- np(A,C), vp(C,B).

says that there is a sentence at the beginning of A (with B
left over) if there is a noun phrase at the beginning of A (with
C left over), and there is a verb phrase at the beginning of C
(with B left over).

9/47

Implementing Prolog Grammar Rules. . .

s(A,B) :- np(A,C), vp(C,B).

np(A,B) :- n(A,B).

vp(A,B) :- v(A,C), np(C,B).

vp(A,B) :- v(A,B).

n([john|R],R). n([lisa|R],R).

v([died|R],R). v([kissed|R],R).

?- s([john,kissed,lisa], []).

yes

?- s([john,kissed|R], []).

R = [john] ;

R = [lisa] ;...

10/47

Generating Parse Trees

DCGs can build parse trees which can be used to construct a
semantic interpretation of the sentence.

The tree is built bottom-up, when Prolog returns from
recursive calls. We give each phrase structure rule an extra
argument which represents the node to be constructed.

11/47

Generating Parse Trees. . .

s(s(NP,VP)) --> np(NP), vp(VP).

vp(vp(V, NP)) --> v(V), np(NP).

vp(vp(V)) --> v(V).

np(np(N)) --> n(N).

n(n(john)) --> [john].

n(n(lisa)) --> [lisa].

n(n(house)) --> [house].

v(n(died)) --> [died].

v(n(kissed)) --> [kissed].

12/47

Generating Parse Trees. . .

The rule

s(s(NP,VP)) --> np(NP), vp(VP).

says that the top-level node of the parse tree is an s with the
sub-trees generated by the np and vp rules.

?- s(S, [john, kissed, lisa], []).

S=s(np(n(john)),vp(n(kissed),np(n(lisa))))

?- s(S, [lisa, died], []).

S=s(np(n(lisa)),vp(n(died)))

?- s(S, [john, died, lisa], []).

S=s(np(n(john)),vp(n(died),np(n(lisa))))

13/47

Generating Parse Trees. . .

We can of course run the rules backwards, turning parse trees
into sentences:

?- s(s(np(n(john)),vp(n(kissed),

np(n(lisa)))), S, []).

S=[john, kissed, lisa]

14/47

Ambiguity

Ambiguity

An ambigous sentence is one which can have more than one
meaning.

Lexical ambiguity:

homographic

spelled the same
bat (wooden stick/animal)
import (noun/verb)

polysemous

different but related meanings
neck (part of body/part of bottle/narrow strip
of land)

homophonic

sound the same
to/too/two

16/47

Ambiguity. . .

Syntactic ambiguity:

More than one parse (tree).

Many missiles have many war-heads.

“Duck” can be either a verb or a noun.

“her” can either be a determiner (as in “her book”), or a
noun: “I liked her dancing”.

17/47

Ambiguity. . .

s(s(NP,VP)) --> np(NP), vp(VP).

vp(vp(V, NP)) --> v(V), np(NP).

vp(vp(V, S)) --> v(V), s(S).

vp(vp(V)) --> v(V).

np(np(Det,N)) --> det(Det), n(N).

np(np(N)) --> n(N).

n(n(i)) --> [i].

n(n(duck)) --> [duck].

v(v(duck)) --> [duck].

v(v(saw)) --> [saw]. n(n(saw)) --> [saw].

n(n(her)) --> [her].

det(det(her)) --> [her].

?- s(S, [i, saw, her, duck], []).

18/47

DCG Applications

Pascal Declarations

?- decl([const, a, =, 5, ;,

var, x, :, ’INTEGER’, ;], []).

yes

?- decl([const, a, =, a, ;, var, x,

:, ’INTEGER’, ;], []).

no

decl --> const decl, type decl,

var decl, proc decl.

20/47

Pascal Declarations

% Constant declarations

const decl --> [].

const decl -->

[const], const def, [;], const defs.

const defs --> [].

const defs --> const def, [;], const defs.

const def --> identifier, [=], constant.

identifier --> [X], {atom(X)}.

constant --> [X], {(integer(X); float(X))}.

21/47

Pascal Declarations. . .

% Type declarations

type decl --> [].

type decl --> [type], type def, [;], type defs.

type defs --> [].

type defs --> type def, [;], type defs.

type def --> identifier, [=], type.

type --> [’INTEGER’]. type --> [’REAL’].

type --> [’BOOLEAN’]. type --> [’CHAR’].

22/47

Pascal Declarations. . .

% Variable decleclarations

var decl --> [].

var decl --> [var], var def, [;], var defs.

var defs --> [].

var defs --> var def, [;], var defs.

var def --> id list, [:], type.

id list --> identifier.

id list --> identifier, [’,’], id list.

23/47

Pascal Declarations. . .

% Procedure declarations

proc decl --> [].

proc decl --> proc heading, [;], block.

proc heading --> [procedure], identifier,

formal param part.

formal param part --> [].

formal param part --> [’(’],

formal param section, [’)’].

formal param section --> formal params.

formal param section --> formal params, [;],

formal param section.

formal params --> value params.

formal params --> variable params.

value params --> var def.

variable params --> [var], var def.

24/47

Pascal Declarations – Building Trees

decl(decl(C, T, V, P)) -->

const decl(C), type decl(T),

var decl(V), proc declaration(P).

const decl(const(null)) --> [].

const decl(const(D, Ds)) -->

[const], const def(D), [;], const defs(Ds).

25/47

Pascal Declarations – Building Trees. . .

const defs(null) --> [].

const defs(const(D, Ds)) -->

const def(D), [;], const defs(Ds).

const def(def(I, C)) --> ident(I), [=], const(C).

ident(id(X)) --> [X], {atom(X)}.

const(num(X)) --> [X], {(integer(X); float(X))}.

26/47

Pascal Declarations – Example Parse

3.14

def

id num

const

def

id num

const

decl

null null null

null

a 5

x

27/47

Pascal Declarations – Example Parse. . .

?- decl(S, [const, a, =, 5, ;, x, =, 3.14, ;], []).

S = decl(

const(def(id(a),num(5)),

const(def(id(x),num(3.14)),

null)),

null,null,null)

28/47

Number Conversion

?- number(V, [sixty, three], []).

V = 63

?- number(V,[one,hundred,and,fourteen],[]).

V = 114

?- number(V,[nine,hundred,and,ninety,nine],[]).

V = 999

?- number(V, [fifty, ten], []).

no

29/47

Number Conversion. . .

number(0) --> [zero].

number(N) --> xxx(N).

xxx(N) --> digit(D), [hundred], rest xxx(N1),

{N is D * 100+N1}.

xxx(N) --> xx(N).

rest xxx(0) --> []. rest xxx(N) --> [and], xx(N).

xx(N) --> digit(N).

xx(N) --> teen(N).

xx(N) --> tens(T), rest xx(N1), {N is T+N1}.

rest xx(0) --> []. rest xx(N) --> digit(N).

30/47

Number Conversion. . .

digit(1) --> [one]. teen(10) --> [ten].

digit(2) --> [two]. teen(11) --> [eleven].

digit(3) --> [three]. teen(12) --> [twelve].

digit(4) --> [four]. teen(13) --> [thirteen].

digit(5) --> [five]. teen(14) --> [fourteen].

digit(6) --> [six]. teen(15) --> [fifteen].

digit(7) --> [seven]. teen(16) --> [sixteen].

digit(8) --> [eight]. teen(17) --> [seventeen].

digit(9) --> [nine]. teen(18) --> [eighteen].

teen(19) --> [nineteen].

tens(20) --> [twenty]. tens(30) --> [thirty].

tens(40) --> [forty]. tens(50) --> [fifty].

tens(60) --> [sixty]. tens(70) --> [seventy].

tens(80) --> [eighty] . tens(90) --> [ninety].

31/47

Expression Evaluation

Evaluate infix arithmetic expressions, given as character
strings.

?- expr(X, "234+345*456", []).

X = 157554

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.

expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.

expr(Z) --> term(Z).

term(Z) --> num(X), "*", term(Y), {Z is X * Y}.

term(Z) --> num(X), "/", term(Y), {Z is X /Y }.

term(Z) --> num(Z).

32/47

Expression Evaluation. . .

Prolog grammar rules are equivalent to recursive descent
parsing. Beware of left recursion!

Anything within curly brackets is “normal” Prolog code.

num(C) --> "+", num(C).

num(C) --> "-", num(X), {C is -X}.

num(X) --> int(0, X).

int(L, V) --> digit(C), {V is L * 10 +C}.

int(L, X) --> digit(C), {V is L* 10 +C},

int(V, X).

digit(X) --> [C], {"0" =< C, C =< "9",X is C-"0"}.

33/47

Machine Translation

English to Maaori Translation

e2m(E, M) :-

english_s(PL , E, []) ,

maori_s(PL , M , []).

| ?- e2m([a, man , likes , beer], M).

M = [ka ,pai ,a,waipirau ,ki,teetahi ,tangata]

| ?- e2m([every , man , likes , beer], M).

M = [ka ,pai ,a,waipirau ,ki,kotoa ,tangata]

| ?- e2m([every , man , likes , beer], M).

M = [ka ,pai ,a,waipirau ,ki,kotoa ,tangata]

| ?- e2m(E, [ka,pai ,te,waipirau ,ki ,teetahi ,tangata]).

E = [a,man ,likes ,beer]

35/47

English to Predicate Logic

:- op(500 , xfy , &).

:- op(500 , xfy , = >).

english_s(Meaning) -->

english_np(Who , Assn , Meaning),

english_vp(Who , Assn).

english_det(Who , Prop , Assn ,

exists(Who , Prop & Assn)) --> [a].

english_det(Who , Prop , Assn ,

all(Who , Prop => Assn)) --> [every].

english_np(Who , Assn , Assn) -->

english_noun(Who , Who).

36/47

english_np(Who , Assn , Meaning) -->

english_det(Who , Prop , Assn , Meaning),

english_noun(Who , Prop).

english_noun(Who , man(Who)) --> [man].

english_noun(beer , beer) --> [beer].

english_noun(john , john) --> [john].

english_vp(Who , Meaning) -->

english_intrans_v(Who , Meaning).

english_vp(Who , Meaning) -->

english_trans_v(Who , What , Meaning),

english_np(What , Assn , Assn).

english_intrans_v(Who , sleeps(Who)) --> [sleeps].

english_trans_v(Who , What ,

likes(Who , What)) --> [likes].

Maaori to Predicate Logic

maori_s(Meaning) -->

maori_trans_vp(Who , Assn),

maori_pp(Who , Assn , Meaning).

maori_det --> [a]. % pers

maori_det --> [te]. % the

maori_det --> [ngaa]. % the -pl

maori_quant(Who , Prop , Assn ,

exists(Who , Prop & Assn)) --> [teetahi]. %

maori_quant(Who , Prop , Assn ,

all(Who , Prop => Assn)) --> [kotoa]. %

maori_np(Who , Meaning , Meaning) -->

maori_det ,

maori_noun(Who , Who).

38/47

maori_np(Who , Assn , Meaning) -->

maori_quant(Who , Prop , Assn , Meaning),

maori_noun(Who , Prop).

maori_np(Who , Assn , Meaning) -->

maori_det ,

maori_noun(Who , Prop),

maori_quant(Who , Prop , Assn , Meaning).

maori_pp(Who , Assn , Meaning) -->

[ki],

maori_np(Who , Assn , Meaning).

maori_noun(Who , man(Who)) --> [tangata]. % man

maori_noun(Who , man(Who)) --> [tangaata]. % men

maori_noun(beer , beer) --> [waipirau].

maori_noun(john , john) --> [hone].

maori_intrans_v(Who , sleeps(Who)) --> [sleeps].

maori_trans_vp(Who , Assn) -->

maori_tense ,

maori_trans_v(Who , What , Assn),

maori_np(What , Assn , Assn).

maori_tense --> [ka].

maori_trans_v(Who , What , likes(Who , What)) --> [pai].

Summary

Summary

Read Clocksin & Mellish, Chapter 9.

Grammar rule syntax:

A grammar rule is written LHS --> RHS. The left-hand side
(LSH) must be a non-terminal symbol, the right-hand side
(RHS) can be a combination of terminals, non-terminals, and
Prolog goals.
Terminal symbols (words) are in square brackets: n -->

[house].
More than one terminal can be matched by one rule: np -->

[the,house].

42/47

Summary. . .

Grammar rule syntax (cont):

Non-terminals (syntactic categories) can be given extra
arguments: s(s(N,V)) --> np(N),vp(V)..
Normal Prolog goals can be embedded within grammar rules:
int(C) --> [C],{integer(C)}.
Terminals, non-terminals, and Prolog goals can be mixed in
the right-hand side: x --> [y], z, {w}, [r], p.

Beware of left recursion! expr --> expr [’+’] expr will
recurse infinitely. Rules like this will have to be rewritten to
use right recursion.

43/47

Exercise

Exercise

Write a program which uses Prolog Grammar Rules to convert
between English time expressions and a 24-hour clock
(“Military Time”).

You may assume that the following definitions are available:

digit(1) --> [one].

digit(9) --> [nine].

teen(10) --> [ten].

teen(19) --> [nineteen].

tens(20) --> [twenty].

tens(90) --> [ninety].

?- time(T, [eight, am], []).

T = 8:0 % Or, better, 8:00

45/47

Exercise. . .

?- time(T, [eight, thirty, am], []).

T = 8:30

?- time(T,[eight,fifteen,am],[]).

T = 8:15

?- time(T,[eight,five,am],[]).

no

?- time(T,[eight,oh,five,am],[]).

T = 8:5 % Or, better, 8:05

?- time(T,[eight,oh,eleven,am],[]).

no

?- time(T,[eleven,thirty,am],[]).

T = 11:30

?- time(T,[twelve,thirty,am],[]).

T = 0:30 % !!!

46/47

Exercise. . .

?- time(T,[eleven,thirty,pm],[]).

T = 23:30

?- time(T,[twelve,thirty,pm],[]).

T = 12:30 % !!!

?- time(T,[ten,minutes,to,four,am],[]).

T = 3:50

?- time(T,[ten,minutes,past,four,am],[]).

T = 4:10

?- time(T,[quarter,to,four,pm],[]).

T = 15:45

?- time(T,[quarter,past,four,pm],[]).

T = 16:15

?- time(T,[half,past,four,pm],[]).

T = 16:30

47/47

	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

