
Decision Trees

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

Claude Monet, “The Mulberry Tree”

Slides from Pedro Domingos,

Luke Zettlemoyer, Carlos

Guestrin, and Andrew Moore 1

Orange vs Lemon?

2

What classifiers can we
use to classify fruit as
oranges or lemons?

• kNN
• Logistic Regression
• Neural Networks

Decision Trees

3

Decision Trees

4

Yes: orange
No: lemon

Decision Trees
• Internal nodes

test the value of particular features 𝑥𝑗
branch according to the results of the test

• Leaf nodes specify the class ℎ 𝑥

• Simpler Example: Predicting whether we’ll play tennis (outputs: Yes, No)

5

• Features: Outlook (𝒙𝟏), Temperature (𝒙𝟐), Humidity (𝒙𝟑), and Wind (𝒙𝟒).
– 𝒙 = (𝐒𝐮𝐧𝐧𝐲,𝐇𝐨𝐭, 𝐇𝐢𝐠𝐡, 𝐒𝐭𝐫𝐨𝐧𝐠) will be classified as No

– The Temperature feature is irrelevant

Decision Trees

• As close as it gets to an “off-the-shelf”
classifier

• Random forests – averages of multiple
decision trees classifiers – often perform the
best on Kaggle

– Kaggle.com: a website that hosts machine learning
“bake-offs”

– Though carefully-engineered neural networks and
other methods win as well

6

Decision Trees: Continuous Features

• If the features are continuous, internal nodes may test the value of a feature
against a threshold

7

Decision Trees: Decision Boundaries

• Decision trees divide the feature space into axis-parallel rectangles

• Each rectangle is labelled as one of the K classes

8

Decision Trees: Model Capacity

• Any Boolean function can be represented

• Might need exponentially many nodes in order to represent the function

9

Decision Trees: Model Capacity

• As the number of nodes in the tree/the depth
of the tree increases, the hypothesis space
grows

– Depth 1 (“decision stump”): can represent any
Boolean function of one feature

– Depth 2: Any Boolean function of two features +
some Boolean functions of three features
(e.g. 𝑥1 ∧ 𝑥2 ∨ (¬𝑥1 ∧ ¬𝑥3))

– Etc.

10

Hypothesis space: the set of all possible functions ℎ𝜃(𝑥)

Learning the Parity Function

• Suppose we want to learn to distinguish
strings of parity 0 and strings of parity 1

– # of 1’s in the string mod 2

• All splits will look equally good!

• Need 2𝑛 examples to learn the function
correctly

• If there are extra random features, cannot do
anything

11

Learning Decision Trees

• Learning the simplest (smallest) decision tree is an NP-
complete problem
– See Hyafil and Rivest, “Constructing Optimal Binary Decision Trees is

NP-complete,” Information Processing Letters Vol 5(1), 1976

• So use a greedy heuristic to construct the tree
– Start from an empty decision tree

– Select the best attribute/feature to split on

– Recurse

12

But what does “best” mean?
We’ll come back to this.

Learning Decision Trees (Binary Features)

GrowTree(S)

if (y=0 for all < 𝑥, 𝑦 >∈ 𝑆)

return new leaf(0)

else if (y=1 for all < 𝑥, 𝑦 >∈ 𝑆)

return new leaf(1)

else

choose the best attribute 𝑥𝑗

𝑆0 = < 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 0

𝑆1 = {< 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 1}

return new node(𝑥𝑗, GrowTree(𝑆0), GrowTree(𝑆1))

13

Threshold splits

• For continuous features, need to decide on a
threshold 𝑡

– Branches: 𝑥𝑗 < 𝑡 , 𝑥𝑗 ≥ 𝑡

• Want to allow repeated splits along a path

– Why?

14

Set of all possible thresholds

• Branches: 𝑥𝑗 < 𝑡 , (𝑥𝑗≥ 𝑡)

• Can’t try all real 𝑡

• But only a finite number of 𝑡’s are important

• Sort the values of 𝑥𝑗 into 𝑧1, … , 𝑧𝑚, consider split

points of the form 𝑧𝑖 + (𝑧𝑖+1 − 𝑧𝑖)/2

• Only splits between different examples of different
classes matter

15

Choosing the Best Attribute

• Most straightforward idea: do a 1-step lookahead, and choose
the attribute such that if we split on it, we get the lowest error
rate on the training data
– Do a majority vote if not all y’s agree at a leaf

ChooseBestAttribute(S)

Choose 𝑗 s.t. 𝐽𝑗 is minimized

𝑆𝑜 =< 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 0

𝑆1 =< 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 1

y0: the most common value of y in S0
y1: the most common value of y in S1

𝐽0=#{< 𝑥. 𝑦 >∈ 𝑆0, 𝑦 ≠ 𝑦0}, 𝐽1=#{< 𝑥. 𝑦 >∈ 𝑆1, 𝑦 ≠ 𝑦1}

𝐽𝑗 = 𝐽0 + 𝐽1 #total number of errors if we split on 𝑥𝑗

16

Choosing the Best Attribute (example)

17

Splitting on 𝑥1 produces just two errors, splitting on other attributes
produces four errors

Four 0’s,
four 1’s

One 0, three 1’s

Choosing the Best Attribute

• The number of errors won’t always tell us that
we’re making progress

18

Same number of
errors as before
the split

Choosing the Best Attribute

• The number of errors won’t always tell us that
we’re making progress

19

Same number of
errors as before
the split

A digression on Information Theory

• Suppose 𝑉 is a random variable with the probability distribution

• The surprise 𝑆(𝑉 = 𝑣) for each value of 𝑣 is defined as
𝑆 𝑉 = 𝑣 = − log2 𝑃(𝑉 = 𝑣)

– The smaller the probability of the event, the larger the surprise if we observe
the event

– 0 surprise for events with probability 1

– Infinite surprise for events with probability 0

20

𝑷(𝒗 = 𝟎) 𝑷(𝒗 = 𝟏) 𝑷(𝒗 = 𝟐) 𝑷(𝒗 = 𝟑) 𝑷(𝒗 = 𝟒) 𝑷(𝒗 = 𝟓) 𝑷(𝒗 = 𝟔)

0.1 0.002 0.52 … … … …

Surprise and Message Length

• Suppose we want to communicate the value
of 𝑣 to a receiver. It makes sense to use longer
binary codes for rarer values of 𝑉

– Can use − log2 𝑃(𝑉 = 𝑣) bits to communicate 𝑣

• Check that this makes sense if 𝑃 𝑉 = 0 = 1 (no need
to transmit any information) and 𝑃 𝑉 = 0 =

𝑃 𝑉 = 1 =
1

2
(need one bit to transmit 𝑣)

• Fractional bits only make sense for longer messages

• Example: UTF-8 uses more bytes for rare symbols

• “Amount of information”
• We won’t go into this in further detail. We need to make sure that the receiver can decode the message even

though different symbols take up different amounts of bits, for example 21

Entropy: Average/Expected Surprise

• The entropy of 𝑉, 𝐻(𝑉) is defined as

𝐻 𝑉 =෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

• The average surprise for one “trial” of 𝑉

– The average message length when communicating
the outcome 𝑣

• The average amount of information we get by
seeing one value of 𝑉 (in bits)

22

Entropy: How “Spread Out” the
distribution is

• High entropy of 𝑉 means we cannot predict
what the value of 𝑉 might be

• Low entropy means we are pretty sure we
know what the value of 𝑉 is every time

23

The entropy of a
Bernoulli variable
is maximized when
𝑝 = 0.5

Entropy of Coin Flips

24

Entropy of Coin Flips

25

𝐻 𝑉 = ෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

Higher Entropy; more uncertainty about the outcome

Three views of Entropy

We are considering a random variable 𝑉, and a
sample 𝑣 from it

The Entropy is

1. Average Surprise at 𝑣

2. Average message length when transmitting 𝑣
in an efficient way

3. Measure of the ”spread-out”-ness of the
distribution 𝑉

26

Conditional Entropy

• The amount of information needed to
communicate the outcome of 𝐵 given that we
know 𝐴

𝐻 𝐵 𝐴 = ෍

𝑎

𝑃 𝐴 = 𝑎 𝐻(𝐵|𝐴 = 𝑎)

= ෍

𝑎

𝑃 𝐴 = 𝑎 [−෍

𝑏

𝑃 𝐵 = 𝑏 𝐴 = 𝑎 log2 𝑃(𝐵 = 𝑏|𝐴 = 𝑎)]

27

𝐻(𝐵) if 𝐴 and 𝐵 are
indep.
0 if 𝐴 = 𝐵 always.

Mutual Information

• The amount of information we learn about
the value of 𝐵 by knowing the value of 𝐴
𝐼 𝐴; 𝐵 = 𝐻 𝐵 − 𝐻 𝐵 𝐴 = 𝐻 𝐴 − 𝐻(𝐴|𝐵)

28

of extra bits need to
communicate the value
of 𝐵 if we know 𝐴

of bits need to
communicate the
value of B

-=

of bits of
information we
know about 𝐵 if
we know 𝐴

Also called “Information Gain”

Mutual Information

• Suppose the class 𝑌 of each training example
and the value of feature 𝑥1 are random
variables. The mutual information quantifies
how much 𝑥1tells us about the value of 𝑌

29

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑌 −෍

𝑥

𝑃 𝑋 = 𝑥 𝐻(𝑌|𝑋 = 𝑥)

Lower is
better for
higher
I(Y;X)

Mutual Information

• What is the mutual information of this split?
(Exercise)

30

Mutual Information Heuristic

• Pick the attribute 𝑥𝑗 such that 𝐼(𝑥𝑗; 𝑌) is as

high as possible

31

Mutual Information Heuristic

• If we had a correct rate of 0.7, and split the data into two groups where
the correct rates were 0.6 and 0.8, we will not make progress on the
number of errors, but we will make progress on the average 𝐻(𝑌|𝑋)

• We could use any concave function of 𝑝 instead of computing the
conditional entropy in

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑌 − σ𝑥 𝑃 𝑋 = 𝑥 𝐻(𝑌|𝑋 = 𝑥)

32

P(Y=1|X=x) P(Y=1|X=x)

H(Y|X=x)
Error
rate

Learning Decisions Trees: Summary

33

Learning Decisions Trees: Summary

34

Learning Decisions Trees: Summary

35

Learning Decisions Trees: Summary

36

Aside: Cross Entropy

• The cost function we used when training
classifiers was called the Cross Entropy

𝐻 𝑃, 𝑄 = −σ𝑣 𝑃 𝑉 = 𝑣 log𝑄 𝑉 = 𝑣

• The amount of information we need to transmit if we
are using a coding scheme optimized for distribution
Q, when the actual distribution over V is P

37

Transmit this
many bitsWith this

probability

Aside: Cross Entropy

• 𝐻 𝑃,𝑄 = −σ𝑦𝑃 𝑋 = 𝑦 log𝑄 𝑋 = 𝑦

• When used as a cost function:

– P: the observed distribution (we know the answer)

– Q: what the classifier actually outputs

– Smaller 𝐻(𝑃, 𝑄) means the distributions P and Q are more similar

• Different conditional distribution for every value of 𝑥(𝑖)!

– Note: we previously explained the function as the negative log-
likelihood of the datapoint. That also works

38

Y = 0 Y=1 Y=2 Y=3

𝑃 𝑌 0 = 0 𝑥 0 = 0 𝑃 𝑌 0 = 1 𝑥 0 = 1 𝑃 𝑌 0 = 2 𝑥 0 = 0 𝑃 𝑌 0 = 3 𝑥 0 = 0

Change of notation: the
random variable is y

Y = 0 Y=1 Y=2 Y=3

𝑃 𝑌 0 = 0 𝑥 0 = 0.1 𝑃 𝑌 0 = 1 𝑥 0 = .7 𝑃 𝑌 0 = 2 𝑥 0 = .15 𝑃 𝑌 0 = 3 𝑥 0 = .15

Missing Attribute Values

• Can use examples with missing attribute
values

– If node 𝑛 tests missing attribute 𝐴, assign the
most common value of attribute 𝐴 among the
other examples in node 𝑛

– Assign the most common value of 𝐴 among
examples with the same target value

– Assign probability 𝑝𝑖 to each possible value 𝑣𝑖 of
𝐴. Assign fraction 𝑝𝑖 of example to each
descendent in the tree

39

Avoiding Overfitting

• Stop growing the tree early

• Or grow full tree, then prune

• The “best” tree:

– Measure performance on the validation set

– Measure performance on the training data, but
add a penalty term that grows with the size of the
tree

40

Reduced-Error Pruning

• Repeat

– Evaluate the impact on the validation set of
pruning each possible node (and all those below
it)

– Greedily remove the node such that removing the
node improves validation set accuracy the most

41

Effect of Reduced-Error Pruning

42

Converting a Tree to Rules

43

Rule Post-Pruning

• Convert the tree into an equivalent set of
rules

– “If sunny and warm, there will be a tennis match”

– “If rainy, there will not be a tennis match”

– …

• Prune each rule independently of the others

– Is removing the rule improving validation
performance

• Sort the rules into a good sequence for use
44

Scaling Up

• Decision trees algorithms like ID3 and C4.5
assume random access to memory is fast

– Good for up to hundreds of thousands of
examples

• SPRINT, SLIQ: multiple sequential scans of data

– OK for millions of examples

• VDFT: at most one sequential scan

– “stream mode”

45

