Decision Trees

Claude Monet, "The Mulberry Tree"

Orange vs Lemon?

What classifiers can we use to classify fruit as oranges or lemons?

- kNN
- Logistic Regression
- Neural Networks

Decision Trees

Decision Trees

Yes: orange
No: lemon

Decision Trees

- Internal nodes
test the value of particular features x_{j}
branch according to the results of the test
- Leaf nodes specify the class $h(x)$
- Simpler Example: Predicting whether we'll play tennis (outputs: Yes, No)

- Features: Outlook $\left(x_{1}\right)$, Temperature $\left(x_{2}\right)$, Humidity $\left(x_{3}\right)$, and Wind $\left(x_{4}\right)$.
- $\boldsymbol{x}=$ (Sunny, Hot, High, Strong) will be classified as No
- The Temperature feature is irrelevant

Decision Trees

- As close as it gets to an "off-the-shelf" classifier
- Random forests - averages of multiple decision trees classifiers - often perform the best on Kaggle
- Kaggle.com: a website that hosts machine learning "bake-offs"
- Though carefully-engineered neural networks and other methods win as well

Decision Trees: Continuous Features

- If the features are continuous, internal nodes may test the value of a feature against a threshold

Decision Trees: Decision Boundaries

- Decision trees divide the feature space into axis-parallel rectangles
- Each rectangle is labelled as one of the K classes

Decision Trees: Model Capacity

- Any Boolean function can be represented
- Might need exponentially many nodes in order to represent the function

Decision Trees: Model Capacity

- As the number of nodes in the tree/the depth of the tree increases, the hypothesis space grows
- Depth 1 ("decision stump"): can represent any Boolean function of one feature
- Depth 2: Any Boolean function of two features + some Boolean functions of three features
(e.g. $\left.\left(x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right)\right)$
- Etc.

Hypothesis space: the set of all possible functions $h_{\theta}(x)$

Learning the Parity Function

- Suppose we want to learn to distinguish strings of parity 0 and strings of parity 1 - \# of 1's in the string mod 2
- All splits will look equally good!
- Need 2^{n} examples to learn the function correctly
- If there are extra random features, cannot do anything

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NPcomplete problem
- See Hyafil and Rivest, "Constructing Optimal Binary Decision Trees is NP-complete," Information Processing Letters Vol 5(1), 1976
- So use a greedy heuristic to construct the tree
- Start from an empty decision tree
- Select the best attribute/feature to split on
- Recurse

But what does "best" mean?
We'll come back to this.

Learning Decision Trees (Binary Features)

```
GrowTree(S)
    if (y=0 for all <x,y>ES)
        return new leaf(0)
    else if (y=1 for all < x,y>ES)
        return new leaf(1)
    else
        choose the best attribute }\mp@subsup{x}{j}{
        Sol}={\langlex,y\rangle\inE S s.t. \mp@subsup{x}{j}{}=0
        S}={<x,y\rangle\in\inS s.t. \mp@subsup{x}{j}{}=1
        return new node(xj, GrowTree(S (S), GrowTree(S (S))
```


Threshold splits

- For continuous features, need to decide on a threshold t
- Branches: $\left(x_{j}<t\right),\left(x_{j} \geq t\right)$
- Want to allow repeated splits along a path - Why?

Set of all possible thresholds

- Branches: $\left(x_{j}<t\right),\left(x_{j} \geq t\right)$
- Can't try all real t
- But only a finite number of t 's are important

- Sort the values of x_{j} into z_{1}, \ldots, z_{m}, consider split points of the form $z_{i}+\left(z_{i+1}-z_{i}\right) / 2$
- Only splits between different examples of different classes matter

Choosing the Best Attribute

- Most straightforward idea: do a 1-step lookahead, and choose the attribute such that if we split on it, we get the lowest error rate on the training data
- Do a majority vote if not all y's agree at a leaf

ChooseBestAttribute(S)

$$
\begin{aligned}
& \text { Choose } j \text { s.t. } J_{j} \text { is minimized } \\
& S_{o}=<x, y>\in S \text { s.t. } x_{j}=0 \\
& S_{1}=<x, y>\in S \text { s.t. } x_{j}=1 \\
& \mathrm{y}_{0} \text { : the most common value of } \mathrm{y} \text { in } \mathrm{S}_{0} \\
& \mathrm{y}_{1}: \text { the most common value of } \mathrm{y} \text { in } \mathrm{S}_{1} \\
& J_{0}=\#\left\{<x . y>\in S_{0}, y \neq y_{0}\right\}, J_{1}=\#\left\{<x . y>\in S_{1}, y \neq y_{1}\right\} \\
& J_{j}=J_{0}+J_{1} \# \text { total number of errors if we split on } x_{j}
\end{aligned}
$$

Choosing the Best Attribute (example)

Splitting on x_{1} produces just two errors, splitting on other attributes produces four errors

Choosing the Best Attribute

- The number of errors won't always tell us that we're making progress

Choosing the Best Attribute

- The number of errors won't always tell us that we're making progress

A digression on Information Theory

- Suppose V is a random variable with the probability distribution

$P(v=0)$	$P(v=1)$	$P(v=2)$	$P(v=3)$	$P(v=4)$	$P(v=5)$	$P(v=6)$
0.1	0.002	0.52	\ldots	\ldots	\ldots	\ldots

- The surprise $S(V=v)$ for each value of v is defined as

$$
S(V=v)=-\log _{2} P(V=v)
$$

- The smaller the probability of the event, the larger the surprise if we observe the event
- 0 surprise for events with probability 1
- Infinite surprise for events with probability 0

Surprise and Message Length

- Suppose we want to communicate the value of v to a receiver. It makes sense to use longer binary codes for rarer values of V
- Can use $-\log _{2} P(V=v)$ bits to communicate v
- Check that this makes sense if $P(V=0)=1$ (no need to transmit any information) and $P(V=0)=$ $P(V=1)=\frac{1}{2}$ (need one bit to transmit v)
- Fractional bits only make sense for longer messages
- Example: UTF-8 uses more bytes for rare symbols
- "Amount of information"
- We won't go into this in further detail. We need to make sure that the receiver can decode the message even though different symbols take up different amounts of bits, for example

Entropy: Average/Expected Surprise

- The entropy of $V, H(V)$ is defined as

$$
H(V)=\sum_{v}-P(V=v) \log _{2} P(V=v)
$$

- The average surprise for one "trial" of V
- The average message length when communicating the outcome v
- The average amount of information we get by seeing one value of V (in bits)

Entropy: How "Spread Out" the distribution is

- High entropy of V means we cannot predict what the value of V might be
- Low entropy means we are pretty sure we know what the value of V is every time

The entropy of a Bernoulli variable is maximized when
$p=0.5$

Entropy of Coin Flips

Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$?

Entropy of Coin Flips

$$
H(V)=\sum_{v}-P(V=v) \log _{2} P(V=v)
$$

$$
-\frac{8}{9} \log _{2} \frac{8}{9}-\frac{1}{9} \log _{2} \frac{1}{9} \approx \frac{1}{2} \quad-\frac{4}{9} \log _{2} \frac{4}{9}-\frac{5}{9} \log _{2} \frac{5}{9} \approx 0.99
$$

Higher Entropy; more uncertainty about the outcome

Three views of Entropy

We are considering a random variable V, and a sample v from it
The Entropy is

1. Average Surprise at v
2. Average message length when transmitting v in an efficient way
3. Measure of the "spread-out"-ness of the distribution V

Conditional Entropy

- The amount of information needed to communicate the outcome of B given that we know A

$$
\begin{aligned}
& H(B \mid A)=\sum_{a} P(A=a) H(B \mid A=a) \\
& =\sum_{a} P(A=a)\left[-\sum_{b} P(B=b \mid A=a) \log _{2} P(B=b \mid A=a)\right] \\
& \begin{array}{l}
H(B) \text { if } A \text { and } B \text { are } \\
\text { indep. } \\
0 \text { if } A=B \text { always. }
\end{array}
\end{aligned}
$$

Mutual Information

- The amount of information we learn about the value of B by knowing the value of A $I(A ; B)=H(B)-H(B \mid A)=H(A)-H(A \mid B)$
\# of bits of information we know about B if $=$ we know A

\# of bits need to communicate the - communicate the value value of B
\# of extra bits need to of B if we know A

Mutual Information

- Suppose the class Y of each training example and the value of feature x_{1} are random variables. The mutual information quantifies how much x_{1} tells us about the value of Y

Mutual Information

- What is the mutual information of this split? (Exercise)

Mutual Information Heuristic

- Pick the attribute x_{j} such that $I\left(x_{j} ; Y\right)$ is as high as possible

Mutual Information Heuristic

- If we had a correct rate of 0.7 , and split the data into two groups where the correct rates were 0.6 and 0.8 , we will not make progress on the number of errors, but we will make progress on the average $H(Y \mid X)$

- We could use any concave function of p instead of computing the conditional entropy in

$$
I(Y ; X)=H(Y)-H(Y \mid X)=H(Y)-\sum_{x} P(X=x) H(Y \mid X=x)
$$

Learning Decisions Trees: Summary

Learning Decisions Trees: Summary

Learning Decisions Trees: Summary

Learning Decisions Trees: Summary

Aside: Cross Entropy

- The cost function we used when training classifiers was called the Cross Entropy

$$
H(P, Q)=-\sum_{v} P(V=v) \log Q(V=v)
$$

Transmit this many bits

probability

- The amount of information we need to transmit if we are using a coding scheme optimized for distribution Q , when the actual distribution over V is P

Aside: Cross Entropy

Change of notation: the random variable is y

- $H(P, Q)=-\sum_{y} P(X=y) \log Q(X=y)$
- When used as a cost function:
- P: the observed distribution (we know the answer)

$\mathbf{Y}=\mathbf{0}$	$\mathbf{Y}=\mathbf{1}$	$\mathbf{Y}=\mathbf{2}$	$\mathbf{Y}=\mathbf{3}$
$P\left(Y^{(0)}=0 \mid x^{(0)}\right)=0$	$P\left(Y^{(0)}=1 \mid x^{(0)}\right)=1$	$P\left(Y^{(0)}=2 \mid x^{(0)}\right)=0$	$P\left(Y^{(0)}=3 \mid x^{(0)}\right)=0$

- Q: what the classifier actually outputs

$\mathrm{Y}=\mathbf{0}$	$\mathrm{Y}=1$	$\mathrm{Y}=\mathbf{2}$	$\mathrm{Y}=\mathbf{3}$
$P\left(Y^{(0)}=0 \mid x^{(0)}\right)=0.1$	$P\left(Y^{(0)}=1 \mid x^{(0)}\right)=.7$	$P\left(Y^{(0)}=2 \mid x^{(0)}\right)=.15$	$P\left(Y^{(0)}=3 \mid x^{(0)}\right)=.15$

- Smaller $H(P, Q)$ means the distributions P and Q are more similar
- Different conditional distribution for every value of $x^{(i)}$!
- Note: we previously explained the function as the negative loglikelihood of the datapoint. That also works

Missing Attribute Values

- Can use examples with missing attribute values
- If node n tests missing attribute A, assign the most common value of attribute A among the other examples in node n
- Assign the most common value of A among examples with the same target value
- Assign probability p_{i} to each possible value v_{i} of A. Assign fraction p_{i} of example to each descendent in the tree

Avoiding Overfitting

- Stop growing the tree early
- Or grow full tree, then prune
- The "best" tree:
- Measure performance on the validation set
- Measure performance on the training data, but add a penalty term that grows with the size of the tree

Reduced-Error Pruning

- Repeat
- Evaluate the impact on the validation set of pruning each possible node (and all those below it)
- Greedily remove the node such that removing the node improves validation set accuracy the most

Effect of Reduced-Error Pruning

Converting a Tree to Rules

IF	$($ Outlook $=$ Sunny $)$ AND $($ Humidity $=$ High $)$
THEN	PlayTennis $=$ No
IF	(Outlook $=$ Sunny $)$ AND $($ Humidity $=$ Normal $)$
THEN	PlayTennis $=$ Yes

Rule Post-Pruning

- Convert the tree into an equivalent set of rules
- "If sunny and warm, there will be a tennis match"
- "If rainy, there will not be a tennis match" - ...
- Prune each rule independently of the others
- Is removing the rule improving validation performance
- Sort the rules into a good sequence for use

Scaling Up

- Decision trees algorithms like ID3 and C4.5 assume random access to memory is fast
- Good for up to hundreds of thousands of examples
- SPRINT, SLIQ: multiple sequential scans of data - OK for millions of examples
- VDFT: at most one sequential scan
- "stream mode"

